高中数学必修5知识点总结归纳(人教版最全)

合集下载

高中数学必修五知识点大全

高中数学必修五知识点大全

知识点串讲必修五第一章:解三角形1.1.1正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abA B =sin cC =一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

2、已知∆ABC 中,∠A 060=,a =求sin sin sin a b c A B C++++ 证明出sin sin a b A B =sin c C ==sin sin sin a b c A B C++++ 解:设sin sin a b A B =(>o)sin c k k C== 则有sin a k A =,sin b k B =,sin c k C = 从而sin sin sin a b c A B C ++++=sin sin sin sin sin sin k A k B k C A B C++++=k又sin a A =2k ==,所以sin sin sin a b c A B C++++=2 评述:在∆ABC 中,等式sin sin a b A B =sin c C ==()0sin sin sin a b c k k A B C ++=>++ 恒成立。

3、已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c(答案:1:2:3)1.1.2余弦定理1、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc 222cos 2+-=a c b B ac 222cos 2+-=b a c C ba2、在∆ABC 中,已知=a c 060=B ,求b 及A⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+-=8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2222221,22+-=b c a A bc ∴060.=A解法二:∵sin 0sin sin45,=a A B b2.4 1.43.8,+=21.8 3.6,⨯=∴a <c ,即00<A <090,∴060.=A评述:解法二应注意确定A 的取值范围。

高中必修五数学知识点总结

高中必修五数学知识点总结

高中必修五数学知识点总结
等差数列:等差数列是一种特殊的数列,其中每一项与它的前一项的差都等于同一个常数,这个常数被称为等差数列的公差。

等差数列的通项公式是 an = a1 + (n - 1)d,其中 a1 是首项,d 是公差,n 是项数。

等差数列还有一个重要的性质,即等差中项,即任意三个连续的项构成等差数列时,中间的项是前后两项的算术平均。

集合:集合是数学中的一个基本概念,它表示一组对象的集合。

集合之间的关系主要有包含关系和相等关系。

如果集合A的每一个元素都是集合B 的元素,那么A是B的子集,记作A⊆B。

如果A是B的子集,且B是A的子集,那么A和B是相等的集合,记作A=B。

函数:函数是描述输入和输出之间关系的一种数学模型。

函数有定义域和值域,定义域是函数可以接受的所有输入值的集合,值域是函数可以产生的所有输出值的集合。

函数可以用列表法、图像法和解析法来表示。

解析法包括以通项公式给出数列和以递推公式给出数列。

以上是高中必修五数学的主要知识点,掌握这些知识点对于理解更高级的数学概念和解决复杂问题至关重要。

同时,也需要通过大量的练习来加深对这些知识点的理解和应用。

人教版数学必修五知识点精要归纳整理(精编Word版)

人教版数学必修五知识点精要归纳整理(精编Word版)

必修五第一章解三角形一、正弦定理和余弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即是外接圆半径。

解三角形(三角形元素:角A、B、C,对应边a、b、c。

)已知三个元素,求出另外三个元素。

2、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即:(应用:已知两边与夹角,算出第三边。

)推论:,,。

二、应用举例1、、三、实习作业(略)第二章数列一、概念与简单表示法1、概念:按照一定顺序排列的一列数。

2、项、首项、有穷数列、无穷数列、递增数列、递减数列、常数列、摆动数列。

3、通项公式4、递推公式二、等差数列& 前n项和(书本P36:本利和=本金(1+利率存期))单利1、等差数列、公差d、等差中项。

,,、、、2、3、三、等比数列& 前n项和(书本P48:本利和=本金(1+利率)存期)复利1、等比数列、公比、等比中项。

,,、、、2、,;3、,。

课外补充:平方数列,,。

立方数列,,。

第三章不等式一、不等式关系与不等式(性质)1、2、,3、4、,,若5、,6、,7、,8、,二、一元二次不等式及其解法1、概念:只含有一个未知数,并且未知数的最高次数是2的不等式。

2、解法(结合图象)时△(两解,一解,无解)时与x轴的交点三、二元一次不等式(组)与简单的线性规划问题1、……与平面区域(1)解集:有序数对(x,y)构成的集合,是一个平面区域(有限的)。

(2)边界:虚线表示,实线表示。

(补充)区域判断:,下方,上方,上方,下方2、简单的线性规划问题(1)资源利用、人力调配、生产安排等。

(2)目标函数(又称线性目标函数):最大(小)值线性规划问题可行解可行域步骤:画线——画目标函数——在可行域范围内平移——最优解。

四、基本不等式:1、对于任意实数a、b,我们有,当且仅当时,等号成立。

2、,时,。

高二数学必修五知识点总结5篇

高二数学必修五知识点总结5篇

高二数学必修五知识点总结5篇高二数学必修五知识点总结5篇了解社交媒体和在线工具对于知识管理和交流的作用和优势。

寻求和借鉴他人的成功经验和最佳实践。

下面就让小编给大家带来高二数学必修五知识点总结,希望大家喜欢!高二数学必修五知识点总结篇1一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗4.简单命题与复合命题有什么区别四种命题之间的相互关系是什么如何判断充分与必要条件5.你知道“否命题”与“命题的否定形式”的区别。

6.求解与函数有关的问题易忽略定义域优先的原则。

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。

例如:。

10.你熟练地掌握了函数单调性的证明方法吗定义法(取值,作差,判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗14.解对数函数问题时,你注意到真数与底数的限制条件了吗(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次)的关系及应用掌握了吗如何利用二次函数求最值16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形二、不等式1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。

高二数学必修五知识点总结

高二数学必修五知识点总结

高二数学必修五知识点总结高二数学必修五包括了数列与数学归纳法、概率与统计、三角函数、指数与对数函数、数学选修的五个主要知识点。

下面将对这五个知识点进行总结与归纳,帮助大家更好地理解和掌握这些数学知识。

一、数列与数学归纳法数列是由若干项按照一定规律排列而成的序列。

常见的数列有等差数列和等比数列。

等差数列的通项公式为an=a1+(n-1)d,其中an表示第n项,a1表示首项,d表示公差。

等比数列的通项公式为an=a1*r^(n-1),其中an表示第n项,a1表示首项,r表示公比。

数学归纳法是一种证明数学命题的方法,分为基本步骤和归纳步骤。

基本步骤是证明当n=1时命题成立,归纳步骤是假设当n=k时命题成立,证明当n=k+1时命题也成立。

二、概率与统计概率是研究随机事件发生可能性的数学分支,其基本思想是通过实验或观察,利用一定的数学模型对事件发生的概率进行计算和推断。

概率的计算方法有频率法、古典概型法、几何概型法和条件概率法等。

统计是以收集、整理、分析和解释资料为主要内容的一门学科。

统计学分为描述统计和推断统计两个部分,其中描述统计主要是对数据进行总结、整理和分析,推断统计则是通过抽样调查等方法对总体进行推断。

三、三角函数三角函数是描述角度和边长之间关系的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数。

正弦函数的定义域是实数集,值域是[-1, 1];余弦函数的定义域是实数集,值域也是[-1, 1];正切函数的定义域是除去所有余弦函数为零的点之外的实数集,值域是实数集。

三角函数的性质包括周期性、奇偶性、单调性和界值等,熟练掌握这些性质对于解题非常重要。

四、指数与对数函数指数函数和对数函数是数学中常用的函数形式。

指数函数的形式为y=a^x,其中a称为底数,x为自变量,y为因变量。

指数函数具有单调性和界值等性质。

对数函数是指数函数的逆运算,常用的对数函数有以10为底的常用对数函数和以e为底的自然对数函数。

(完整word版)人教版数学必修五知识点总结

(完整word版)人教版数学必修五知识点总结

第一章 解三角形1、内角和定理:(1)三角形三角和为π,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.(2)锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.2、正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径). C R c B R b A R a C B A c b a sin 2,sin 2,sin 2)2(;sin :sin :sin ::)1(==== )(3解三角形:已知三角形的几个元素求另外几个元素的过程。

⎩⎨⎧,可求其它元素已知两边和一边的对角可求其它边和角已知两角和任意一边, 注意:已知两边一对角,求解三角形,若用正弦定理,则务必注意可能有两解.3、余弦定理:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222(求边) 或 (求角)⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-+=ab cb a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222 ⎪⎩⎪⎨⎧求其它已知两边和一边对角,已知三边求所有三个角已知两边一角求第三边(注:常用余弦定理鉴定三角形的类型). 4、三角形面积公式:R abc B ac A bc Cab ah S a 4sin 21sin 21sin 2121=⎪⎪⎪⎩⎪⎪⎪⎨⎧==. 5、解三角形应用(1)在视线和水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角。

(2)从正北方向顺时针转到目标方向的水平角叫方位角。

(3)坡面与水平面所成的二面角度数的正切值叫做坡度。

(4)解斜三角形应用题的一般步骤:分析→建模→求解→检验第二章 数 列1.数列的通项、数列的项数,递推公式与递推数列,数列的通项与数列的前n 项和公式的关系:{11,(1),(2)n n n S n a S S n -==-≥(必要时请分类讨论).注意:112211()()()n n n n n a a a a a a a a ---=-+-++-+;121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅. 2.等差数列{}n a 中: (1)等差数列公差的取值与等差数列的单调性..000R d d d d d ∈⎪⎩⎪⎨⎧→<→=→>的取值为,可知数列单调递减数列为常数列数列单调递增 (2)1(1)n a a n d =+-()m a n m d =+-;p q m n p q m n a a a a +=+⇒+=+.(3){}n n b a 21λλ+、{}n ka 也成等差数列.(4)在等差数列{}n a 中,若.0),(,=≠==+n m n m a n m m a n a 则(5)1211,,m k k k m a a a a a a ++-++++++仍成等差数列. (6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22n d d S n a n =+-,2121n n S a n -=-,。

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

(完整版)人教版高二数学必修5知识点归纳(最完整版).doc

(完整版)人教版高二数学必修5知识点归纳(最完整版).doc

现在的努力就是为了实现小时候吹下的牛逼——标必修五数学知识点归纳资料第一章 解三角形1、三角形的性质:①.A+B+C=,sin( A B) sin C , cos( A B) cosCA B2C sinA2 B cosC222②.在 ABC 中 , a b >c , a b < c ; A > Bsin A > sin B ,A > BcosA < cosB, a >bA >B ③.若 ABC 为锐角,则 A B > ,B+C >,A+C > ;222a 2b 2 >c 2 , b 2 c 2 > a 2 , a 2 + c 2 > b 22、正弦定理与余弦定理:①.正弦定理:abc 2R (2R 为 ABC 外接圆的直径 )sin Bsin Asin Ca 2R sin A 、b 2Rsin B 、c 2R sin C(边化角)sin Aa 、 sin Bb 、 sin Cc(角化边)2R2R 2R面积公式: S ABC1ab sin C1bc sin A1ac sin B222②. 余 弦 定 理 : a 2b 2c 2 2bc cos A、 b 2 a 2 c 22ac cos B 、c 2a 2b 22ab cosCcos A b 2 c 2 a 2 、 cos B a 2 c 2 b 2 、 cosCa 2b 2c 2 (角化边)2bc 2ac2ab补充:两角和与差的正弦、余弦和正切公式:⑴ coscos cos sin sin ;⑵ coscos cos sin sin ; ⑶ sinsin cos cos sin ;⑷ sinsin coscos sin ;⑸ tantan tan( tantantan1 tan tan);1 tantan现在的努力就是为了实现小时候吹下的牛逼——标⑹ tantan tan( tantantan1 tan tan).1 tan tan二倍角的正弦、余弦和正切公式:⑴ sin 2 2sin cos . 1 sin 2sin 2cos 22 sincos(sincos )2⑵ cos2cos 2sin 22cos 2 1 1 2sin 2升幂公式 1 cos2 cos 2 ,1 cos2 sin 222降幂公式 cos2cos2 1, sin 21 cos2 .223、常见的解题方法:(边化角或者角化边)第二章 数列1、数列的定义及数列的通项公式:①.a n( ) ,数列是定义域为 N 的函数 f (n) ,当 n 依次取 , , 时的一列函f n1 2 数值②. a n 的求法:i. 归纳法ii.a nS 1 , n 10 ,则 a n 不分段;若 S 00 ,则 a n 分段S n S n若 S 01, n 2iii. 若 a n 1pa nq ,则可设 a n 1 m p(a n m) 解得 m,得等比数列 a n miv.若 S nf (a n ) ,先求 a 1 ,再构造方程组 : S n f (a n )得到关于 a n 1 和 a n 的递推S n 1 f (a n 1 )关系式例如:2 a n 1S n 2a n 12a n 1 2a nS n 先求 a 1 ,再构造方程组:(下减上) a n 1Sn 12a n 1 12. 等差数列:① 定义: a n 1 a n = d (常数) , 证明数列是等差数列的重要工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

仰角与俯角是相对于水平线而言的,而方位角是相对于正北方向而言的。

4. 方向角:相对于某一正方向的水平角.5.视角:由物体两端射出的两条光线,在眼球内交叉而成的角叫做视角第二章 数列 一、数列的概念 1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成123,,,,,n a a a a ,简记为数列{}n a ,其中第一项1a 也成为首项;n a 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集N *(或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列. 2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限. 3、通项公式:如果数列{}n a 的第n 项n a 与项数n 之间的函数关系可以用一个式子表示成()n a f n =,那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式. 4、数列的函数特征:一般地,一个数列{}n a ,如果从第二项起,每一项都大于它前面的一项,即1n n a a +>,那么这个数列叫做递增数列; 如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列{}n a 的各项都相等,那么这个数列叫做常数列. 5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式. 二、等差数列 1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列{}n a 的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、. 3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列{}n a 为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是n a 与2n a +的等差中项,且21=2n n n a a a +++;反之若数列{}n a 满足21=2n n n a a a +++,则数列{}n a 是等差数列. 4、等差数列的性质:(1)等差数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列{}n a 和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列; (3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列. 5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+ 6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且 若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且(4)等差数列{}n a {}n b 的前n 项和为,n n S T (n 为奇数),则1211212112112121()22()22n n n n n n n n a a n a a a S b b n b b b T ------++===++(5)在等差数列{}n a 中.n S =a ,m S b =,则()n m n mS a b n m ++=--,特别地,当n m S S =时,0n m S +=,当n S =m ,m S =n 时()n m S n m +=-+ (6)若n S 为等差数列{}n a 的前n 项和,则数列{}nS n也为等差数列. 7、等差数列前n 项和n S 的最值问题: 设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和. 三、等比数列 1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠). 即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据. 2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a q a q n m n m N --+==≥∈、. 3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ;(2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是n a 与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)若数列{}n a ,{}n b 为等比数列,则数列1{}n a ,{}n k a ,2{}n a ,21{}n a -,{}n n a b {}n na b (k为非零常数) 均为等比数列.(2)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(3)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列; (4)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101n a a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列. 5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结 1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列. 2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈ 3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列{}n a 的首项1a ,且()()1,n n a a f n n N ++-=∈,求n a 通项. 给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=- 利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列{}n a 的首项1a ,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

相关文档
最新文档