初中奥数恒等变形知识点及习题2019
奥数-分式恒等变形师

分式恒等变形方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。
例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求111a b c bc ca ab a b c++---的值。
(1/8) 例2. 若0abc ≠,0a b c ++=,求222a b c bc ac ab++的值。
(3)例3. 求证:2220()()()()()()a bcb ac c baa b a c a b b c c b a c ---++=++++++例4. 设正数x ,y ,z 满足不等式2222x y z xy +-+2222y z x yz +-+2222z x y xz+->1,求证x ,y ,z 是某个三角形的三边长【分析与证明】原不等式可变形为z(x^2+y^2-z^2)+x(y^2+z^2-x^2)+y(x^2+z^2-y^2)-2xyz>0 因式分解得(x+y-z)(y+z-x)(z+x-y)>0所以三个括号内的数全正或者1正2负,因为x ,y ,z 全正,所以不可能1正2负(证明略)所以三个括号内均为正数,所以x ,y ,z 是某个三角形的三边长例5. 求分式248161124816111111a a a a a a +++++-+++++,当2a =时的值. 【解析】 先化简再求值.直接通分较复杂,注意到平方差公式:()()22a b a b a b -=+-,可将分式分步通分,每一步只通分左边两项.原式()()()()248161124816111111a a a a a a a a ++-=++++-+++++22481622481611111a a a a a =++++-++++ ()()()()224816222121481611111a a a a a a a +++=++++++-+44816448161111a a a a =+++-+++1616161611a a =+-+32323232112a ==--例6. 若实数a ,b ,c 满足1111a b c a b c++=++,求证: 7777771111a b c a b c++=++.【证明】:由已知得到()()bc ac ab a b c abc ++++=,有()()()0a b b c a c +++=,则a ,b ,c 中一定有两个数互为相反数。
初中奥数恒等变形知识点整理

初中奥数恒等变形知识点整理恒等概念是对两个代数式而言,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.表示两个代数式恒等的等式叫做恒等式.如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.1.如果两个多项式的同次项的'系数都相等,那么这两个多项式是恒等的.如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).2.通过一系列的恒等变形,证明两个多项式是恒等的.如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立.x2+3x+2=(x-1)2+b(x-1)+c ①解一:∵①是恒等式,对x的任意数值,等式都成立设x=1,代入①,得12+3×1+2=(1-1)2+b(1-1)+cc=6再设x=2,代入①,由于已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6b=5∴x2+3x+2=(x-1)2+5(x-1)+6解二:将右边展开x2+3x+2=(x-1)2+b(x-1)+c=x2-2x+1+bx-b+c=x2+(b-2)x+(1-b+c)比较两边同次项的系数,得由②得b=5将b=5代入③得1-5+c=2c=6∴x2+3x+2=(x-1)2+5(x-1)+6这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.【初中奥数恒等变形知识点汇总整理】。
完整版简单三角恒等变换典型例题

简单三角恒等变换复习、公式体系(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos()cos cossin sincoscossin sincos()(3) tan(tan tan去分母得tan tan i tan()(1 tantan )1 tan tantantantan()(1 tantan 、倍角公式的推导及其变形:(1) sin 2sin( ) sin coscos sin2 sin cossin1 .cos— sin 2221 sin 2(sincos(2) cos 2cos() cos cos sin sin cos 2 sin 2cos 2cos 2 sin 2 (cossin )(cossin )cos 22• 2 cos 厶 sin2 2COS (1 cos )把1移项得 1 cos22 cos 2或 -4- GQS -2-c2 cos 212【因为 是-的两倍,所以公式也可以写成2cos2 cos 2一 1 或 1 cos 2 cos 2或 - 1 cos —cos 22222因为4 是2的两倍,所以公式也可以写成cos 42 cos 221 或 1 2Once 厶或nee? O12cos 2 22 cossin(1 sin 2) sin 2把1移项得1cos 22s in 2或 -4-1 2sin 22【因为是—的两倍,所以公式也可以写成2cos1 2 sin 2—或1 cos2 sin 2或 4 ---- eos-sin 22222因为4 是2 的两倍,所以公式也可以写成21、和差公式及其变形: 2) )2sin 2、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如(),(4 (1)已知,都是锐角,sin -,cos(5) , (-4)_5 ,求sin的值13)(—)等等4 5(2)已知COS(—) 1,—,sin( )U,0 —,求sin( )的值4 5 4 4 4 13 4. 3(提不:(——)(—) ,只要求出sin( )即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知,都是锐角,sin —,cos5,求角的弧度103、T()公式的应用(2) A ABC 中,角A、B 满足(1 tan A)(l tan B) 2 ,求A+B 的弧度4、弦化切,即已知tan ,求与sin, cos相关的式子的值:化为分式,分子分母同时除以cos 或cos? 等(1)已知tansin2 ,求SmQ 1Q in 9 rnQ 7,3sin 2cos2 的值3sin cos 1 sin 2 cos 25、切化弦,再通分,再弦合一(1)、化简:① sin 50° (13 t#TiO°)sin 35°sin 2x x(2)、证明: ________ (1 tan x tan _) tan x2 cos x 26、综合应用,注意公式的灵活应用与因式分解结合②(tan 10 01) cos-100...化简(2 sin2 2 cos4cos 20° sin 40° 的值等于()3cos cos2 的值等于( )——5 511A .C. 2D ・ 4424、已知0AiL cos A 3 那么卡in 2A 等于()2547-_ 12 24A.B .C ・D ・25252525215已知tan ()——,tan( ),则)的值等升( : )544413313 3A •B.—c.-一D.182222186、sinl65o= ()——1A •B.3C. 62 D. 62 22,4J广 47sinl4ocos 16o+sin76ocos74o 的值是 ()1、sin 20°cos40°A. 1B. 3c.1 D. 342r 244 72、若 tan3 , tan,则 tan()等于()31 1 A. 3B. 3-c.D.33A・3 B . 18、已知2x ( ,0),£,COS X24 一,则tan 2x (A . 7 2B —579、化简242s in (JI—x) —• sin (24n:+x), 其结果是4 4A. sin2x cos2x —10 、sin —3 cos 的值是( )12 12A . 0 £-211 、1 tan 2 75 的值为()ji V tan 753 1c. D.2 J 2)24 24C・ D .7 7( )C .—cos2x D. —sin2x5c. 2 D . 2 sin12A. 2 3。
简单三角恒等变换典型例题

简单三角恒等变换复习一、公式体系1、和差公式及其变形:(1)βαβαβαsin cos cos sin )sin(±=± ⇔ )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ⇔ )cos(sin sin cos cos βαβαβα±= (3)βαβαβαtan tan 1tan tan )tan( ±=± ⇔ 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+)tan tan 1)(tan(tan tan βαβαβα+-=-2、倍角公式的推导及其变形:(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+=⇔ααα2sin 21cos sin =⇔2)cos (sin 2sin 1ααα±=±(2)ααααααααα22sin cos sin sin cos cos )cos(2cos -=-=+=)sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=⇔1cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααααα⇔把1移项得αα2cos 22cos 1=+ 或 αα2cos 22cos 1=+ 【因为α是2α的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2cos 2cos 12αα=+因为α4是α2的两倍,所以公式也可以写成12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα2cos 24cos 12=+】αααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔ ⇔把1移项得αα2sin 22cos 1=- 或αα2sin 22cos 1=- 【因为α是2α的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2sin 2cos 12αα=-因为α4是α2的两倍,所以公式也可以写成αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα2sin 24cos 12=-】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(πβαπβααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,135)cos(,54sin =+=βαα,求βsin 的值(2)已知,40,1312)45sin(,434,53)4cos(πββππαπαπ<<-=+<<=-求)sin(βα+的值 (提示:βαπαπβπ++=--+)4()45(,只要求出)sin(βαπ++即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知βα,都是锐角,10103cos ,55sin ==βα,求角βα+的弧度3、)(βα+T 公式的应用(1)求)32tan 28tan 1(332tan 28tan 0000+++的值(2)△ABC中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A +B 的弧度4、弦化切,即已知tan,求与sin,c os相关的式子的值:化为分式,分子分母同时除以αcos 或α2cos 等 (1)已知2tan =α,求αααααααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值5、切化弦,再通分,再弦合一(1)、化简:① )10tan 31(50sin 0+ ② 035sin 10cos )110(tan ⋅-(2)、证明:x xx x x tan )2tan tan 1(cos 22sin =+6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-1、sin 20cos 40cos 20sin 40+的值等于( )A.14 B.2 C .12D .42、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3- B .3 C .13- D.133、c os5πcos 52π的值等于( )A .41 B .21 C .2 D .44、 已知02A π<<,且3cos 5A =,那么sin 2A 等于( )A.425 B .725 C .1225 D .24255、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于ﻩ( )A .1813ﻩB.223ﻩC.2213 D.1836、sin165º= ( ) A.21B.23C.426+ D .426- 7、si n14ºc os16º+sin76ºcos 74º的值是( )A.23 B.21 C.23 D .21- 8、已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A.247 B.247- C .724 D .724- 9、化简2sin (4π-x )·sin(4π+x ),其结果是( ) A .sin 2x B .cos2x C.-cos 2x D.-sin 2x 10、s in12π—3cos 12π的值是 ( ) A.0 B. —2 C .2 D. 2 s in125π11、)( 75tan 75tan 12的值为︒︒-A .32 B.332 C. 32- D.332-。
初一数学竞赛系列讲座(6)整式的恒等变形

初一数学竞赛系列讲座(6)整式的恒等变形一、知识要点1、整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。
3、乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条:①(a+b) (a-b)=a 2-b2②(a ±b)2=a 2±2ab+b2③(a+b) (a 2-ab+b 2)=a 3+b 3④(a-b) (a 2+ab+b 2)=a 3-b3⑤(a+b+c)2= a 2+b 2+c 2+2ab+2bc+2ca⑥(a+b+c) (a 2+b 2+c 2-ab-bc-ca)= a 3+b 3+c 3-3abc⑦(a ±b)3= a 3±3a 2b+3a b 2±b34、整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。
5、余数定理多项式x f 除以(x-a) 所得的余数等于a f 。
特别地a f =0时,多项式x f 能被(x-a) 整除二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解因1+2+3+ (1998)19999992199811998是一个奇数,又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。
先考虑四个连续的自然数n 、n+1、n+2、n+3之间如何添符号,使其代数和最小。
很明显n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号,即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1 故所求最小的非负数是1。
恒等变形知识点总结

恒等变形知识点总结恒等变形是指根据等式的性质和算术运算的性质,将一个等式变形成另一个等式的过程。
在变换的过程中,通过适当的运算,将等式的两侧转变成相同的表达式。
首先,我们来看一下恒等变形的基本原则,它包括以下几个方面:1. 相等的两个数(对象)可以相互规约。
2. 等式的两边加(或减)相等的数(或算式)仍相等。
3. 等式的两边同乘(或同除)一个不为零的数(或数的倒数)仍相等。
4. 在等式中引进(或去除)平方根,绝对值符号对方程做平方根变形,只有当两边都为非负数时,该等式才成立。
这些基本原则是我们进行恒等变形时需要牢记的,只有在遵守这些原则的前提下,我们才能正确进行恒等变形。
在进行恒等变形时,我们通常会用到一些基本的代数运算,例如加减法、乘除法、开平方、平移等,这些运算在恒等变形中起着非常重要的作用。
接下来,我们来看一些常见的恒等变形的方法和技巧。
1. 加减法变形加减法变形是指用等于同一个数的两个数互换位置,并相加或相减,来得到一个新的等式。
例如:a +b =c 和 a = c - b这里,我们可以将第一个等式两边分别减去b,得到新的等式 a = c - b。
通过这个例子,我们可以看出,加减法变形是一种常见且有效的恒等变形方法,它可以帮助我们将一个复杂的等式化简成一个简单的等式。
2. 乘除法变形乘除法变形是指用等于同一数的两个数相除或相乘,得到新的等式。
例如:ab = c 和 a = c/b这里,我们可以将第一个等式两边都除以b,得到新的等式a = c/b。
通过这个例子,我们可以看出,乘除法变形也是一个常见且有效的恒等变形方法。
3. 平方根变形平方根变形是指用等于同一数的两个数同时开平方,得到新的等式。
例如:a^2 = c 和a = √c这里,我们可以将第一个等式两边同时开平方,得到新的等式a = √c。
通过这个例子,我们可以看出,平方根变形也是一个常见且有效的恒等变形方法。
4. 移项变形移项变形是指将等式中的某一项移到等式的另一侧,得到新的等式。
奥数-二次根式-恒等变形师

二次根式恒等变形方法一、分母有理化;因式分解、约分、再分母有理化;裂项;比例性质。
例1. 化简26235++解析:原式=22(22233)5235(23)(5)235(235)(235)235235++-=+++-=+++++-=++=+-例2. 化简:2532306243+--+(提走12,直接分母有理化,乘以有理化因式30(3223)+-,最后答案为612) 例3. 化简:(1)2310141521++++。
(因式分解、裂项752-)(2)52733535377+++++。
(拆项、因式分解、裂项)(3)22710421310(710)(72)(1013)(134)+++++++++(拆项、因式分解、裂项2/3) (4)1014152110141521+--+++(因式分解、裂项265-)(5)926214212237+++++(配方法 22372++)(6)8215106532+--+- (部分配方,分母有化 53+)(7)525232251++---+(前一项设为x ,平方等x ²=2,于是x=2,后一项配方,最后答案为1。
)作业:化简:其结果是( )。
(A ) (B ) (C ) (D )解 答:(C )。
例4. (1)化简32163223-+--+;(2)化简3216323-+--+解答:(1)原式=21+;(2)原式2321-+=例5. (第19届全苏奥林匹克)解方程1222112=++++++xx x xx x(该方程中有2006个2)解答:分母有理化,原方程很容易化成:111=-+x ,所以21=+x ,3=x作业: 化简___________。
解例6.求证:44344532551532551-++=+--证设,由合分比性质得:∴再由合分比性质:∴A=B。
即原式成立。
例7.计算:11111 1223341991199219921993 ++++++++++_________。
简单三角恒等变换典型例题

简单三角恒等变换一、公式体系1、和差公式及其变形:(1)βαβαβαsin cos cos sin )sin(±=±⇔)sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =±⇔)cos(sin sin cos cos βαβαβα±= (3)βαβαβαtan tan 1tan tan )tan( ±=±⇔ 去分母得)tan tan 1)(tan(tan tan βαβαβα-+=+)tan tan 1)(tan(tan tan βαβαβα+-=-2、倍角公式的推导及其变形:(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+=⇔ααα2sin 21cos sin =⇔2)cos (sin 2sin 1ααα±=±(2)ααααααααα22sin cos sin sin cos cos )cos(2cos -=-=+=)sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=⇔1cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααααα⇔把1移项得αα2cos 22cos 1=+ 或 αα2cos 22cos 1=+ 【因为α是2α的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2c o s 2c o s 12αα=+因为α4是α2的两倍,所以公式也可以写成12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12=+】αααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔⇔把1移项得αα2sin 22cos 1=- 或αα2sin 22cos 1=- 【因为α是2α的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成αα2sin 214cos 2-= 或 αα2s i n 24c o s 12=- 或 αα2s i n 24c o s 12=-】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(πβαπβααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,135)cos(,54sin =+=βαα,求βsin 的值(2)已知,40,1312)45sin(,434,53)4cos(πββππαπαπ<<-=+<<=-求)sin(βα+的值2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知βα,都是锐角,10103cos ,55sin ==βα,求角βα+的弧度3、)(βα+T 公式的应用(1)求)32tan 28tan 1(332tan 28tan 0000+++的值(2)△ABC 中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A+B 的弧度4、弦化切,即已知tan ,求与sin ,cos 相关的式子的值:化为分式,分子分母同时除以αcos 或α2cos 等 (1)已知2tan =α,求αααααααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值5、切化弦,再通分,再弦合一(1)、化简:①)10tan 31(50sin 0+②035sin 10cos )110(tan ⋅-(2)、证明:x xx x x tan )2tan tan 1(cos 22sin =+6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-7、 a,b 型化简8、降幂公式1. 已知函数1cos sin 2cos 2)(2++-=x x x x f ,(R x ∈).(1)求函数 ()f x 的最小正周期;(2)求函数 ()f x 的最大值,并求此时自变量x 的集合.2. 已知函数()2sin()cos f x x x π=-.(1)求()f x 的最小正周期;(2)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.3.已知函数2()1cos 2cos f x x x x =-++(1)求函数()f x 的最小正周期;(2)求函数()f x 的单调减区间.4.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.5.设函数.cos cos sin 3)(2m x x x x f ++=(1)写出函数的最小正周期及单调递增区间; (2)若]3,6[ππ-∈x 时,函数()f x 的最小值为72,求此时()f x 的最大值,并指出x 为何值时,()f x 取得最大值.6.已知函数).,(2cos )62sin()62sin()(为常数a R a a x x x x f ∈++-++=ππ(1)求函数的最小正周期;(2)若.,2)(,]2,0[的值求的最小值为时a x f x -∈π7.已知函数x x x x f cos sin sin 3)(2+-=(1)求函数)(x f 的最小正周期;(2)求函数⎥⎦⎤⎢⎣⎡∈32,245)(ππx x f 在的值域.(3)对称轴和对称点巩固练习1、sin 20cos 40cos 20sin 40+的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A .3-B .3C .13-D .133、cos5πcos52π的值等于( )A .41 B .21 C .2 D .44、已知02A π<<,且3cos 5A =,那么sin 2A 等于( ) A .425B .725C .1225D .24255、已知,41)4tan(,52)tan(=-=+πββα则)4tan(πα+的值等于 ( )A .1813 B.223 C.2213 D.1836、sin165º=() A .21B .23C .426+ D .426-7、sin14ºcos16º+sin76ºcos74º的值是()A .23B .21C .23D .21- 8、已知(,0)2x π∈-,4cos 5x =,则=x 2tan () A .247B .247-C .724D .724- 9、化简2sin (4π-x )·sin (4π+x ),其结果是( ) A.sin2x B.cos2x C.-cos2x D.-sin2x 10、sin12π—3cos 12π的值是() A .0 B . —2 C .2D . 2 sin125π11、)( 75tan 75tan 12的值为︒︒-A .32B .332C .32-D .332-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中奥数恒等变形知识点及习题2019
恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.
表示两个代数式恒等的等式叫做恒等式.
如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.
将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).
以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.
如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.
1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的.
如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.
反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).
2.通过一系列的恒等变形,证明两个多项式是恒等的.
如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r
例:求b、c的值,使下面的恒等成立.
x2+3x+2=(x-1)2+b(x-1)+c ①
解一:∵①是恒等式,对x的任意数值,等式都成立
设x=1,代入①,得
12+3×1+2=(1-1)2+b(1-1)+c
c=6
再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6
b=5
∴x2+3x+2=(x-1)2+5(x-1)+6
解二:将右边展开
x2+3x+2=(x-1)2+b(x-1)+c
=x2-2x+1+bx-b+c
=x2+(b-2)x+(1-b+c)
比较两边同次项的系数,得出。