力与物体的直线运动知识网络(动力学)
(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图匀变速直线运动基本公式:V t =V 0+atS=V 0t+21at 2as V V t2202+=20tV V V +=运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。
运动的合成与分解遵守平行四边形定则平抛物体的运动特点:初速度水平,只受重力。
分析:水平匀速直线运动与竖直方向自由落体的合运动。
规律:水平方向 Vx = V 0,X=V 0t竖直方向 Vy = gt ,y =221gt 合 速 度 V t =,22y x V V +与x 正向夹角tg θ=xy V v匀速率圆周运动特点:合外力总指向圆心(又称向心力)。
描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。
规律:F= mr V2=m ω2r = mr T 224π物体 的 运 动A 0 t/sX/cm T λx/cm y/cmA 0V天体运动问题分析1、行星与卫星的运动近似看作匀速圆周运动遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即 =mg,整理得GM=gR 2。
3、考虑天体自传时:(1)两极 (2)赤道平均位移:02tv v s vt t +==模型题2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失.非弹性碰撞遵守动量守恒,能量关系为:12m 1v 21+12m 2v 22>12m 1v 1′2+12m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12(m 1+m 2)v 21.弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,12m 1v 21=12m 1v 1′2+12m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1动量碰撞如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。
大学物理-力学课件(全)

牛顿第二定律
总结词
描述力对物体转动效应的定律。
详细描述
力的矩与转动定律指出,力矩是力和力臂的乘积,其方向垂直于力和力臂所在的平面。公式表示为M=FL,其中M表示力矩,F表示作用力,L表示力臂。转动定律则说明,对于定轴转动系统,系统的角加速度与作用于转轴上的合力矩成正比,与转动惯量成反比。
力的矩与转动定律
万有引力定律
04
CHAPTER
弹性力学
能够恢复其原始形状和大小的物体。
弹性体定义
线弹性体、非线弹性体、超弹性体等。
弹性体的分类
杨氏模量、泊松比等。
弹性体的物理属性
拉伸、压缩、弯曲、剪切等。
弹性体的变形
弹性体的基本性质
物体内部相邻部分之间的相互作用力。
弹性体的应力与应变
应力定义
正应力和剪应力。
应力的分类
动量的计算方法
动量与动量守恒定律
在没有外力作用的情况下,一个系统内各个物体的动量总和保持不变。这一定律是经典力学中重要的基本定律之一,适用于宏观低速的物体系统。
动量守恒定律
通过分析系统的受力情况和动量变化情况,根据动量守恒定律可以求出系统内各个物体的动量和速度变化情况。在解决实际问题时,通常需要先对系统进行受力分析和动量分析,然后根据动量守恒定律列方程求解。
应用方法
动量与动量守恒定律
02
CHAPTER
运动学
描述物体位置变化的物理量,表示为矢量,由起点指向终点的有向线段。
位移
描述物体运动快慢的物理量,等于位移对时间的导数,表示为矢量。
速度
位移与速度
加速度
描述物体速度变化快慢的物理量,等于速度对时间的导数,表示为矢量。
牛顿定律的应用(力与物体的运动)二轮复习导学案

牛顿定律的应用(力与物体的直线运动)二轮复习导学案广汉金雁中学:冯洪毅一、考情分析:1、重要考点:本专题解决的是物体(或带电体)在力的作用下的匀变速直线运动问题.高考对本专题考查的内容主要有:①匀变速直线运动的规律及运动图象问题;②行车安全问题;③物体在传送带(或平板车)上的运动问题;④带电粒子(或带电体)在电场、磁场中的匀变速直线运动问题;⑤电磁感应中的动力学分析.考查的主要方法和规律有:动力学方法、图象法、运动学的基本规律、临界问题的处理方法等.2、知识网络:3、高考热点:匀变速直线运动规律和牛顿运动定律在实际问题中的应用、动力学两类问题、连接体问题是命题的热点。
2、考题预测:牛顿运动定律是中学物理的基础,更是力学的核心知识,在整个物理学中占有非常重要的地位,近几年对牛顿运动定律的考查频率非常高,预计在2014年高考中,对基本概念、规律、图像的考查可能以选择题形式出现,匀变速直线运动规律的应用、动力学两类问题、连接体问题可能是多过程的综合性计算题。
二、应对策略抓住“两个分析”和“一个桥梁”.“两个分析”是指“受力分析”和“运动情景或运动过程分析”.“一个桥梁”是指加速度是联系运动和受力的桥梁.综合应用牛顿运动定律和运动学公式解决问题.1、深刻理解各运动学公式的适用条件,熟知四种基本运动(匀速、匀变速、平抛和圆周运动),掌握典型的运动过程和规律;2、熟练运用整体法和隔离法处理连接体问题3、重视受力分析和运动情况分析4、掌握从各类图像中提取有效信息的方法5、综合运用牛顿定律和运动学规律来分析解决多物体、多阶段的的综合问题。
6、牛顿定律的瞬时性、超重和失重问题要能定性理解。
题型1运动学图象问题例1某物体质量为1 kg,在水平拉力作用下沿粗糙水平地面做直线运动,其速度—时间图象如图1所示,根据图象可知()图1A.物体所受的拉力总是大于它所受的摩擦力B.物体在第3 s内所受的拉力大于1 NC.在0~3 s内,物体所受的拉力方向始终与摩擦力方向相反D.物体在第2 s内所受的拉力为零审题突破水平方向物体受几个力作用?由图象可知哪些信息?解析由题图可知,第2 s内物体做匀速直线运动,即拉力与摩擦力平衡,所以A、D 选项错误;第3 s内物体的加速度大小为1 m/s2,根据牛顿第二定律可知物体所受合外力大小为1 N,选项B正确;物体运动过程中,拉力方向始终和速度方向相同,摩擦力方向始终和运动方向相反,选项C正确.答案BC做后反思解图象类问题的关键在于将图象与物理过程对应起来,通过图象的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题.题型2整体法与隔离法在连接体问题中的应用例2(2013·福建·21)质量为M、长为3L的杆水平放置,杆两端A、B系着长为3L的不可伸长且光滑的柔软轻绳,绳上套着一质量为m的小铁环.已知重力加速度为g,不计空气影响.图3(1)现让杆和环均静止悬挂在空中,如图3甲,求绳中拉力的大小;(2)若杆与环保持相对静止,在空中沿AB 方向水平向右做匀加速直线运动,此时环恰好悬于A 端的正下方,如图乙所示. ①求此状态下杆的加速度大小a ;②为保持这种状态需在杆上施加一个多大的外力,方向如何?审题突破 “光滑的柔软轻绳”说明什么?环恰好悬于A 端的正下方时,环的受力有什么特点?环和杆有什么共同特点? 解析 (1)如图,设平衡时,绳中拉力为T ,有 2T cos θ-mg =0①由图知cos θ=63② 由①②式解得T =64mg③ (2)①此时,对小铁环受力分析如图,有T ′sin θ′=ma④因|T ′|=|T ″|所以T ′+T ′cos θ′-mg =0⑤ 由图知θ′=60°,代入④⑤式解得a =33g⑥②如图,设外力F 与水平方向成α角,将杆和小铁环当成一个整体,有F cos α=(M +m )a⑦ F sin α-(M +m )g =0⑧由⑥⑦⑧式解得 tan α=3(或α=60°) F =233(M +m )g答案 (1)64mg (2)①33g ②233(M +m )g ,方向与水平方向成60°角斜向右上 做后反思 在应用牛顿运动定律分析连接体问题时,要灵活交替使用整体法和隔离法.各部分以及整体的共同特点是加速度相同,但与物体间作用力有关的问题必须隔离出受力最简单或未知量最少的物体来研究. 题型3 应用动力学方法分析传送带问题例3 (16分)如图5所示,竖直固定的14光滑圆弧轨道AB 半径R =1.25 m ,BC 为水平传送带与a 、b 两驱动轮的切点,AB 与BC 水平相切于B 点(未连接,圆弧轨道不影响传送带运动).一质量为m =3 kg 的小滑块,从A 点由静止滑下,当传送带静止时,滑块恰好能滑到C 点.已知a 、b 两轮半径均为r =0.4 m 且两轮与传送带间不打滑,滑块与传送带间的动摩擦因数μ=0.1,取g =10 m/s 2.问:图5(1)BC 两点间的距离是多少?(2)当a 、b 顺时针匀速转动的角速度为ω0时,将滑块从A 点由静止释放,滑块恰好能由C 点水平飞出传送带.求ω0的大小以及这一过程中滑块与传送带间产生的内能. 运动建模 1.当传送带静止时,物块由B 到C 的运动是匀减速直线运动.2.当传送带运动时,物块由B 到C ,可能会匀减速直线运动,也可能会匀加速直线运动,还有可能会做匀速直线运动,具体是哪一种要比较在B 、C 两点的速度关系. 解析 (1)滑块从A 到B ,由动能定理有 mgR =12m v 2B(1分) v B =2gR =5 m/s(1分)由B 到C :a =-μg =-1 m/s 2(1分) 由0-v 2B =2ax BC(1分) 得x BC =12.5 m(1分)(2)滑块恰能在C 点水平飞出传送带,则有mg =m v 2Cr(2分) 解得:v C =2 m/s (1分) ω0=v Cr(1分) 解得:ω0=5 rad/s(1分)由v B >v C 知滑块在传送带上受到向左的滑动摩擦力作用,即滑块要减速到C 点(1分) -μmg =ma ′(1分) 滑块减速时间t =v C -v Ba ′(1分) 滑块位移x 1=v B t +12a ′t 2(1分)传送带运动的距离x 2=v C t产生的内能Q =μmg (x 1-x 2) (1分) 解得:Q =13.5 J(1分)答案 (1)12.5 m (2)5 rad/s 13.5 J以题说法 1.传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向.因此,搞清楚物体与传送带间的相对运动方向是解决该问题的关键. 2.传送带问题还常常涉及到临界问题,即物体与传送带速度相同,这时会出现摩擦力改变的临界,具体如何改变要根据具体情况判断.练习1、如图所示,传送带水平部分长为L ,运动的速率恒为v ,在其左端无初速度地放一木块,木块与传送带间的动摩擦因数为μ,则木块由左端运动到右端的时间可能是A .B .C .D .练习2、如图所示,足够长的传送带与水平面夹角为θ,以速度V 0逆时针匀速转动。
教科版初中物理八年级下册《力与运动》全章复习与巩固(提高)知识讲解

《力与运动》全章复习与巩固(提高):【学习目标】1.知道牛顿第一定律的内容,理解惯性是物体的一种属性,会解释常见的惯性现象;2.知道什么是平衡状态,平衡力,理解二力平衡的条件,会用二力平衡的条件解决问题;3.理解力与运动的关系;【知识网络】【要点梳理】要点一、牛顿第一定律1.内容:一切物体在不受外力作用时,总保持匀速直线运动状态或静止状态。
2.内涵:物体在不受力的情况下依旧可以保持原有的运动状态,说明力不是维持物体运动的原因,而是使物体运动状态发生改变的原因。
或者说:物体的运动不需要力来维持,要改变物体的运动状态,必须对物体施加力的作用。
要点诠释:1.“一切”说明该定律对于所有物体都适用,不是特殊现象。
2.“没有受到力的作用”是定律成立的条件。
“没有受到力的作用”有两层含义:一是该物体确实没有受到任何力的作用,这是一种理想化的情况(实际上,不受任何力的作用的物体是不存在的);二是该物体所受合力为零,力的作用效果可以等效为不受任何力的作用时的作用效果。
3.“或”指两种状态必居其一,不能同时存在,也就是说物体在不受力的作用时,原来静止的物体仍保持静止状态,原来运动的物体仍保持匀速直线运动状态。
4.牛顿第一定律不能用实验直接验证,而是在实验的基础上,通过进一步的推理而概括出来的。
5.运动的物体并不需要力来维持,运动的物体之所以会停下来,是因为受到了阻力。
要点二、惯性1.概念:一切物体都有保持原来运动状态不变的性质,我们把这种性质叫做惯性。
2.惯性的利用:跳远运动员快速助跑,利用自身的惯性在空中继续前进;拍打衣服,清除衣服上的灰尘;甩掉手上的水珠。
3.惯性的危害:汽车刹车后不能立即停下来,酿成交通事故;快速行驶的汽车发生碰撞,车里的乘客如果没有系安全带,会与车身撞击,严重时可能把挡风玻璃撞碎,飞出车外;走路时不小心,可能会被台阶绊倒。
要点诠释:1.一切物体都有惯性,一切物体是指无论是气体、液体、还是固体;无论是静止还是运动;无论受力还是不受力都具有惯性。
高中物理知识点总结大全

高考总复习知识网络一览表物理高中物理知识点总结大全一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算.四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FN>G,失重:FNr}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕5.机械波、横波、纵波〔见第二册P2〕6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(4)干涉与衍射是波特有的;(5)振动图象与波动图象;(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕.六、冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mv o {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;00(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;(7)r0为分子处于平衡状态时,分子间的距离;(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕.九、气体的性质1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=7 6cmHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K).十、电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B 两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记〔见图[第二册P98];(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106μF=1012PF;(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P 105〕.十一、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3 I并=I1+I2+I3+电压关系U总=U1+U2+U3+ U总=U1=U2=U3功率分配P总=P1+P2+P3+ P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成(2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡.(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零.11.伏安法测电阻电流表内接法:电流表外接法:电压表示数:U=UR+UA 电流表示数:I=IR+IVRx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(R ARV)1/2] 选用电路条件Rx分享高中物理知识点大全一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
动力学知识点总结

动力学知识点总结导读:动力学知识点总结:一、直线运动(1)匀变速直线运动1、平均速度V平=s/t(定义式)2、有用推论Vt2—Vo2=2as3、中间时刻速度Vt/2=V平=(Vt+Vo)/24、末速度Vt=Vo+at5、位移s=V平t=Vot+at2/2=Vt/2t6、加速度a=(Vt—Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a7、实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt—Vo)/t只是量度式,不是决定式;(2)自由落体运动1、初速度Vo=02、末速度Vt=gt3、下落高度h=gt2/2(从Vo位置向下计算)4、推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9、8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动位移s=Vot—gt2/22、末速度Vt=Vo—gt (g=9、8m/s2≈10m/s2)3、有用推论Vt2—Vo2=—2gs4、上升最大高度Hm=Vo2/2g(抛出点算起)5、往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等性;二、曲线运动万有引力(1)平抛运动水平方向速度:Vx=Vo2、竖直方向速度:Vy=gt3、水平方向位移:x=Vot4、竖直方向位移:y=gt2/25、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07、合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo8、水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
高一物理上册知识点归纳笔记

高一物理上册知识点归纳笔记(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一物理上册知识点归纳笔记本店铺为各位同学整理了《高一物理上册知识点归纳笔记》,希望对你的学习有所帮助!1.高一物理上册知识点归纳笔记篇一动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F{负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FN>G,失重:FN6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
直线运动的知识结构图

2、质点: 、质点: 用来代替物体的有质量的点叫 做质点 质点是一个理想化的模型,实际上 质点是一个理想化的模型, 并不存在。在我们遇到的问题中, 并不存在。在我们遇到的问题中, 大多数情况下都可以把物体抽象为 质点。 质点。——理想化方法 理想化方法
3、时间和时刻: 、时间和时刻: 时刻指的是某一瞬时, 时刻指的是某一瞬时,在时间轴上 用一个点来表示。对应的是状态 用一个点来表示。对应的是状态 位置、 量—位置、速度等 位置 时间是两时刻间的间隔, 时间是两时刻间的间隔,在时间轴 上用一段长度来表示。对应的是过 上用一段长度来表示。对应的是过 程量——位移、路程等; 位移、 程量 位移 路程等;
6、匀变速直线运动的两个特例 、 (1)自由落体运动 自由落体运动 A、概念: 、概念: 物体从静止开始,只在重力作用下 静止开始 物体从静止开始,只在重力作用下 的运动叫自由落体运动 B、特点: V =0 、特点: 0 C、公式:v = gt 、公式: a=g=9.8m/s2
1 2 x = at 2
3、公式 、
(1)v = v0 + at
1 2 (2)x = v0t + at v0 + v 2 (4)v = 2 2 2 (3)v − v = 2ax
0
1 (5)x = vt = (v0 + v)t 2
对公式的几点说明: 对公式的几点说明: (1)以上公式只适用于匀变速直线运动 以上公式只适用于匀变速直线 以上公式只适用于匀变速直线运动 (2)五个公式中只有两个是独立的。 五个公式中只有两个是独立的。 五个公式中只有两个是独立的 公式中共有5个物理量 个物理量, 公式中共有 个物理量,因此解题时 需要3个已知条件 才能有解。 个已知条件, 需要 个已知条件,才能有解。 均为矢量, (3)公式中的 、a、v0、vt均为矢量, )公式中的s、 、 应用时应规定正方向 规定正方向。 应用时应规定正方向。凡与正方向相同 的取正值,与正方向相反的取负值, 的取正值,与正方向相反的取负值,正、 负号要参与运算。一般取初速度v 负号要参与运算。一般取初速度 0的方 向为正方向
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析方法
带电粒子(不计重力)在匀强电场中由静止开始被加速或带电粒子沿着 平行于电场的方向射入匀强电场中时,带电粒子做匀变速直线运动.
带 电 粒 子 的 运 动 特 点
带电粒子在交变电场中的直线运动,一般多以加速、减速交替出现的 多运动过程的情景出现.
带电粒子在磁场中运动时,洛伦兹力的方向始终垂直于粒子的速度方向
直 线 运 动 与 牛 顿 运 动 定 律
v0=0
v1:v2:v3:…vn=1:2:3:…n
x1:x2:x3:…xn=1:4:9:…n2
x-t图像
a-t图像
交点 T1 : T2 : T3 :: Tn 1: 2 : 3 :: n s1:s2:s3:…sn=1:3:5:…(2n-1) 截距 t : t : t : tn 1: ( 2 1) : ( 3 2 ) : ( n n 1) 斜率 1 2 3 面积
力 与 运 动 的 关 系
牛顿第一定律 (惯性定律) 牛顿第二定 律 (F=ma) 牛顿第三定 律
思路 方法 模型 整体法与隔离法 、正交分解法、逆向思维法 行车安全问题、图像问题、传送带 (平板车)问题、超重失重问题
电学中的力 电 学 中 的 动 力 学 ( 直 线 运 动 )
电场力
安培力
ห้องสมุดไป่ตู้洛伦兹力
条件:F合为恒力且与v方向共线:匀变速;F合 =0匀速 直 线 运 动 图 像 规律:速度公式:v=v0+at. 位移公式:x=v0t+at2/2 推论:v02-v02=2ax. 平均速度:x=(v0+vt)t/2 特点:△x=aT2 v-t图像
v中
2 v0 vt2 2
自由落体运动 v=gt,h=gt2/2 竖直上抛运动v=v0-gt h=v0t-gt2/2,hm=v02/2g
带电粒子在电场力、重力和洛伦兹力共同作用下的直线运动只能是 匀速直线运动. 电磁感应中导体棒在安培力和其他恒力作用下的三种运动类型:匀 速直线运动、加速度逐渐减小的减速直线运动、加速度逐渐减小的 加速直线运动 首先进行受力分析,然后看粒子所受的合力与速度方向的关系,从 而确定运动形式,选择公式进行解题