化工设计专业课程设计

合集下载

化工原理课程设计课程目标

化工原理课程设计课程目标

化工原理课程设计课程目标一、课程目标知识目标:1. 让学生掌握化工原理的基本概念,如流体力学、热力学、传质与传热等;2. 使学生了解化工过程中常见单元操作的基本原理和设备结构;3. 引导学生运用数学和物理方法分析化工过程中的现象和问题。

技能目标:1. 培养学生运用化工原理解决实际问题的能力,如进行物料和能量平衡计算;2. 提高学生运用图表、数据和实验等方法进行化工过程分析和优化的技巧;3. 培养学生利用专业软件进行化工过程模拟和计算的能力。

情感态度价值观目标:1. 培养学生对化工原理学科的热爱,激发学生学习兴趣和探究精神;2. 培养学生具备良好的团队合作精神和沟通能力,提高解决实际问题的自信心;3. 增强学生对化工行业的社会责任感,认识化工在国民经济发展中的重要作用。

课程性质分析:本课程为化工原理课程设计,旨在通过实际案例和练习,使学生将理论知识与实际工程相结合,提高解决实际问题的能力。

学生特点分析:学生已具备一定的化学、数学和物理基础知识,具有一定的分析问题和解决问题的能力,但实际工程经验不足。

教学要求:1. 注重理论与实践相结合,提高学生的实际操作能力;2. 采用案例教学、讨论式教学等方法,激发学生的主动性和创新性;3. 强化过程评价,关注学生的个性化发展。

二、教学内容1. 流体力学基础:流体性质、流体静力学、流体动力学、流体阻力与流动形态;2. 热力学基础:热力学第一定律、热力学第二定律、热量传递与能量平衡;3. 传质与传热:质量传递原理、传热原理、对流传质与对流传热;4. 单元操作原理:流体输送、热量交换、分离操作、反应器设计;5. 化工过程模拟与优化:物料与能量平衡计算、过程模拟软件操作、过程优化方法;6. 化工案例分析:典型化工过程分析、设备结构介绍、操作参数优化。

教学大纲安排:第一周:流体力学基础第二周:热力学基础第三周:传质与传热第四周:单元操作原理(一)第五周:单元操作原理(二)第六周:化工过程模拟与优化第七周:化工案例分析与实践第八周:课程总结与评价教材章节及内容:第一章:流体力学(1-3节)第二章:热力学(4-6节)第三章:传质与传热(7-9节)第四章:单元操作原理(10-16节)第五章:化工过程模拟与优化(17-19节)第六章:化工案例分析(20-22节)教学内容科学性和系统性保证:1. 紧密结合教材,按照课程目标组织教学内容;2. 理论与实践相结合,注重培养学生的实际操作能力;3. 由浅入深,循序渐进,使学生系统掌握化工原理知识。

化工设计的课程设计

化工设计的课程设计

化工设计的课程设计一、课程目标知识目标:1. 让学生理解化工设计的基本概念、原理和方法,掌握化工流程的绘制和优化。

2. 使学生掌握化工设备的设计与选型,了解材料选择、工艺参数确定等关键环节。

3. 帮助学生了解化工安全、环保等方面的知识,提高其在化工设计中的责任意识和风险防控能力。

技能目标:1. 培养学生运用CAD等软件绘制化工图纸的能力,提高其空间想象和实际操作能力。

2. 培养学生运用化工原理和计算方法解决实际问题的能力,提高其分析、解决问题的能力。

3. 培养学生团队协作、沟通表达的能力,提高其在项目实践中的组织和协调能力。

情感态度价值观目标:1. 激发学生对化工设计的兴趣,培养其探究精神和创新意识。

2. 培养学生关注化工行业的发展,使其认识到化工技术在国民经济中的重要性。

3. 引导学生树立安全、环保意识,培养其良好的职业素养和社会责任感。

本课程针对高年级学生,结合化工学科特点,注重理论知识与实践操作的相结合。

通过本课程的学习,使学生能够具备化工设计的基本知识和技能,为未来从事相关工作打下坚实基础。

同时,注重培养学生的团队协作、沟通表达等综合素质,提升其在化工行业中的竞争力和发展潜力。

二、教学内容本章节教学内容主要包括以下几部分:1. 化工设计基本概念:介绍化工设计的目的、意义、基本原理和方法,使学生了解化工设计在工程实践中的应用。

2. 化工流程绘制与优化:讲解化工流程图的绘制方法,运用CAD等软件进行流程图绘制,分析并优化化工流程。

3. 化工设备设计与选型:学习化工设备的设计原理,掌握设备选型的依据和方法,了解材料选择、工艺参数确定等关键环节。

4. 化工安全与环保:介绍化工设计中安全、环保方面的知识,分析典型事故案例,提高学生在设计过程中的风险防控能力。

5. 化工设计实例分析:结合实际案例,分析化工设计过程中的关键问题,使学生学会运用所学知识解决实际问题。

教学内容安排如下:第一周:化工设计基本概念及方法;第二周:化工流程绘制与优化;第三周:化工设备设计与选型;第四周:化工安全与环保;第五周:化工设计实例分析及总结。

大专化工课程设计报告

大专化工课程设计报告

大专化工课程设计报告1. 项目背景随着我国经济的快速发展,化学工业在国民经济中的地位越来越重要。

为了满足化工行业对高素质技术人才的需求,大专院校纷纷开设了化工相关专业,以培养具备扎实理论基础和较强实践能力的高等技术应用型人才。

本报告旨在探讨大专化工课程设计,为提高教学质量提供参考。

2. 课程设计目标大专化工课程设计应以培养学生实际操作能力、工程实践能力和创新能力为核心,注重理论与实践相结合,使学生能够熟练掌握化工生产的基本原理、工艺流程和设备操作,具备解决实际工程问题的能力。

3. 课程设计内容3.1 化工原理- 单元操作:熟悉各种单元操作的基本原理,如流体流动、传热、传质、反应工程等。

- 工艺流程:了解典型化工产品的生产工艺流程,如合成氨、氯碱、聚合物等。

3.2 化工设备- 设备类型:掌握常用化工设备的结构、性能和选型原则,如反应器、塔设备、换热器、泵、压缩机等。

- 设备操作:研究设备操作方法和安全技术,具备故障排除能力。

3.3 化工工艺- 工艺计算:学会运用化工原理进行工艺计算,如流量计算、热量计算、物料平衡等。

- 工艺优化:了解工艺优化方法,能够针对实际生产问题进行工艺调整。

3.4 化工自动化与控制- 自动化原理:掌握自动化控制系统的基本原理和组成,如传感器、执行器、控制器等。

- 控制方案:学会制定化工生产过程中的控制方案,提高生产效率和产品质量。

3.5 安全环保与职业道德- 安全知识:了解化工生产过程中的安全风险及防范措施,具备安全生产意识。

- 环保意识:掌握化工生产过程中的环保要求,减少对环境的影响。

- 职业道德:培养良好的职业道德,树立正确的职业观念。

4. 课程设计方法与手段4.1 课堂教学采用理论教学与实例分析相结合的方法,引导学生掌握化工基本原理和工艺流程。

4.2 实验教学开展化工实验,使学生在实践中熟悉设备操作、工艺流程和实验技能。

4.3 实实训安排学生赴企业实,深入了解化工生产实际情况,提高工程实践能力。

化工课程设计

化工课程设计

化工课程设计化工课程设计是指以化学工程为基础,通过课程学习和实践操作,培养化工专业学生的综合素质和实践操作能力。

化工课程设计是现代化工教育的重要组成部分,是培养优秀化工人才的必要手段之一。

一、化工课程设计的意义化工课程设计是化工专业学生进行实践操作和创新研究的重要环节,可以充分发挥学生的想象力和创造力,培养学生实践操作技能和解决问题的能力,促进学生对所学理论知识的理解和掌握,使学生能够更好地适应职业发展需要。

1. 培养学生实践操作能力化工课程设计是一种综合性的实践操作,通过实验操作、数据统计与分析等方式,培养学生的实践操作能力,提高学生实践操作的技能和基本素质,为学生今后从事相关职业奠定了基础。

2. 培养学生解决问题的能力在实践操作过程中,学生不仅需要掌握基本的实验技能和实验方法,还需要独立思考、发现问题、解决问题的能力。

因此,化工课程设计可以培养学生发现问题、独立思考、团队协作和解决问题的能力,使学生具备了较高的创新能力和实践能力。

3. 促进学生对所学理论知识的掌握和理解化工课程设计是将理论知识与实践紧密结合的具体体现,通过实验操作、数据分析等方式,使学生更加深入地理解所学专业知识,加速学生理论知识向实践的转化。

二、化工课程设计的设计思路在进行化工课程设计时,首先需要明确实验的目的,了解实验的基本流程和操作技能,确定实验所需的器材和药品,以及对实验结果进行统计与分析。

具体的化工课程设计思路如下:1.明确实验的目的在进行化工课程设计前,需要明确实验的目的。

实验目的应与学生掌握的知识和能力需求相适应,同时应具有实践性和操作性。

明确实验目的可以帮助学生更好地进行实验设计,并更好地完成实验任务。

2.确定实验的基本流程和操作技能确定实验的基本流程和操作技能非常重要。

在确定实验基本流程和操作技能前,需考虑一系列因素,例如实验时间、器材数量和药品种类等,以保证实验的正常进行和实验结果的准确性。

3.确定实验所需的器材和药品确定实验所需的器材和药品是化工课程设计的基础,为实验的正常进行提供了基础设施。

化工设计课程设计的题目

化工设计课程设计的题目

化工设计课程设计的题目一、教学目标本课程的教学目标是使学生掌握化工设计的基本原理和方法,能够运用所学知识进行简单的化工工艺设计。

具体目标如下:1.知识目标:•掌握化工工艺流程的基本概念和设计原则。

•了解常见的化工单元操作和设备。

•学习化工流程图的绘制方法和技巧。

2.技能目标:•能够运用化工设计软件进行工艺流程设计和模拟。

•学会进行化工设备的选型和计算。

•具备分析和解决化工过程中遇到问题的能力。

3.情感态度价值观目标:•培养学生的创新意识和团队合作精神。

•使学生认识到化工设计对于社会和环境的影响,培养其社会责任感和职业道德。

二、教学内容本课程的教学内容主要包括以下几个部分:1.化工工艺流程设计的基本原理和方法。

2.常见的化工单元操作和设备,包括反应器、换热器、蒸馏塔等。

3.化工流程图的绘制方法和技巧。

4.化工设计软件的应用,如Aspen Plus、HYSYS等。

5.化工设备的选型和计算方法。

6.化工过程中遇到问题的分析和解决方法。

三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法,包括:1.讲授法:讲解基本概念、原理和理论知识。

2.案例分析法:分析实际案例,让学生学会将理论知识应用于实践。

3.实验法:进行化工设备的使用和操作,让学生亲身体验化工过程。

4.讨论法:分组讨论,培养学生的团队合作精神和沟通能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用权威、实用的教材,如《化工工艺设计原理》等。

2.参考书:提供相关的参考书籍,如《化工设备选型与计算》等。

3.多媒体资料:制作精美的PPT课件,提供化工设备操作视频等。

4.实验设备:准备化工工艺流程模拟实验设备,让学生亲身体验化工过程。

五、教学评估本课程的评估方式将包括平时表现、作业、考试等多个方面,以全面反映学生的学习成果。

具体评估方式如下:1.平时表现:包括课堂参与度、提问回答、小组讨论等,占总评的20%。

化工课程设计专业

化工课程设计专业

化工课程设计专业一、教学目标本课程的教学目标是使学生掌握化工专业的基本知识和技能,培养学生对化工行业的兴趣和热情,提高学生的实践能力和创新精神。

具体来说,知识目标包括了解化工的基本概念、原理和工艺,掌握化工设备的使用和维护方法;技能目标包括能够进行化工计算、实验操作和数据分析,具备一定的化工设计能力;情感态度价值观目标包括培养学生对化工行业的责任感和社会意识,使学生认识到化工对人类社会的重要性和可持续发展的重要性。

二、教学内容根据课程目标,教学内容主要包括化工基本概念、原理、工艺和设备。

具体包括化工的定义、分类和应用,化工原理的基本方程和传递过程,常见化工工艺流程和设备的使用和维护,化工计算和实验操作等。

教学内容将按照教材的章节进行安排和进度,确保内容的科学性和系统性。

三、教学方法为了激发学生的学习兴趣和主动性,将采用多种教学方法。

包括讲授法,通过教师的讲解和演示,使学生掌握化工基本概念和原理;讨论法,通过小组讨论和交流,培养学生的思考和表达能力;案例分析法,通过分析实际案例,使学生了解化工工艺和设备的使用情况;实验法,通过实验操作和数据分析,培养学生的实践能力和实验技能。

教学方法应多样化,以适应不同学生的学习风格和需求。

四、教学资源为了支持教学内容和教学方法的实施,将选择和准备适当的教学资源。

教材是教学的基础,将选择具有权威性和实用性的教材进行教学;参考书可以为学生的深入学习提供更多的资料和案例;多媒体资料可以通过图像、视频等形式生动地展示化工工艺和设备;实验设备是进行实验操作的重要工具,将准备齐全的实验设备进行实践教学。

教学资源的选择和准备应该能够丰富学生的学习体验,提高学生的学习效果。

五、教学评估本课程的评估方式将包括平时表现、作业和考试等。

平时表现将根据学生在课堂上的参与度、提问和回答问题的情况进行评估;作业将根据学生的完成质量和按时提交情况进行评估;考试将包括期中考试和期末考试,考试内容将涵盖课程的所有知识点。

化工课程设计电子书

化工课程设计电子书

化工课程设计电子书一、课程目标知识目标:1. 让学生掌握化工课程的基本概念,如化学反应、物质的性质和变化等;2. 使学生了解化工过程中常见的设备和工艺,并能运用相关知识解释实际化工生产现象;3. 培养学生运用化学原理分析和解决化工生产中问题的能力。

技能目标:1. 培养学生运用电子书等信息技术手段进行自主学习的能力;2. 提高学生通过实验、观察、数据分析等方法,对化工过程进行探究的能力;3. 培养学生运用图表、文字等形式,准确表达化工过程和结果的能力。

情感态度价值观目标:1. 培养学生对化工课程的学习兴趣,激发他们的求知欲和探索精神;2. 培养学生关注化工领域的科技发展,增强他们的社会责任感和环保意识;3. 培养学生具备良好的团队合作精神,尊重他人,善于沟通交流。

课程性质:本课程为理论与实践相结合的课程,旨在通过电子书这一载体,帮助学生更好地理解和掌握化工知识。

学生特点:学生具备一定的化学基础,具有较强的学习能力和探究欲望,对电子书等信息技术手段较感兴趣。

教学要求:教师需结合电子书的特点,设计生动有趣的教学活动,引导学生主动参与,提高课堂效果。

同时,注重培养学生的实践能力和创新精神,将理论知识与实际应用相结合,提高学生的综合素养。

通过分解课程目标为具体的学习成果,便于教学设计和评估,确保课程目标的实现。

二、教学内容本课程教学内容主要包括以下几部分:1. 化工基本概念:物质的性质、化学反应、化学平衡、化工单元操作等;- 教材章节:第一章至第三章2. 化工设备和工艺:反应釜、塔设备、换热器、泵和压缩机等常见设备,以及蒸馏、萃取、吸附等典型化工工艺;- 教材章节:第四章至第六章3. 化工过程分析:运用化学原理分析化工生产过程中可能出现的问题,并提出解决方案;- 教材章节:第七章4. 化工实验与探究:结合课本内容,开展系列化工实验,培养学生的实践操作能力和探究精神;- 教材章节:第八章5. 化工案例分析与讨论:通过分析实际化工案例,提高学生运用理论知识解决实际问题的能力;- 教材章节:第九章6. 信息技术在化工中的应用:介绍电子书、化工软件等现代信息技术在化工领域的应用;- 教材章节:第十章教学进度安排:第一周:化工基本概念(1-3章)第二周:化工设备和工艺(4-6章)第三周:化工过程分析(7章)第四周:化工实验与探究(8章)第五周:化工案例分析与讨论(9章)第六周:信息技术在化工中的应用(10章)三、教学方法针对本课程的教学目标和内容,采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师以简洁明了、深入浅出的方式,对化工基本概念、理论知识和重难点进行讲解,帮助学生建立完整的知识体系。

化工设计专业课程设计方向

化工设计专业课程设计方向

化工设计专业课程设计方向一、课程目标知识目标:1. 学生能理解化工设计的基本原理,掌握化工流程的构建和优化方法。

2. 学生能够运用化学知识,结合实际案例,分析化工过程中存在的问题,并提出合理的解决方案。

3. 学生熟悉化工设备的结构和性能,了解其在化工生产中的应用。

技能目标:1. 学生能够运用CAD等绘图软件进行化工设备的平面布局设计。

2. 学生能够运用模拟软件对化工流程进行模拟分析,优化工艺参数。

3. 学生具备团队协作和沟通能力,能够就设计方案进行阐述和讨论。

情感态度价值观目标:1. 学生培养对化工行业的热爱,增强环保意识,关注化工生产对环境的影响。

2. 学生树立安全意识,遵循化工生产的安全规范,养成良好的实验操作习惯。

3. 学生培养创新精神,敢于挑战传统,寻求化工设计的新方法和新思路。

课程性质:本课程为化工设计专业课程设计方向,结合理论教学和实践活动,培养学生具备化工设计的基本知识和技能。

学生特点:学生具备一定的化学基础知识,对化工设计有一定了解,但实际操作能力和团队协作能力有待提高。

教学要求:结合课程特点和学生实际,注重理论与实践相结合,提高学生的实际操作能力和解决问题的能力。

在教学过程中,关注学生的个体差异,激发学生的学习兴趣,培养其创新精神和团队协作能力。

通过本课程的学习,使学生能够达到课程目标,为将来的职业发展打下坚实基础。

二、教学内容本课程教学内容主要包括以下几部分:1. 化工设计原理:包括化工过程的基本概念、流程构建、设备选型及工艺参数优化等,对应教材第1-3章。

2. 化工设备设计:介绍化工设备的结构、性能及平面布局设计方法,涉及教材第4-5章。

3. 化工流程模拟:学习运用模拟软件对化工流程进行分析与优化,参考教材第6章。

4. 实践操作:结合实验室设备,进行化工流程搭建和优化实验,巩固理论知识,提高实际操作能力。

5. 案例分析:分析典型化工设计案例,使学生了解实际工作中可能遇到的问题及解决方法,对应教材第7章。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京工业大学《化工设计》专业课程设计设计题目乙醛缩合法制乙酸乙酯学生姓名胡曦班级、学号化工091017指导教师姓名任晓乾课程设计时间2012年5月12日-2012年6月1日课程设计成绩 设计说明书、计算书及设计图纸质量,70%独立工作能力、综合能力及设计过程表现,30%设计最终成绩(五级分制)指导教师签字目录一、设计任务3二、概述42.1乙酸乙酯性质及用途42.2乙酸乙酯发展状况4三. 乙酸乙酯的生产方案及流程53.1酯化法53.2乙醇脱氢歧化法73.3乙醛缩合法73.4乙烯、乙酸直接加成法93.5各生产方法比较93.5确定工艺方案及流程9四.工艺说明104.1. 工艺原理及特点104.2 主要工艺操作条件错误!未定义书签。

4.3 工艺流程说明104.4 工艺流程图(PFD)错误!未定义书签。

4.5物流数据表104.6物料平衡错误!未定义书签。

4.6.1工艺总物料平衡104.6.2 公共物料平衡图错误!未定义书签。

五. 消耗量195.1 原料消耗量195.2 催化剂化学品消耗量195.3 公共物料及能量消耗21六. 工艺设备196.1工艺设备说明196.2 工艺设备表196.3主要仪表数据表196.4工艺设备数据表196.5精馏塔Ⅱ的设计196.6最小回流比的估算216.7逐板计算236.8逐板计算的结果及讨论23七. 热量衡算247.1热力学数据收集247.2热量计算,水汽消耗,热交换面积267.3校正热量计算、水汽消耗、热交换面积(对塔Ⅱ)29八.管道规格表248.1 装置中危险物料性质及特殊储运要求248.2 主要卫生、安全、环保说明268.3 安全泄放系统说明248.4 三废排放说明26九.卫生安全及环保说明249.1 装置中危险物料性质及特殊储运要求249.2 主要卫生、安全、环保说明269.3 安全泄放系统说明249.4 三废排放说明26表10校正后的热量计算汇总表34十有关专业文件目录34乙酸乙酯车间工艺设计一、设计任务1.设计任务:乙酸乙酯车间2.产品名称:乙酸乙酯3.产品规格:纯度99.5%4.年生产能力:折算为100%乙酸乙酯10000吨/年5.产品用途:作为制造乙酰胺、乙酰醋酸酯、甲基庚烯酮、其他有机化合物、合成香料、合成药物等的原料;用于乙醇脱水、醋酸浓缩、萃取有机酸;作为溶剂广泛应用于各种工业中;食品工业中作为芳香剂等。

由于本设计为假定设计,因此有关设计任务书中的其他项目如:进行设计的依据、厂区或厂址、主要技术经济指标、原料的供应、技术规格以及燃料种类、水电汽的主要来源,与其他工业企业的关系、建厂期限、设计单位、设计进度及设计阶段的规定等均从略。

二、概述1.乙酸乙酯性质及用途乙酸乙酯又名乙酸乙酯,醋酸醚,英文名称Ethyl Acetate或Acetic Ether Vinegar naphtha.乙酸乙酯是具有水果及果酒芳香的无色透明液体,其沸点为77℃,熔点为-83.6℃,密度为0.901g/cm3,溶于乙醇、氯仿、乙醚和苯等有机溶剂。

乙酸乙酯的重要用途是工业溶剂,它是许多树脂的高效溶剂,广泛应用于油墨、入造革、胶粘剂的生产中,也是清漆的组份。

它还用于乙基纤维素、入造革、油毡、着色纸、入造珍珠的粘合剂、医用药品、有机酸的提取剂以及菠萝、香蕉、草莓等水果香料和威士忌、奶油等香料。

此外,还用于木材纸浆加工等产业部门。

对于用很多天然有机物的加工,例如樟脑、脂肪、抗生素、某些树脂等,常使用乙酸乙酯和乙醚配制成共萃取剂,它还可用作纺织工业和金属清洗剂。

2.乙酸乙酯发展状况(1)国内发展状况为了改进硫酸法的缺点,国内陆续开展了新型催化剂的研究,如酸性阳离子交换树脂﹑全氟磺酸树脂﹑HZSM-5等各种分子筛﹑铌酸﹑ZrO2-SO42-等各种超强酸,但均未用于工业生产。

国内还开展了乙醇一步法制取乙酸乙酯的新工艺研究,其中有清华大学开发的乙醇脱氢歧化酯化法,化学工业部西南化工研究院开发的乙醇脱氢法和中国科学院长春应用化学研究所的乙醇氧化酯化法。

中国科学研究院长春应用化学研究所对乙醇氧化酯化反应催化剂进行了研究,认为采用Sb2O4-MoO3复合催化剂可提高活性和选择性。

化学工业部西南化工研究院等联合开发的乙醇脱氢一步合成乙酸乙酯的新工艺,已通过单管试验连续运行1000小时,取得了满意的结果。

现正在进行工业开发工作。

近来关于磷改性HZSM-5沸石分子筛上乙酸和乙醇酯化反应的研究表明,用HZSM-5及磷改性HZSM-5作为乙酸和乙醇酯化反应的催化剂,乙醇转化率变化不大,但酯化反应选择性明显提高。

使用H3PMo12O40•19H2O代替乙醇-乙酸酯化反应中的硫酸催化剂,可获得的产率为91.48%,但是关于催化剂的剂量、反应时间和乙醇/乙酸的质量比对产品产量的研究还在进行之中。

(2)国外发展状况由于使用硫酸作为酯化反应的催化剂存在硫酸腐蚀性强、副反应多等缺点,近年各国均在致力于固体酸酯化催化剂的研究和开发,但这些催化剂由于价格较贵、活性下降快等原因,至今工业应用不多。

据报道,美DavyVekee公司和UCC公司联合开发的乙醇脱氢制乙酸乙酯新工艺已工业化。

据报道,国外开发了一种使用Pd/silicoturgstic双效催化剂使用乙烯和氧气一步生成乙酸乙酯的新工艺。

低于180℃和在25%的乙烯转化率的条件下,乙酸乙酯的选择性为46%。

催化剂中的Pd为氧化中心silicoturgstic酸提供酸性中心。

随着科技的不断进步,更多的乙酸乙酯的生产方法不断被开发,我国应不断吸收借鉴国外的先进技术,从根本上改变我国乙酸乙酯的生产状况。

三.乙酸乙酯的生产方案及流程1、酯化法酯化工艺是在硫酸催化剂存在下,醋酸与乙醇发生酯化脱水反应生成乙酸乙酯的工艺,其工艺流程见图1醋酸、过量乙醇与少量的硫酸混合后经预热进入酯化反应塔。

酯化反应塔塔顶的反应混合物一部分回流,一部分在80℃左右进入分离塔。

进入分离塔的反应混合物中一般含有约70%的乙醇、20%的酯和10%的水(醋酸完全消耗掉)。

塔顶蒸出含有83%乙酸乙酯、9%乙醇和8%水分的塔顶三元恒沸物,送入比例混合器,与等体积的水混合,混合后在倾析器倾析,分成含少量乙醇和酯的较重的水层,返回分离塔的下部,经分离塔分离,酯重新以三元恒沸物的形式分出,而蓄集的含水乙醇则送回醋化反应塔的下部,经气化后再参与酯化反应。

含约93%的乙酸乙酯、5%水和2%乙醇的倾析器上层混合物进入干燥塔,将乙酸乙酯分离出来,所得产品质量见表1表一工业品级乙酸乙酯的质量指标项目指标乙酸乙酯含量,% ≧99.5乙醇含量,% ≦0.20水分,% ≦0.05酸度(以醋酸计),% ≦0.005色度(铂-钴) <10传统的酯化法乙酸乙酯生产工艺技术成熟,在世界范围内,尤其是美国和西欧被广泛采用。

由于酯化反应可逆,转化率通常只有约67%,为增加转化率,一般采用一种反应物过量的办法,通常是乙醇过量,并在反应过程中不断分离出生成的水。

根据生产需要,既可采取间歇式生产,也可采取连续式生产。

该法也存在腐蚀严重、副反应多、副产物处理困难等缺点。

近年来开发的固体酸酯化催化剂虽然解决了腐蚀问题,但由于价格太高,催化活性下降快等缺点,在工业上仍无法大规模应用。

2. 乙醇脱氢歧化法该法不用乙酸,直接用乙醇氧化一步合成乙酸乙酯,其催化剂主要是Pd/C和架Ni,Cu-Co-Zn-Al混合氧化物及Mo-Sb二元氧化物等催化剂,这些体系对乙醇的氧化有一定的活性,但其催化性还有待进一步改进。

95%乙醇从储槽出来,经泵加压至0.3~0.4MPa,进入原料预热器,与反应产物热交换被加热至130℃,部分气化,再进入乙醇汽化器,用水蒸气或导热油加热至160℃~170℃,达到完全气化,然后进入原料过热器,与反应产物换热,被加热至230℃,再进入脱硫加热器,用导热油加热到反应温度240~270℃,然后进入脱氢反应器,脱氢反应为吸热反应,要用导热油加热以维持恒温反应。

从脱氢反应器出来的物料进入原料过热器,被冷却至180℃,再进入加氢反应器将酮和醛加氢为醇,以便后续分离。

然后进入原料预热器,被冷却至60℃,再进入产物冷凝器,被水冷却至30℃,从冷凝器出来的液体,进入反应产物储罐,然后进入分离工段,氢气则从上部进入水洗器,以回收氢气中带走的易挥发物料,然后放空或到氧气用户。

该工艺的特点是产品收率高,对设备腐蚀性小,产品成本较酯化法低,不产含酸废水,有利于大规模生产,若副产的氢气能有效合理的利用,该工艺是比较经济的方法。

3、乙醛缩合法由乙醛生产乙酸乙酯包括催化剂制备、反应、分离和精馏4大部分,工艺流程见图3。

在氯化铝和少量的氯化锌存在下将铝粉加入盛有乙醇和乙酸乙酯混合物的溶液中溶解得到乙氧基铝溶液。

催化剂制备装置与主体装置分开,制备反应过程产生的含氢废气经冷回收冷凝物后排放,制备得到的催化剂溶液搅拌均匀后备用。

乙醛和催化剂溶液连续进入反应塔,控制反应物的比例,使进料在混合时就有约98% 的乙醛转化为目的产物,1.5%的乙醛在此后的搅拌条件下转化。

通过间接盐水冷却维持反应温度在0℃,反应混合物在反应塔内的停留时间约1h后进入分离装置。

分离装置中粗乙酸乙酯从塔顶蒸出,塔底残渣用水处理得到乙醇和氢氧化铝,将乙醇与蒸出组分一起送入精馏塔,在此回收未反应的乙醛并将其返回反应塔,乙醇和乙酸乙酯恒沸物用于制备乙氧基铝催化剂溶液。

如有必要,乙酸乙酯还可进一步进行干燥。

乙醛缩合制乙酸乙酯工艺由俄罗斯化学家Tischenko于20世纪初开发成功,因而该工艺又称为Tischenko工艺。

反应在醇化物(乙氧基铝)的存在下进行。

由乙醛生产乙酸乙酯的第一步实际上先由乙烯制取乙醛,由乙烯生产乙醛通常在氯化钯存在下于液相中进行(即Wacker工艺)。

根据保持催化剂活性方法的不同,又有两种工艺可选择,一种为一步法工艺,即乙烯和氧气一起进入反应器进行反应; 另一种是两步法工艺,即乙烯氧化为乙醛在一个反应器内进行,而催化剂的空气再生在另一反应器内进行,两种工艺在经济上并无大的差异。

乙醛缩合制乙酸乙酯工艺受原料来源的限制,一般应建在乙烯-乙醛联合装置内。

日本主要采取此工艺路线,装置能力已达200kt/a.4、乙烯、乙酸直接加成法在酸性催化剂存在下,羧酸与烯烃发生酯化反应可生成相应的醋类。

罗纳·普朗克公司在80年代进行了开发,但由于工程放大问题未解决,一直未实现工业化。

日本昭和电工公司开发的乙烯与醋酸一步反应制取乙酸乙酯工艺终于在90年代实现了工业化。

反应原料中乙烯:醋酸:水:氮体积组成为80:6.7:3:10.3。

反应系统由3个串联反应塔组成,反应塔中装填磷钨钥酸催化剂(担载于球状二氧化硅上) 。

反应塔设置了中间冷却,反应温度维持在140-180℃,反应塔压力控制在0.44-1MPa。

相关文档
最新文档