有理数的乘方(一)教学设计
有理数的乘方(1)教案

1.6有理数的乘方第一课时蚌埠六中马静二0一二年九月十日有理数的乘方第一课时蚌埠六中马静一、教学目标(一)知识与技能:1、能让学生在一定的现实背景中理解有理数乘方的意义;会熟练地进行有理数的乘方运算。
2、在解决问题的过程中注重与他人的合作,培养观察、分析、对比、归纳、概括能力,初步渗透转化思想。
(二)过程与方法:经历探索有理数乘方的意义的过程,培养转化的思想方法。
(三)情感态度与价值观:培养学生善于观察、猜想的能力。
二、教学重、难点1、重点:乘方的相关概念及意义2、难点:理解有理数的乘方、幂、底数、指数的概念以及相互间的关系三、课时安排2课时四、学法指导探究法五、教学过程(一)知识回顾:计算下列各题:(1)2×3×4×(-5)(2)2×3×(-4) ×(-5)(3)2×(-3) ×(-4) ×(-5)(4)(-2) ×(-3) ×(-4) ×(-5)想一想:积的符号与负因数的个数有什么关系?几个不等于0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
(二)探究新知1:1、一正方形的边长为a,则它的面积为a×a ;2、一正方体的棱长为a,则它的体积为a×a×a ;3、1个细胞每过30分钟便由一个分裂成2个,经过5小时,这种细胞由1个能分裂成多少个?乘方的概念:求n 个相同因数a 的积的运算叫做乘方,记作a n即a ×a ×… ×a ×a=a n ,这种运算就是乘方,它的运算结果叫幂,a 叫底数,n 叫指数, a n 读作a 的n 次方(或a 的n 次幂)巩固新知:1、判断下列各题是否正确①23=2 ×3; ( 不正确 )②2+2+2=23; ( 不正确 )③23=2×2 ×2. ( 正确 )2、写出下列各幂的底数与指数:(1)在64中,底数是6 ,指数4 ;(2)在a 4中,底数是a ,指数是4 ;(3)在(-6)5中,底数是-6 ,指数是5 ;(4)在(-a )7中,底数是-a ,指数是7 。
七年级数学《有理数的乘方(一)》教案

七年级数学《有理数的乘方(一)》教学设计分)到不同的发展,同时,及时反馈教学效果,随时调节教学进程。
教学程序问题与情境师生互动设计意图及媒体应用分析活动一创设情境,导入新课问题1:把一张纸对折2次可裁成几张?你能用算式表示吗?对3次呢?若对折10次可裁成几张?怎样用一个算式表示(不用算出结果)?若对折100次,算式中有几个2相乘?问题2:对折100次裁成的张数,可用算式表示,在这个积中有100个2相乘。
这么长的算式有简单的记法吗?【教师活动】(1)用一张纸边演示操作,边用课件出示问题1;(2)鼓励学生操作并猜测,在小组内讨论交流。
(3)关注并适时评价学生的表现。
结合学生回答板书:对折2次可以裁成2×2张;对折3次可以裁成2×2×2张;对折10次可以裁成2×2×2×2×2×2×2×2×2×2;对折100次的裁成的张数就是100个2相乘,黑板上能写下吗?有没有简单的记法呢?这就是本节课要研究的内容(揭示并板书课题)。
【学生活动】(1)动手操作感知问题,大胆提出猜想。
(2)将自己的猜想在小组内交流探讨,(1)问题旨在帮助学生认识数学与生活的密切关系,激发求知欲。
(2)学生自己动手折纸是为了获得亲身体验和感知问题,激发探索欲。
(3)通过独立思考大胆猜测、同伴讨论交流、代表发言让学生感受多种情感体验,并进一步理解问题。
【媒体应用分析】PPT课件出示问题1、2,引导学生理解建构乘方意义的必要性,为进一步探究乘方意义及运算打下伏笔。
教学反思:。
人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计

人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计一. 教材分析人教版数学七年级上册1.5.1《有理数的乘方(1)》是学生在学习了有理数的加减乘除、相反数、绝对值等概念的基础上,进一步深化对有理数运算法则的理解。
本节课主要让学生掌握有理数的乘方运算,为后续学习幂的运算、指数函数等知识打下基础。
教材通过具体的例子引导学生探究有理数乘方的规律,从而让学生自主发现并掌握有理数乘方的法则。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除运算较为熟悉。
但是,对于有理数的乘方运算,学生可能存在一定的困难,因为乘方运算涉及到多个有理数的乘积,运算规则相对复杂。
因此,在教学过程中,需要引导学生通过实例探究有理数乘方的规律,让学生在理解的基础上掌握乘方运算。
三. 教学目标1.理解有理数乘方的概念,掌握有理数乘方的法则。
2.能够熟练进行有理数的乘方运算。
3.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:有理数乘方的概念,有理数乘方的法则。
2.教学难点:有理数乘方运算的规律,有理数乘方在实际问题中的应用。
五. 教学方法1.实例导入:通过具体的例子引导学生探究有理数乘方的规律。
2.小组讨论:让学生分组讨论,共同发现有理数乘方的法则。
3.练习巩固:通过大量练习,让学生熟练掌握有理数乘方运算。
4.实际应用:引导学生运用有理数乘方知识解决实际问题。
六. 教学准备1.教学课件:制作课件,展示有理数乘方的例子和知识点。
2.练习题:准备适量练习题,巩固学生对有理数乘方的掌握。
3.教学道具:准备一些教学道具,如卡片、小黑板等,方便学生直观地理解乘方运算。
七. 教学过程1.导入(5分钟)利用实例引入有理数乘方的概念,如:2的3次方表示2乘以自己3次,即2×2×2=8。
让学生初步认识有理数乘方。
2.呈现(10分钟)展示多个有理数乘方的例子,引导学生发现有理数乘方的法则。
七年级数学《有理数的乘方(一)》教案

七年级数学《有理数的乘方(一)》教案教学内容:P41-43教学重点:数的乘方运算。
教学难点:乘方运算的探索及底数是负数的幂的符号的确定一、板书课题,揭示目标1.今天,我们一起来学习1.6有理数的乘方。
2.学习目标(1)理解有理数乘方的意义(2)掌握幂的符号法则,会进行有理数乘方运算二、学生自学前的指导怎样才能达到这些目标呢?主要靠大家自学。
下面,请同学们按照指导(手指投影屏幕)自学。
自学指导自学P41-42的内容,思考并回答:1、求n 个相同因数的乘积的运算,叫做乘方.乘方的结果叫做幂,n a 中的a 叫做底数,n 叫做指数.读作:a 的n 次方.当n a 看作是a 的n 次方的结果是,读作a 的n 次幂.2、乘方:n 个相同因数的连乘运算.(特殊的乘法)幂:n 个相同因数的连乘的积.底数:相同的因数.指数:相同因数的连乘运算中,相同因数的个数.3、一个数可以看做这个数的一次方.即5就是15,通常指数是1时,省略不写.三、学生自学,教师巡视学生看书,教师巡视,确保人人紧张看书。
四、检验学生自学情况。
1、计算:(1)4)2(- (2) 42- (3)3)32(- (4)-323 (1)要求学生读出运算,指出底数和指数,说出运算的实质.(2)应用幂的符号确定原则,先定符号,再算绝对值.2、P43:1、2五、引导更正,指导运用1.学生训练。
(1)布置任务:看完了的同学,请举手。
(学生举手)好!下面请XX做第43页练习第3(1)题,其余的同学在座位上练习……请XX做第43页练习第2(1)题……(2)学生练习,教师巡视,把数学练习中的典型错误写在黑板上(同一题下)。
观察板演,找错误。
请大家看黑板,找错误。
找到的请举手。
2.学生更正。
3.学生讨论,评判。
(1)先看第一位同学做的(再看第二位同学做的……)[若对,则师:认为对的举手,师判“√”][若有错,则引导学生错误的原因及更正的道理][估计出现的错误](2)第3(1)题中,符号出错。
有理数的乘法数学教案(精选7篇)

有理数的乘法数学教案(精选7篇)有理数的乘法数学教案篇一一、知识与技能经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。
二、过程与方法经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。
三、情感态度与价值观培养学生积极探索精神,感受数学与实际生活的联系。
教学重、难点与关键1.重点:应用法则正确地进行有理数乘法运算。
2.难点:两负数相乘, 积的符号为正与两负数相加和的符号为负号容易混淆。
3.关键:积的符号的确定。
教具准备投影仪。
四、教学过程一、引入新课在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?五、新授课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O。
(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。
七年级数学有理数的乘法教案及教学设计篇二一、知识与技能(1)能确定多个因数相乘时,积的符号, 并能用法则进行多个因数的乘积运算。
(2)能利用计算器进行有理数的乘法运算。
二、过程与方法经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳 验证等能力。
三、情感态度与价值观培养学生主动探索,积极思考的学习兴趣。
教学重、难点与关键1.重点:能用法则进行多个因数的乘积运算。
2.难点:积的符号的确定。
3.关键:让学生观察实例,发现规律。
教具准备投影仪。
四、教学过程1.请叙述有理数的乘法法则。
浙教版数学七年级上册2.5《有理数的乘方》(第1课时)教学设计

浙教版数学七年级上册2.5《有理数的乘方》(第1课时)教学设计一. 教材分析《有理数的乘方》是浙教版数学七年级上册第2.5节的内容,主要介绍了有理数的乘方概念、性质及运算法则。
这部分内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
本节内容与现实生活紧密相连,有利于激发学生的学习兴趣。
二. 学情分析七年级的学生已具备一定的数学基础,掌握了有理数的加减乘除运算。
但学生对于乘方的概念和性质可能较为抽象,需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式各有不同,需要教师在教学中善于引导和调动学生的积极性。
三. 教学目标1.理解有理数的乘方概念,掌握有理数乘方的性质和运算法则。
2.能够运用乘方知识解决实际问题,提高学生的数学应用能力。
3.培养学生的逻辑思维和抽象思维能力,提高学生的数学素养。
4.激发学生学习数学的兴趣,养成良好的学习习惯。
四. 教学重难点1.有理数的乘方概念和性质的理解。
2.有理数乘方的运算法则的掌握。
3.乘方知识在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入乘方概念,激发学生学习兴趣。
2.引导发现法:教师引导学生发现乘方的性质和运算法则,培养学生的自主学习能力。
3.实践操作法:让学生通过实际操作,加深对乘方知识的理解和掌握。
4.巩固拓展法:通过课堂练习和课后作业,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教学PPT:制作包含乘方概念、性质和运算法则的PPT,以便于课堂展示和讲解。
2.教学案例:准备一些与生活紧密相关的乘方实例,以便于引导学生学习和应用。
3.练习题:准备一些有针对性的练习题,以便于课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)利用生活实例引入乘方概念,如“2的3次方表示3个2相乘,即2×2×2=8”。
通过实例让学生感受乘方的意义,激发学生的学习兴趣。
2.呈现(10分钟)呈现乘方的性质和运算法则,如“乘方的性质:a m×a n=a(m+n);乘方的运算法则:a m÷a n=a(m-n)”。
有理数乘方(1)教案

有理数乘方(1)教案11有理数的乘方(1)一、教学目的:1、通过现实背景,使学生理解并掌握有理数乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算,并让学生经历探索乘方的有关规律的过程。
2、通过尝试过程,感受数学的奇妙性,领会重要的数学建模思想、归纳思想、形成数感、符号感,发展抽象思维。
二、教学重点难点:重点:理解有理数乘方的意义和表示,会进行乘方运算。
三、教学设计:(一)、复习旧知,引入新课1、有理数加法和减法法则?两个学生回答2、将一张作业本的纸对折30次,你们猜一猜它有多厚?学生们可讨论、想象,教师在此不作任何解答。
3、我们小学学过相同加数的简便运算用乘法,那么相同因数的乘法的简便运算又可用什么方法呢?(二)、讲授新课:1、通过探索,得出乘方的意义由边长为2的正方形,面积:422,棱长为2的正方体,体积:8222为了简便,将它们分别记作322,2,读作“2的平方”(或2的二次方),“2的立方”(或2的三次方)同样:的四次方”,读作“)记作(22),2()2()2()2(4,)的五次方”,读作“())记作(()()()()(52525252525252512aaaaa可以记作什么?读作什么?师提出:aaaa(n个a,n为正整数)呢?生归纳总结:(抽学生回答)可以记作na,读作a的n次方。
板书①一般地,n个相同的因数a相乘,即aaaa(n个a),记作na,读作“a的n次方”。
②定义:求n个相同因数的积的运算,叫作乘方。
乘方的结果叫做幂,在na中,相同的因数a叫底数,(a可取任何有理数),n叫作指数,(n取正整数)。
注意:⑴乘方是一种运算,⑵幂是乘方的结果,na看作是a的n的次方的结果时,也可读作a 的n的次幂。
(没有特别说明:a的n的次方和a的n次幂,两种读法都正确。
)⑶单独的一个数可以看作这个数本身的一次方。
例:3就是13,指数是1的通常省略不写。
2、应用乘方的意义回答下列的问题(1)、32读作________,或________,或_______,幂是______;2)2(的底数是_______,指数是_____,幂是_______;3)21(的底数是_______,指数是_____,幂是_______;431)(读作________,底数是_______,指数是_______。
《有理数的乘方》(一)教案

一次二次8个2个4个《有理数的乘方》(一)教案一、教学目标。
1、知识与技能目标:理解并掌握乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
2、过程与方法目标:在生动的情境中让学生获得有理数乘方运算的初步经验;给学生充分观察、分析、概括的机会,让学生以动脑、动手、动口的方式培养自己探索归纳的能力,并从中感受“类比”的研究方法和“化归”的数学思想。
3、情感与态度目标:学生通过观察、分析、概括,总结出有理数乘方运算中符号的确定方法,从而感受探索的乐趣,增强数学学习的信心。
二、教学重难点。
教学重点:正确理解乘方的意义,掌握乘方的运算;教学难点:熟练掌握负底数幂的乘方运算。
三、教学方法。
在教学活动中,以学生为主体,通过创设合理的问题情境,给学生提供讨论交流的平台,我采用启发诱导式与自主探究式相结合的教学方法。
四、教学过程。
1、创设情景,引入新知首先提出问题一:下面是细胞分类示意图。
思考:第10次分裂会有多少个细胞?2×2×2×2×2×2×2×2×2×2或2×2×…×2 接着提问:对于上面的算式有没有简洁的表示方法呢?学生可能会得到以下的表示方法:2 ×102 ×(10)2(10)(10)2102102102102102……10个2n a 底数乘方的结果叫做幂然后提出问题二:边长为2的正方形面积以及边长为2的正方体体积分别是多少?22222×2=2222×2×2=3S=?V=?然后引导学生进行类比不难得到: 2×2×…×2 =102 紧接着再提出问题:2×2×…×2 = ?a ×a ×a …×a =? 学生不难得到结果如下:2×2×…×2 = 2na ×a ×a …×a =n a由此成功地引出乘方的定义,进入环节二的学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章有理数及其运算
2.9 有理数的乘方(一)
者太乡中心学校田志能
一、教学目标:
1、知识与技能:(1)有理数乘方的意义
(2)能进行有理数的乘方运算
2、过程与方法:
(1)培养学生观察、分析、归纳、概括的能力;
(2)通过经历探索有理数乘方意义的过程,鼓励学生积极主动发现问题并解决问题。
3、情感态度与价值观:通过师生共同交流,渗透利用数学知识解决实际问题的思想,以激发学生学习
二、教学重点、教学难点:
重点:正确理解乘方的意义,掌握乘方运算法则,能进行有理数的乘方运算。
难点:正确理解乘方、底数、指数的概念并合理运算。
三、课堂结构设计:
创设情境,探求新知----即时训练,巩固新知----探索研究,发现规律----讨论辨析,深化概念----总结反思,感悟收获。
四、教学过程设计
本节课设计了六个环节:
教学环节第一
环节
第二
环节
第三
环节
第四
环节
第五
环节
第六
环节
第七
环节
第八
环节
内容回顾
所学
知识
引入情
境,导
入新课
定义乘
方,熟
悉概念
例题练
习,乘
方运算
随堂演
练,符
号法则
课堂
小结
课堂
小测
试
布置
作业
第一环节:回顾前几节课学过哪些运算?运算法则有哪些? 第二环节:引入情境,导入新课
活动内容:观察教科书给出的图片,阅读理解教科书提出的问题,弄清题意,计算每一次分裂后细胞的个数,五小时经过十次分裂后细胞的个数.
第三环节:定义乘方,熟悉概念
活动内容:1.归纳多个相同因数相乘的符号表示法,定义乘方运算的概念。
2.通过练习熟悉乘方运算的有关概念.
填空:(-2)10
表示____个____相乘,底数是_____,指数是______,读作______ 第三环节:例题练习,乘方运算
活动内容:教科书例1,例2分别计算: 例1:① 53
;② (-3)4
;③ (-1/2)3
.
例2:①3
)2(--; ② 4
2-;③4
32
-.
活动的注意事项:例题讲解时要让学生明确有理数的乘方运算是由有理数的乘法来进行的,例2指明当底数是负数或分数时,书写时一定要用括号把底数括起来,再把指数写在右上角.如(-3)4
不能写成-34
,(-1/2)3
不能写成-1/23
.要引导学生不断地回顾幂的意义. 第四环节:课堂演练,符号法则 小组讨论
(1)253-、5
32- 与()253-
一样吗?它们分别等于多少?
a
n
底数
指数
运算的结果叫做幂
第五个环节:随堂演练,符号法则
练习,随堂练习:
① (-1.5)2
②(-3)3
③-(-5)2
第六个环节:课堂小结
活动内容:
1、用提问的方式由学生完成课堂小结,如:“本节课同学们学到了哪些知识?”
2、在有理数乘方运算中,你感觉需要注意哪些问题?
第七环节:课堂小测试
教师把以下题目以一张小试卷方式当堂进行检测后交给教师,目的:了解学生本节课掌握知识的程度。
(限时2分钟)
(1)23(2)()53-(3)
3
4
3
⎪
⎭
⎫
⎝
⎛-
-(4)
2
5
2
-
第八环节:布置作业
P59 习题2.13,第2题。