热流问题数值计算Chapter 5(1)
传热与流体流动的数值计算-

当然,要在一本中等篇幅的书中完成这一雄心勃 当然, 勃的任务而不摒弃许多重要的内容, 勃的任务而不摒弃许多重要的内容,这是不可能 的. 因此本书只能简单地讨论控制所述过程的方程的 因此本书只能简单地讨论控制所述过程的方程的 数学形式.读者若需要了解有关方程的完整推导, 数学形式.读者若需要了解有关方程的完整推导, 就必须去查阅有关这一论题的许多标准教科 对于紊流, 书.对于紊流,燃烧以及辐射这样一类复杂过程 数学模型, 的数学模型,我们这里假设读者已经知道或是可 以查得的. 以查得的. 对于数值解的题目本身,我们也不打算在此评述 对于数值解的题目本身 数值解的题目本身, 现有的所有方法并讨论它们的优点与缺点 相反, 优点与缺点. 现有的所有方法并讨论它们的优点与缺点.相反, 我们将把注意力集中在作者已经使用, 我们将把注意力集中在作者已经使用,发展或有 过贡献的一套特定的方法. 过贡献的一套特定的方法.
数值方法概念: 数值方法概念:设想我们希望 求得图中所示域内的温度场. 求得图中所示域内的温度场.可 以认为只要知道域内各离散点上 的温度值就足够了. 的温度值就足够了. 一个可能的方法是想象一个充 满该域的网格, 满该域的网格,并寻求在网格点 上的温度值. 上的温度值. 于是我们就要构成并求解关于 这些未知温度值的代数方程 这些未知温度值的代数方程 代数方程代替微分方程所 组.用代数方程代替微分方程所 固有的简化使得数值方法强有力 并得以广泛应用. 并得以广泛应用.
具有模拟真实条件的能力 可以很容易地模拟真实条件. 可以很容易地模拟真实条件.不用要采用缩小的 模型,就一个计算机的程序而言, 模型,就一个计算机的程序而言,无论是具有很大 或很小尺寸的物体,不论是处理很低或很高的温度, 或很小尺寸的物体,不论是处理很低或很高的温度, 也不论是控制有毒或易燃的物质, 也不论是控制有毒或易燃的物质,还是跟踪很快或 很慢的过程,都几乎不会有任何困难. 很慢的过程,都几乎不会有任何困难. 具有模拟理想条件的能力 人们有时用预测的方法来研究一种基本的物理 现象,而不是一个复杂的工程问题. 现象,而不是一个复杂的工程问题.在研究某种现 象的时候,人们希望把注意力集中在几个基本的参 象的时候,人们希望把注意力集中在几个基本的参 而要设法消除所有无关的因素 数上而要设法消除所有无关的因素. 数上而要设法消除所有无关的因素.因此人们希望 实现若干理想化的条件 例如:二维状态, 若干理想化的条件, 实现若干理想化的条件,例如:二维状态,常密度 一个绝热的表面或是无限的反应速率等.在计算中, 一个绝热的表面或是无限的反应速率等.在计算中, 人们很容易而又准确地约定这样的一些条件.相反, 人们很容易而又准确地约定这样的一些条件.相反, 即便是很小心地安排的实验也很难近似做到这种理 想化的条件. 想化的条件.
热流问题的数值计算

整理,得
a PTP a E TE aW TW a N TN a S TS b
其中
rP r aE (x) e / e
rP r aW (x) w / w
0 P
rn x aN (y ) n / n
rs x aS (y ) s / s
( c) P V a t
0 0 0 a P a E aW a N a S a P S P V b S C V a P TP
aE , aW , aS , aN 都是相邻两节点间导热热阻的倒
0 a 数, 具有热惯性意义, P热惯性越大,上一
时层的温度对下一时层的影响越大。
4.3 源项及边界条件的处理
离散方程为:
a PTP a E TE aW TW a N TN a S TS b
其中
r aE re ( ) e / e
r aW rw ( ) w / w
0 P
rn aN (r ) n / n
rs aS (r ) s / s
( c) P V a V 0.5(rn rs )r t
经整理,得
dT dT e Ae ( ) e w Aw ( ) w ( S C S p TP ) AP(3) x 0 dx dx
令
Ae e aE (x) e
Aw w aW (x) w
b S C AP x 则式(3)变为:
a P a E aW S P AP x
因为离散方程都可表示为
a PTP anbTnb b
aP anb S P V
线性代数方程迭代求解收敛的一个充分必 要条件是对角占优,即:
热流密度的计算公式

热流密度的计算公式
热流密度,又称热通量密度,是指单位面积内通过的热量,通常用符号q表示,单位为瓦特/平方米(W/m²)。
热流密度的计算公式有多种形式,其中一种是:
q = ΔT × L × 1000 / S
其中,ΔT表示两端温度差,L表示导热长度,S表示传热面积。
这个公式适用于通过传导方式传递热量的情况。
另一种常见的热流密度计算公式是:
q = Φ / A
其中,Φ表示热流量,A表示传热面积。
这个公式适用于通过热对流或热辐射方式传递热量的情况。
另外,根据傅里叶定律,热流密度也可以表示为:
q = -λ × (dT / dx)
其中,λ表示导热系数,dT/dx表示温度在x方向上的梯度。
这个公式描述了热流密度与温度梯度之间的关系,适用于一维导热情况。
需要注意的是,热流密度的计算公式可能因不同的传热方式和条件而有所不同。
在实际应用中,需要根据具体情况选择合适的公式进行计算。
丁丽娟《数值计算方法》五章课后实验题答案(源程序很详细,且运行无误)

丁丽娟《数值计算方法》五章课后实验题答案(源程序都是自己写的,很详细,且保证运行无误)我做的五章数值实验作业题目如下:第二章:1、2、3、4题第三章:1、2题第四章:1、2题第六章:2、3题第八章:1、2题第二章1:(1) 对A进行列主元素三角分解:function [l u]=myfun(A) n=size(A); for k=1:n for i=k:n sum=0; m=k; for j=1:(k-1) sum=sum+A(i,j)*A(j,k); end s(i)=A(i,k)-sum; if abs(s(m))<abs(s(i)) m=i; end end for j=1:n c=A(m,j); A(m,j)=A(k,j); A(k,j)=c; end for j=k:n sum=0; for r=1:(k-1) sum=sum+A(k,r)*A(r,j); end u(k,j)=A(k,j)-sum; A(k,j)=u(k,j); end for i=1:n l(i,i)=1; end for i=(k+1):n sum=0; for r=1:(k-1) sum=sum+A(i,r)*u(r,k); end l(i,k)=(A(i,k)-sum)/u(k,k); A(i,k)=l(i,k); end end 的列主元素三角分解:求A的列主元素三角分解:>>A=[1 1 1 1 1;1 2 3 4 5;1 3 6 10 15;1 4 10 20 35;1 5 15 35 70]; >>[L,U]=myfun(A) 结果:L = 1.0000 0 0 0 0 1.0000 1.0000 0 0 0 1.0000 0.5000 1.0000 0 0 1.0000 0.7500 0.7500 1.0000 0 1.0000 0.2500 0.7500 -1.0000 1.0000 U = 1.0000 1.0000 1.0000 1.0000 1.0000 0 4.0000 14.0000 34.0000 69.0000 0 0 -2.0000 -8.0000 -20.5000 0 0 0 -0.5000 -2.3750 0 0 0 0 -0.2500 (2) 求矩阵的逆矩阵A -1: inv(A) 结果为:ans = 5 -10 10 -5 1 -10 30 -35 19 -4 10 -35 46 -27 6 -5 19 -27 17 -4 1 -4 6 -4 1 (3)检验结果:E=diag([1 1 1 1 1]) A\E ans = 5 -10 10 -5 1 -10 30 -35 19 -4 10 -35 46 -27 6 -5 19 -27 17 -4 1 -4 6 -4 1 2: 程序:程序:function d=myfun(a,b,c,d,n) for i=2:n l(i)=a(i)/b(i-1); a(i)=l(i); u(i)=b(i)-c(i-1)*a(i); b(i)=u(i); y(i)=d(i)-a(i)*d(i-1); d(i)=y(i); end x(n)=d(n)/b(n); d(n)=x(n); for i=(n-1):-1:1 x(i)=(d(i)-c(i)*d(i+1))/b(i); d(i)=x(i); end 求各段电流量程序:求各段电流量程序:for i=2:8 a(i)=-2; end b=[2 5 5 5 5 5 5 5]; c=[-2 -2 -2 -2 -2 -2 -2]; V=220; R=27; d=[V/R 0 0 0 0 0 0 0]; n=8; I=myfun(a,b,c,d,n) 运行程序得:运行程序得:I = 8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477 3:程序:(1)求矩阵A和向量b的matlab程序:function [A b]=myfun(n) for i=1:n X(i)=1+0.1*i; end for i=1:n for j=1:n A(i,j)=X(i)^(j-1); end end for i=1:n b(i)=sum(A(i,:)); end 求n=5时A1,b1及A1的2-条件数程序运行结果如下:条件数程序运行结果如下: n=5;[A1,b1]=myfun(n) A1 = 1.0000 1.1000 1.2100 1.3310 1.4641 1.0000 1.2000 1.4400 1.7280 2.0736 1.0000 1.3000 1.6900 2.1970 2.8561 1.0000 1.4000 1.9600 2.7440 3.8416 1.0000 1.5000 2.2500 3.3750 5.0625 b1 = 6.1051 7.4416 9.0431 10.9456 13.1875 cond2=cond(A1,2)cond2 = 5.3615e+005 条件数程序运行结果如下:求n=10时A2,b2及A2的2-条件数程序运行结果如下:n=10; [A2,b2]=myfun(n) A2 = 1.0000 1.1000 1.2100 1.3310 1.4641 1.6105 1.7716 1.9487 2.1436 2.3579 1.0000 1.2000 1.4400 1.7280 2.0736 2.4883 2.9860 3.5832 4.2998 5.1598 1.0000 1.3000 1.6900 2.1970 2.8561 3.7129 4.8268 6.2749 8.1573 10.6045 1.0000 1.4000 1.9600 2.7440 3.8416 5.3782 7.5295 10.5414 14.7579 20.6610 1.0000 1.5000 2.2500 3.3750 5.0625 7.5938 11.3906 17.0859 25.6289 38.4434 1.0000 1.6000 2.5600 4.0960 6.5536 10.4858 16.7772 26.8435 42.9497 68.7195 1.0000 1.7000 2.8900 4.9130 8.3521 14.1986 24.1376 41.0339 69.7576 118.5879 1.0000 1.8000 3.2400 5.8320 10.4976 18.8957 34.0122 61.2220 110.1996 198.3593 1.0000 1.9000 3.6100 6.8590 13.0321 24.7610 47.0459 89.3872 169.8356 322.6877 1.0000 2.0000 4.0000 8.0000 16.0000 32.0000 64.0000 128.0000 256.0000 512.0000 b2 = 1.0e+003 * 0.0159 0.0260 0.0426 0.0698 0.1133 0.1816 0.2866 0.4451 0.6801 1.0230 cond2=cond(A2,2) cond2 = 8.6823e+011 条件数程序运行结果如下:求n=20时A3,b3及A3的2-条件数程序运行结果如下:n=20; [A3,b3]=myfun(n) A3 = 1.0e+009 * Columns 1 through 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 11 through 20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0006 0.0013 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0007 0.0015 0.0032 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0006 0.0014 0.0032 0.0075 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0012 0.0029 0.0070 0.0167 0.0000 0.0000 0.0001 0.0001 0.0004 0.0009 0.0023 0.0058 0.0146 0.0364 0.0000 0.0000 0.0001 0.0002 0.0006 0.0017 0.0044 0.0113 0.0295 0.0766 0.0000 0.0001 0.0002 0.0004 0.0011 0.0030 0.0080 0.0215 0.0581 0.1570 0.0000 0.0001 0.0002 0.0007 0.0018 0.0051 0.0143 0.0400 0.1119 0.3133 0.0000 0.0001 0.0004 0.0010 0.0030 0.0086 0.0250 0.0726 0.2105 0.6103 0.0001 0.0002 0.0005 0.0016 0.0048 0.0143 0.0430 0.1291 0.3874 1.1623 b3 = 1.0e+009 * Columns 1 through 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0010Columns 11 through 20 0.0025 0.0059 0.0132 0.0287 0.0606 0.1246 0.2494 0.4874 0.9316 1.7434 cond2=cond(A3,2) cond2 =3.2395e+022 由上述运行结果可知:它们是病态的,而且随着n的增大,矩阵的病态变得严重。
传热学:第四章 导热问题数值解法

t m,n
1 t m 1,n t m 1,n t m ,n 1 t m ,n 1 4
•二维导热问题;网格线;
沿x、y方向的间距为x、 y;网格单元。
每个节点温度就代表了它 所在网格单元的温度。 p(m,n)
•此方法求得的温度场
在空间上不连续。
•网格越细密、节点越多,结果越接近分析解 •网格越细密,计算所花时间越长
2) 数值计算法,把原来在时间和空间连续的物理量的
场,用有限个离散点上的值的集合来代替,通过求解
按一定方法建立起来的关于这些值的代数方程,从而
获得离散点上被求物理量的值;并称之为数值解;
3) 实验法 就是在传热学基本理论的指导下,采用实
验对所研究对象的传热过程进行测量的方法。 3 三种方法的特点 1) 分析法 a 能获得所研究问题的精确解,可以为实验和数值 计算提供比较依据;
t m,n 1 2t m,n t m,n 1 2t 同理: 2 y y 2 m,n
将以上两式代入导热微分方程得到节点(m,n)的温 度离散方程: t tm,n1 2tm,n tm,n1 m 1, n 2t m , n t m 1, n 0 2 2 x y
x y 上式可简化
第三类边界条件: y x
qw h(t f tm,n )
2hx 2hx x 2 tm1,n tm,n1 2 tf 0 tm,n 2
(3) 内部角点
y t m 1,n t m ,n y y qw 2 x x 2 t m ,n 1 t m ,n x x t m ,n 1 t m ,n x qw 2 y 2 y 3xy 0 4
流体流动与传热的数值计算

20.8.16
14
§2、预测有关物理现象的方法
❖ 1.实验研究
❖ 最可靠的数据资料往往来源于实验,如化工过程设备 的气动性能,塔、反应器、流化床,…的操作性能、 流体力学性能等的实验研究;核爆实验等…。采用实 物实验研究可抓住特征、重点的试验,直观、明确的 观察→对于掌握有关外部现象与基本性能之间的本质 关系有重要意义。
20.8.16
23
§3 本课程基本内容与安排
第一部分 基本理论
预计课时
❖ 第一章 绪论
2
❖ 第二章 数学描述
3
❖ 第三章 离散化方法
4
❖ 第四章 热传导与扩散
4
❖ 第五章 对流传热与扩散
4
❖ 第六章 流场计算
4
❖ 第七章 求解方法、方法修饰 2
❖ 第八章 专题
2
❖ 第九章 应用实例
1
实际 2 3 4 6 6 6 2 2 1
20.8.16
20
优缺点 4) 缺点:一分为二的观点,缺点难免存在。 a. 数学模型的适用限度是关键因素,对于一些 数学模型尚不清楚的过程(如复杂紊流、某些 非牛顿流、多相流、相变过程、流变化等等)。 有待于进一步的模型研究如紊流模型、非牛顿 流体模型、二相气液流等;需要提出模型,计 算分析→较正模型,深化完善模型。 需要的是弄清楚模型:伴有传质过程、复杂化 学反应、动力学等等。30多年来模型研究在不 断发展完善更接近于真实。
& Profile ) 4) 求各传递系数 ( Heat Transfer Coefficient, Mass Transfer
传热学第5章1

Φ = ∫ qx dA = ∫ hx ( tw − tf ) x dA = ( tw − tf ) ∫ hx dA A A A
1 h( 对照式 Φ = A h( tw-tf ) 可得 h = ∫A hx dA A
如何确定表面传热系数的大小是对流换热计算的 核心问题,也是本章讨论的主要内容。 核心问题,也是本章讨论的主要内容。
3)能量微分方程(能量守恒) 能量微分方程(能量守恒)
y
单位时间由导热进入微元体 Φλ , x+dx 的净热量和由对流进入微元体的 dy Φλ , x Φh , x Φh , x+dx 净热量之和等于微元体热力学能 Φλ , y Φh , y 的增加, 的增加, dU 0 x Φλ + Φh = dx dτ 单位时间由导热进入微元体的净热量
流体导热系数
Department of Power Engineering, North China Electric Power University (Beijing 102206) 杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有
NCEPU
按照牛顿冷却公式 ∂t qx = hx ( tw − t∞ ) x = −λ ∂y λ ∂t hx = − ( tw − t∞ ) x ∂ y y =0, x
qx = hx ( tw − tf ) x
杨立军 知识产权与使用权归华北电力大学能源与动力工程学院所有
Department of Power Engineering, North China Electric Power University (Beijing 102206)
NCEPU
等壁温, 等壁温,( tw − tf ) x = tw − tf = 常数
热流问题的数值计算

迭代方法
为了求解非线性热流问题,需要采用迭代方法,如 Newton-Raphson方法、Gauss-Seidel方法和SOR 方法等。这些方法需要在每一步迭代中进行线性化和 求解线性方程组,因此需要高效的算法和数值方法。
04
数值计算的应用
工程传热问题
热传导
在机械、航空航天、能源等领域中, 热传导是常见的传热方式,数值计算 可以模拟热流在固体中的传递过程, 优化热设计。
热对流
流体与固体之间的热量交换,如流体 加热器、核反应堆等,数值计算可以 模拟对流换热过程,优化热工性能。
生物医学中的热流问题
生物传热
生物体内的热量传递对生理功能和疾 病诊断具有重要意义,数值计算可以 模拟生物体内的热量分布和变化,为 医学诊断和治疗提供依据。
06
结论
研究成果总结
01
数值计算方法在热流问题中得到了广泛应用,为解决实际问题提供了 有效的工具。
02
数值计算方法能够模拟复杂的热流现象,为实验研究和理论分析提供 有力支持。
03
数值计算方法在解决实际工程问题中取得了显著成果,如传热、流体 动力学和燃烧等领域的模拟。
04
数值计算方法在热流问题中仍存在一些挑战,如高精度算法、复杂边 界条件和多物理场耦合等。
热流的物理特性
01
热流是热量传递的速率,其大小 取决于温度梯度、材料属性以及 热流方向。
02
在稳态条件下,热流与温度梯度 成正比,即
$பைடு நூலகம் = -k frac{partial u}{partial n}$
03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主讲陶文铨
西安交通大学能源与动力工程学院热流中心CFD-NHT-EHT CENTER 2007年11月29日, 西安
热流问题数值计算
第五章有回流的流动与换热
第
流场数值计算概述
5.1.1两类主要流动与两类数值解法5.1.4两种构造对流项离散格式的方法1.两类主要流动
2.两类数值求解方法
5.1 流场数值计算概述
5.1.2强制对流的涡量方程
5.1.3一维模型方程
5.1.1 两类主要流动与两类数值解法
回流型,其基本区别在于是否存在漩涡(vortex)
vorticity) 的区别
漩涡是一种宏观的流动形态,特点是流体速度发生反转;涡量是粘性流体的基本特性,只要是粘性流体流动中必有涡量。
动力工程中大多为回流型(椭圆型)流动。
本章仅介绍回流型流动的数值解法。
2. 两类数值求解方法
数值求解回流型的流动可以大别为原始变量法
与涡量流函数法。
原始变量法
u,v,p为求解变量,由于不可压缩流体没有关于压力的独立的方程,数值求解时需要做特殊处理;
5.1.3一维模型方程
为研究离散格式基本特点又不使过程复杂化,
5.1.4两种构造对流项离散格式的方法
1. Taylor
控制容积积分法-给出界面上被求函数的插值方式
对同一种格式,如
控制容积积分法得可以认为是控制容积内导数积分中
5.2.1 中心差分
5.2.2 迎风差分
5.2.3 混合格式
5.2.4 指数格式
5.2.5 乘方格式
5.2对流扩散方程的离散格式
本节中通过将一维模型方程在
取分段线性型线,经整理可得:
()
e
e
x
δ
Γ
+−
E
a
W
a
做如下变化:
()e e x δΓ++
为保证代数方程迭代求解的收敛性,我们要求计算中质量守恒一定要满足,于是
下列两点边值问题:
Pe 随当
当当
得出结果如右。
,
4
P =100,W φ=
5.5.2 一维对流-扩散方程的迎风
控制容积法的定义-界面上未知函数永远取上游
Patankar教授提出一种专门符号表示FORTRAN 的Max:
,
X Y,于是有:
(),0,0
e P e E e
u F F
ρφφφ
=−−
类似地有:
(),0,0
w W w P w
u F F
ρφφφ
=−−
3.对流项一阶迎风、扩散项中心差分的离散方程
P P E E W W
a a a
φφφ
=+
,0
E e e
a D F
=+−
()
P E W e w
a a a F F
=++−
,0
W w w
a D F
=+
由于0,0E W a a ≥≥因此FUD 总可以得出物理上合理的解(physically plausible solution ),自五十年代提出以来,半个世纪中得到广泛地采用。
但因其格式只有一阶精度,截断误差较大(假扩散严重)不宜作为获得数值解最终结果的计算格式。
5.2.3一维对流-扩散方程的混合格式
1. 三点格式-界面上未知函数用界面两侧两个节点之值来表示的格式称为三点格式,一维问题为三对角阵,二维问题为五对角阵。
三点格式系数
均取决于界面上的流量与扩导;e,w的位置是相对的
a W
混合格式
图解式定义
0,2
P>
紧凑定义
对控制容积
对流扩散总通量密度的解析表达式
e:e,w 界面写出总通量密度的解析表达式φφ=
5.2.5 乘方格式
指数的计算十分费时,
5
n=
乘方格式的紧凑形式
E
a
D
=
5.2.7 几点讨论
从一维向多维的推广
第7 章
5.3
5.3.1 流函数与涡量的定义
为从两式中消去压力梯度,定义式,得
(a u φ∂强制对流对流项保留u,v 而不用,y x
ψψ∂∂−∂∂代替的原因:上式仅是通用对流扩散方程的一个例子,保留u,v 可以突显
对流项的存在。
5.3.3 自然对流的
1. Boussinesq
)只考虑重力项中的密度变化,而且按以下方式:
为体积膨胀系数
)
uv
x
ρ∂
+∂
cos
g
θ=
采用Boussinesq 仍记为
同舟共济
渡彼岸! People in the same boat help each other to cross to the other bank, where….。