07第七章计算机控制系统的状态空间设计

合集下载

控制系统的状态空间描述

控制系统的状态空间描述

1.1 控制系统状态空间描述常用的基本概念
1.动力学系统 :一个能贮存输入信息的系统
称为动力学系统。 [例1.1-1] 设有图1.1所示系统。 教材P7
i(t) 1 u(t) R1 R2
(1.1 1)
式(1.1-1)为一代数 方程,它表明此系统的行 为可以由输出与输入之间 的瞬间关系来确定,与系 统的过去历史无关。
设: x1 i, xˆ1 i,
x2

1 C
idt
xˆ2 idt
则: x1 xˆ1 ,
x2

1 C
xˆ2
则有: x Pxˆ P为非奇异变换矩阵
其中:
x


x1 x2




xˆ1 xˆ2

1 0
P 0
1 C
[例2]弹簧-质量-阻尼系统
储能元件名称 电感L 电容C 质量M 弹簧k
转动惯量J
状态变量 流经L的电流i 电容的电压u 质量M的位移速度v
弹簧位移y 旋转角速度ω
[例1] 试列写如图所示RLC的电路方程,建立 系统的状态空间表达式。
解: 1.设状态变量为:
x1 i,
x2
u c
1 C
idt
(1)
2.根据基尔荷夫定律组成系统的原始方程。
此,可以选取如下一组状态变量:

x1 x2 x3

y y y


xn y(n1)
(1.3.2)
x1 x2 x2 x3
(1.3.3)

x n 1

xn
xn an x1 an1x2 a2 xn1 a1xn bu

自动控制原理状态空间法

自动控制原理状态空间法
自动控制原理状态空间法
目录
• 引言 • 状态空间法基础 • 线性系统的状态空间表示 • 状态反馈与极点配置 • 最优控制理论 • 离散系Biblioteka 的状态空间表示01引言
状态空间法的定义
状态空间法是一种基于状态变量描述线性时不变系统的方法,通过建立系 统的状态方程和输出方程来描述系统的动态行为。
状态变量是能够完全描述系统内部状态的变量,可以是系统的物理量或抽 象的数学变量。
最优控制问题
在满足一定约束条件下,寻找一个控制输入, 使得被控系统的某个性能指标达到最优。
性能指标
通常为系统状态或输出函数的积分,如时间加 权或能量加权等。
约束条件
包括系统动态方程、初始状态、控制输入和终端状态等。
线性二次调节器问题
线性二次调节器问题是最优控制问题的一个特例, 其性能指标为系统状态向量的二次范数。
THANKS
状态方程描述了系统内部状态变量之间的动态关系,而输出方程则描述了 系统输出与状态变量之间的关系。
状态空间法的重要性
1
状态空间法提供了系统分析和设计的统一框架, 可以用于线性时不变系统的各种分析和设计问题。
2
通过状态空间法,可以方便地实现系统的状态反 馈控制、最优控制、鲁棒控制等控制策略。
3
状态空间法具有直观性和易于实现的特点,能够 直接反映系统的动态行为,便于理解和分析。
02
状态空间法基础
状态与状态变量
状态
系统在某一时刻的状态是由系统 的所有内部变量共同决定的。
状态变量
描述系统状态的变量,通常选择 系统的输入、输出和内部变量作 为状态变量。
状态方程的建立
根据系统的物理或数学模型,通过适 当的方法建立状态方程。

控制系统的状态空间设计

控制系统的状态空间设计

系统的状态空间表达式为
x(t) Ax(t) Bu(t)
y(t)
Cx(t)
Du(t)
控制输入变量为
u(t) Kx(t) r(t)
式中 矩阵K——状态反馈增益矩阵。
整理后得
x(t) ( A BK ) x(t) Br(t)
y(t)
(C
DK
)
x(t)
Dr
(t)
状态反馈系统的传递函数矩阵为
Wk (s) C sI ( A BK ) 1 B
从受控系统 0 ( A ,B ,C ,D) 到状态反馈系统 k (A BK ) ,B ,(C DK ) ,D,
引入增益矩阵K后系统的维数并没有增加,通过K的选择可自由地改变状态反馈系统 的特征值,从而使系统具有良好的性能。当 D 0时,引入状态反馈不会改变受控 系统的输出方程。应当注意的是,状态反馈的引入不会改变受控系统的能控性,但 不一定能保持受控系统原有的能观性,且只有当受控系统的状态变量全部可以直接 测量时,才能实现状态反馈控制。
大系数分别为 5,3,2 。
用箭头表示信号传递方向,
将各元件连接起来,即可
得到如图所示的状态变量
图。
1.2 状态反馈和输出反馈
1.状态反馈
状态反馈是将系统的每一个状态变量乘以相应的反馈系数,然后再反馈到输入 端与参考输入变量相叠加,并作为受控系统的控制输入变量,以构成状态反馈控制。 采用状态反馈的闭环系统称作状态反馈系统,如图所示。
若受控系统为能控规范型,则受控系统的状态方程为
x1 0
1
0 0 x1 0
x2
0
0
1
0
x2
0
X
u(t
)
xn1

状态空间分析与设计

状态空间分析与设计

状态空间分析与设计状态空间分析与设计是系统工程与控制工程中常用的分析和设计方法。

它通过建立系统的状态空间模型,对系统的动态行为进行定性和定量分析,并在此基础上进行系统设计和优化。

本文将深入介绍状态空间分析与设计的相关概念、原理和应用。

一、状态空间分析与设计概述状态空间是系统在任意时刻的状态所组成的集合。

在状态空间中,系统的每个状态都可以由一组状态变量完全描述。

因此,状态空间分析与设计的核心是建立系统的状态方程和输出方程,并利用这些方程进行性能分析和控制器设计。

二、状态方程与输出方程状态方程描述了系统状态的演变规律。

它是一个一阶微分方程,用矩阵形式表示为:x' = Ax + Bu其中,x是状态向量,A是系统的状态转移矩阵,B是输入矩阵,u 是外部输入。

状态方程描述了系统状态变量随时间的变化规律,可以用来分析系统的稳定性、响应速度等性能指标。

输出方程描述了系统输出与状态之间的关系。

它是一个线性方程,用矩阵形式表示为:y = Cx + Du其中,y是输出向量,C是输出矩阵,D是直接传递矩阵。

输出方程可以用来分析系统的可控性和可观性,以及设计满足特定输出要求的控制器。

三、状态空间分析方法1. 稳定性分析利用状态方程,可以通过特征值分析判断系统的稳定性。

对于线性时不变系统,当所有特征值的实部小于零时,系统是稳定的。

通过分析系统的特征值,可以设计出稳定性更好的控制器。

2. 响应分析利用状态方程和输出方程,可以分析系统的响应特性。

包括阶跃响应、脉冲响应、频率响应等。

通过分析系统的响应,可以评估系统的性能,并设计出满足要求的控制器。

3. 控制器设计状态空间方法可以直接用于控制器设计。

常见的控制器设计方法包括状态反馈控制、最优控制和鲁棒控制等。

这些方法都是基于状态空间模型进行的,可以根据系统的要求选择合适的控制器设计方法。

四、状态空间分析与设计应用状态空间分析与设计在工程实践中得到广泛应用。

例如,它可以用于电力系统的稳定性分析和控制、飞行器的自动控制系统设计、机械振动控制等。

控制系统的状态空间分析与设计

控制系统的状态空间分析与设计

控制系统的状态空间分析与设计控制系统的状态空间分析与设计是现代控制理论的重要内容之一,它提供了一种描述和分析控制系统动态行为的数学模型。

状态空间方法是一种广泛应用于系统建模和控制设计的理论工具,其基本思想是通过描述系统内部状态的变化来揭示系统的特性。

一、状态空间模型的基本概念状态空间模型描述了系统在不同时间点的状态,包括系统的状态变量和输入输出关系。

在控制系统中,状态变量是指影响系统行为的内部变量,如电压、速度、位置等。

通过状态空间模型,可以将系统行为转化为线性代数方程组,从而进行分析和设计。

1. 状态方程控制系统的状态方程是描述系统状态演化的数学表达式。

一般形式的状态方程可以表示为:x(t) = Ax(t-1) + Bu(t)y(t) = Cx(t) + Du(t)其中,x(t)是系统在时刻t的状态向量,A是系统的状态转移矩阵,B是控制输入矩阵,u(t)是系统的控制输入,y(t)是系统的输出,C是输出矩阵,D是直接传递矩阵。

2. 状态空间矩阵状态空间矩阵包括系统的状态转移矩阵A、控制输入矩阵B、输出矩阵C和直接传递矩阵D。

通过这些矩阵,可以准确描述系统的状态变化与输入输出之间的关系。

3. 系统的可控性和可观性在状态空间分析中,可控性和可观性是评估系统控制性能和观测性能的重要指标。

可控性是指通过调节控制输入u(t),系统的状态可以在有限时间内从任意初始状态x(0)到达任意预期状态x(t)。

可控性可以通过系统的状态转移矩阵A和控制输入矩阵B来判定。

可观性是指通过系统的输出y(t)可以完全确定系统的状态。

可观性可以通过系统的状态转移矩阵A和输出矩阵C来判定。

二、状态空间分析方法状态空间分析方法包括了系统响应分析、系统稳定性分析和系统性能指标分析。

1. 系统响应分析系统的响应分析可以通过状态方程进行。

主要分析包括零输入响应和零状态响应。

零输入响应是指当控制输入u(t)为零时,系统的输出y(t)变化情况。

控制系统的状态空间描述

控制系统的状态空间描述
解: 方法一、直接根据微分方程求解
03
方法二、根据传递函数求解
状态方程的标准形式
状态方程的定义 状态方程 所谓状态方程,就是描述系统的状态之间以及输入和状态之间动态关系的一阶微分方程组。
3.2.2 状态空间表达式
向量矩阵形式为
状态向量
输入向量
维的函数向量
3、线性定常系统的状态方程
向量矩阵形式为
维的系数矩阵
维的系数矩阵
输出方程
输出方程的标准形式
解:列写回路的电压方程和节点的电流方程
选取 为状态变量,输出 ,得系统的状态空间表达式为
消去 并整理得
设初始条件为零,对上式两端进行拉普拉斯变换,得
写成向量矩阵形式为
其中
输入变量的Laplace变换象函数
2)数目最小的含义:是指这个变量组中的每个变量都是相互独立的。
二、状态向量
若一个系统有n个状态变量: ,用这n个状态变量作为分量所构成的向量 ,就称为该系统的状态向量,用 表示。
例 试建立下图所示电路网络的状态方程和输出方程。
01
考虑标量的一阶微分方程
02
用拉氏变换解有:
3.2.2 状态微分方程的解
定义矩阵指数函数为:
上式也经常写做状态转移矩阵的形式
系统的零输入响应为:
1.3 传递函数矩阵
例:系统如下图所示,输入为 和 ,输出为 。
较之传递函数,状态空间描述的优点有:
3、状态空间分析是一种时域分析方法,可用计算机直接在时域中进行数值计算。
2、由前面的分析可以看出,对于不同维数的系统,可以采用同一表达方式来进行描述,由此可见从低维系统得到的结论可以方便地推广到高维系统,只是计算复杂一些而已。

控制系统的状态空间设计

控制系统的状态空间设计

III 、综合部分第四章 线性多变量系统的综合与设计4.1 引言前面我们介绍的内容都属于系统的描述与分析。

系统的描述主要解决系统的建模、各种数学模型(时域、频域、内部、外部描述)之间的相互转换等;系统的分析,则主要研究系统的定量变化规律(如状态方程的解,即系统的运动分析等)和定性行为(如能控性、能观测性、稳定性等)。

而综合与设计问题则与此相反,即在已知系统结构和参数(被控系统数学模型)的基础上,寻求控制规律,以使系统具有某种期望的性能。

一般说来,这种控制规律常取反馈形式,因为无论是在抗干扰性或鲁棒性能方面,反馈闭环系统的性能都远优于非反馈或开环系统。

在本章中,我们将以状态空间描述和状态空间方法为基础,仍然在时域中讨论线性反馈控制规律的综合与设计方法。

4.1.1 问题的提法给定系统的状态空间描述][1B A AB B Q n -=若再给定系统的某个期望的性能指标,它既可以是时域或频域的某种特征量(如超调量、过渡过程时间、极、零点),也可以是使某个性能函数取极小或极大。

此时,综合问题就是寻求一个控制作用u ,使得在该控制作用下系统满足所给定的期望性能指标。

对于线性状态反馈控制律r Kx u +-=对于线性输出反馈控制律r Hy u +-=其中rR r ∈为参考输入向量。

由此构成的闭环反馈系统分别为Cxy Br x BK A x=+-=)(或Cxy Br x BHC A x=+-=)(闭环反馈系统的系统矩阵分别为BK A A K -= BHC A A H -=即),,(C B BK A K -=∑或),,(C B BHC A H -=∑。

闭环传递函数矩阵B BK A sIC s G K 11)]([)(----= B BHC A sI C s G H 11)]([)(----=我们在这里将着重指出,作为综合问题,将必须考虑三个方面的因素,即1)抗外部干扰问题;2)抗内部结构与参数的摄动问题,即鲁棒性(Robustness)问题;3)控制规律的工程实现问题。

《计算机控制技术》教学大纲

《计算机控制技术》教学大纲

《计算机控制技术》课程标准(执笔人:韦庆审阅学院:机电工程与自动化学院)课程编号:0811305英文名称:Computer Control Techniques预修课程:计算机硬件技术基础B、自动控制原理B、现代控制理论学时安排:36学时,其中讲授32学时,实践4学时。

学分:2一、课程概述(一)课程性质地位本课程作为《自动控制理论》的后续课程,是控制科学与工程、机械工程及其自动化和仿真工程专业本科学员理解和掌握计算机控制系统设计的技术基础课。

(二)课程基本理念本课程作为一门理论与工程实践结合紧密的技术基础课,结合自动控制原理技术、微机接口技术,以学员掌握现代化武器装备为目的。

本课程既注重理论教学,也注重教学过程中的案例实践教学环节,使学员在掌握基本理论的基础上,通过了解相关实际系统组成,综合培养解决工程实际问题的能力。

(三)课程设计思路本课程主要包括计算机控制原理和计算机控制系统设计两大部分。

在学员理解掌握自动控制原理的基础上,计算机控制原理部分主要介绍了离散系统的数学分析基础、离散系统的稳定性分析、离散系统控制器的分析设计方法等内容;计算机控制系统设计部分结合实际的项目案例,重点介绍了计算机控制系统的组成、设计方法和步骤、计算机控制原理技术的应用等内容。

二、课程目标(一)知识与技能通过本课程的学习,学员应该了解计算机控制系统的组成,理解计算机控制系统所涉及的采样理论,掌握离散控制系统稳定性分析判断方法,掌握离散控制系统模拟化、数字化设计的理论及方法,掌握一定的解决工程实际问题的能力。

(二)过程与方法通过本课程的学习和实际系统的演示教学,学员应了解工程实际问题的解决方法、步骤和过程,增强积极参与我军高技术武器装备建设的信心。

(三)情感态度与价值观通过本课程的学习,学员应能够提高对计算机控制技术在高技术武器装备中应用的认同感,激发对自动化武器装备技术的求知欲,关注高技术武器装备技术的新发展,增强提高我军高技术武器水平的使命感和责任感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档