2011B题 交巡警服务平台的设置与调度

合集下载

交巡警服务平台的设置与调度-2011年全国大学生数学建模赛题

交巡警服务平台的设置与调度-2011年全国大学生数学建模赛题

交巡警服务平台的设置与调度摘要本文是在一个原有区域交警平台的基础上,分析讨论在该市警务资源有限的情况下,如何实现城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源的实际问题。

实现最优化管理的方案。

以图论最优路径理论为基础,建立图的最优化模型。

针对问题(1),将A区路口和道路抽象成图,分别以交巡警服务平台对应的点为起点求小于等于3min的路径,再将同一起点的路径的终点相连,围成一个区域,便是交巡警服务平台的管辖范围。

在此基础上综合考虑各个路口发案率的大小、区域人口密集程度,从而建立一个图中路径最优化模型。

再根据各个区域之间的所产生的空白区,即交巡警的管辖盲区。

为其添加交巡警服务平台。

实现其管理最优化的目的。

针对问题(2),结合交巡警服务平台的设置原则,充分考虑全市各区不同的状况,如:人口密度、区域面积等,并以A区的分区标准为基础,实现对全市各区的交巡警服务平台的设置。

对于P点的逃犯,建立一个以P点为中心的最优逃跑路径所组成的图,然后在算出罪犯的最佳逃跑路线,再调度相应的交巡警,实现对他的围堵。

从而实现交巡警服务平台设置和调度的最优化的方案。

关键词:图论;最优化路径; 交巡警服务平台;MATLAB;数据结构1、问题重述“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。

请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。

交巡警平台的设置与调度

交巡警平台的设置与调度

交巡警平台的设置与调度交巡警服务平台的设置与调度摘要本文针对交巡警服务平台设置与调度的问题,作出了合理的假设,将本题归结为一系列带有约束条件的优化问题。

针对问题一中的交巡警服务平台管辖范围分配问题,采用Floyd 算法编程寻找出A 区中距离各路口最近的交巡警服务平台,然后根据就近原则,将各路口分配给最近的平台,得到了服务平台管辖范围的分配方案(见表1)。

针对问题一中的快速全封锁问题,以实现全封锁为约束条件,以封锁时间最短为目标函数建立优化模型,得最短封锁时间8.015min。

在满足封锁时间不超过8.015min的条件下,以总出警路程最小为目标函数,求得最优调度方案(见表3),最小出警总路程为km 46。

.188在问题一的增加平台问题中,以3分钟出警时间作为约束条件,选择使工作量方差最小为目标函数建立工作量均衡优化模型。

通过编程计算,最少增设平台数量为4,当增设第5个平台时,通过比较最小方差,发现优化效果不显著,考虑到警力资源的有限性,认为增设平台数量为4更合理。

其具体增设位置为28,39,48,87。

针对问题二的现有设置方案合理性分析中,计算发现多达138个点发生案件时交巡警3分钟内无法到达。

考虑处理案件的及时性,以3分钟出警时间为制约条件,建立了不改变现有平台布局的情况下增设平台以及不考虑已有平台对所有路口进行平台重新布局两种模型,并且分别结合问题一中的工作量均衡模型,对全市6个区的警备资源配置进行调整。

综合考虑出警时间和警力资源有限性后,发现平台重新布局更加节省警力资源,此方案只需设置101个工作平台(见表7)。

在问题二的犯罪嫌疑人围堵问题中,全面考虑犯罪嫌疑人的可能逃窜路线,以围堵区域和围堵时间最小为目标函数建立了动态的围堵模型。

利用动态规划寻求到最优的围堵方案,得到报案后7.36min就形成包围圈的围堵方案(见表9)。

模型皆为0-1规划或网络规划模型,采用Lingo软件求得全局最优解,结果准确可靠。

交巡警服务平台的设置与调度 (4)

交巡警服务平台的设置与调度 (4)

2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2011年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度摘要本文就某市交巡警服务平台的设置与调度建立了最短路覆盖模型、基于0-1动态规划的快速调配封锁模型、基于GMCLP(generialized maximal covering location problem)的平台选址优化与评价模型以及基于拓扑-贪婪算法的子网扩张等模型,利用Matlab与Lingo等数学工具确定了模型的最优解,同时给出了交巡警服务平台的设置与调度的最佳方案。

对于问题一,本文首先利用A区交通网络图中各点和边的信息得到图的邻接矩阵,并利用Floyd算法计算出每两点之间的最短路径。

然后遍历图中每个节点,分别将节点划分为离它最近的交巡警服务平台所管辖,这样就得到了各个交巡警服务平台的管辖范围。

2011高教社杯全国大学生数学建模竞赛B题(题目改变)参考答案

2011高教社杯全国大学生数学建模竞赛B题(题目改变)参考答案

交巡警服务平台的设置与调度优化分析摘要本文综合应用了Floyd算法,匈牙利算法,用matlab计算出封锁全市的时间为1.2012小时。

并在下面给出了封锁计划。

为了得出封锁计划,首先根据附件2的数据将全市的道路图转为邻接矩阵,然后根据邻接矩阵采用Floyd算法计算出该城市任意两点间的最短距离。

然后从上述矩阵中找到各个交巡警平台到城市各个出口的最短距离,这个最短距离矩阵即可作为效益矩阵,然后运用匈牙利算法,得出分派矩阵。

根据分派矩阵即可制定出封锁计划:96-151,99-153,177-177,175-202,178-203,323-264,181-317, 325-325,328-328,386-332,322-362,100-387,379-418,483-483, 484-541,485-572。

除此以外,本人建议在编号为175的路口应该设置一个交巡警平台,这样可以大大减少封锁全市的时间,大约可减少50%。

关键词: Floyd算法匈牙利算法 matlab一、问题重述“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:警车的时速为60km/h, 现有突发事件,需要全市紧急封锁出入口,试求出全市所有的交巡警平台最快的封锁计划,一个出口仅需一个平台的警力即可封锁。

二、模型假设1、假设警察出警时的速度相同且不变均为60/km h 。

2、假设警察出警的地点都是平台处。

3、假设警察接到通知后同时出警,且不考虑路面交通状况。

三、符号说明及一些符号的详细解释A 存储全市图信息的邻接矩阵 D 任意两路口节点间的最短距离矩阵X 01-规划矩阵ij a ,i j 两路口节点标号之间直达的距离 ij d 从i 路口到j 路口的最短距离 ij b 从i 号平台到j 号出口的最短距离ij x 取0或1,1ij x =表示第i 号平台去封锁j 号出口在本文中经常用到,i j ,通常表示路口的编号,但是在ij d ,ij b ,ij x 不再表示这个意思,i 表示第i 个交巡警平台,交巡警平台的标号与附件中给的略有不同,如第21个交巡警平台为附件中的标号为93的交巡警平台,本文的标号是按照程序的数据读取顺序来标注的,在此声明;j 表示第j 个出口,如:第5个出口对应于附件中的路口编号为203的出口。

交巡警服务平台的设置与调度

交巡警服务平台的设置与调度

交巡警服务平台的设置与调度摘要本文建立了交巡警服务平台设置与调度的优化模型,将出警时间和工作量作为考虑因素,设置城市交巡警服务平台,分配各平台的管辖范围,并在发生突发事件时对警务资源进行调度。

针对问题一的第一小问,根据出警时间的条件限制,初步确定城区A中20个服务平台对92个交叉路口节点的相应管辖范围,以交巡警服务平台的工作量方差最小为目标进行优化,使用lingo程序求解得到20个交巡警服务平台的管辖范围,工作量方差为2.9479。

对于第二小问,从全区20个交巡警服务平台中选取13个平台对全区13个交通要道实现了全封锁,以服务平台到达节点的最长时间最短为目标,用lingo 求得封锁时间为8.015分钟,并给出了具体的封锁方案(即选定的13个交巡警服务平台与13个被封锁要道的一一对应关系)。

对于第三小问,由于存在工作量不平衡和出警时间过长的情况,以交巡警服务平台的工作量方差最小为目标,经分析至少需要增加4个平台(节点编号分别为29,39,48,91)才能满足出警时间限制,经lingo求解得到具体服务平台分配方案,且最小方差为1.99。

针对问题二的第一小问,在全市范围内,以出警时间限制和各服务平台均衡工作量为依据,使用lingo程序计算,得到工作量方差为27.21,且有138个节点不满足出警时间要求,可知现有交巡警服务平台设置方案是不合理的。

经lingo程序计算至少需要增加54服务平台才能使这138个节点满足出警时间要求,经优化使用lingo程序求得增加平台后的方差为5.098,明显优于原方案,此分配方案更加合理。

但是由于实际警力资源的限制,增加54个平台的个数相对较多,对此我们给出对现有警力配置,重新分布并适当增加平台数目的数学模型。

对于第二小问,该模型利用蚁群算法[1]的思想,通过matlab程序模拟犯罪嫌疑人的逃窜路线,文中定义了一个新名词,即封堵有效性,以此为依据,提出一个有效且合理的嫌犯围堵方案,并且对该方案进行了可行性分析和封堵有效性检验,结果显示该模型很好。

交巡警服务平台的设置与调度B题

交巡警服务平台的设置与调度B题

全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):西北大学参赛队员(打印并签名):1.张舒岱2.刘羽3.张成悟指导教师或指导教师组负责人(打印并签名):日期:2014年8月10日全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度摘要交巡警服务平台位置的选取以及划分交巡警服务平台的管辖范围对于处理突发事件有非常大的影响。

现阶段,一般依据经验选取服务平台位置及划分管辖区域。

所以如何科学合理处理的交巡警服务平台的设置与调度问题具有十分重要的现实意义。

本文研究了交巡警服务平台的设置与调度问题。

具体讨论了在给定的区域A内,如何合理的设置交巡警服务平台的管辖区域;发生特殊事件时应如何调动服务平台警力以快速封锁区域A;应该增加多少数量交巡警服务平台以及在哪个位置增加。

本文建立最短路模型、0-1整数规划模型,利用MATLAB软件解决了分配各平台管辖范围、调度警务资源以及合理设置交巡警服务平台这三个方面的问题。

在解决分配各平台管辖范围问题时,本文建立了最短路模型。

通过求解各个路口到交巡警平台的距离是否满足最低时间限制,解决交巡警服务平台分配管辖范围的问题。

本文在MATLAB软件上运用Dijkstra算法进行求解,给出了中心城区A的20个服务平台的管辖范围,并求得到达最近的交巡警服务平台的时间超过3分钟的6个路口。

2011年数学建模交巡警服务平台的设置与调度问题摘要

2011年数学建模交巡警服务平台的设置与调度问题摘要

摘要在为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警到达事发地,且出现重大突发事件,要对其进行快速封锁,针对现有交巡警服务平台工作量不平衡和出警时间过长等问题,增设交巡警服务平台的个数。

且根据交巡警平台的原则和任务,分析全市区的交巡警平台设置的合理性,对于此类问题,需将其转化成多目标盘规划问题,用弗洛伊德算法算出各个节点间的距离,并进行最短距离,即最优解的比较和选取。

这里的模型规定了,对于所要解决的第一个问题,我们需要处理A区中各个交巡警服务平台分配的管辖区域,且在出现突发事件时,尽量能在3分钟内有交巡警赶到案发现场。

对于此问题,我们建立动态规划模型寻求最优分配方案,对A 区中各个路口节点建立矩阵,并利用弗洛伊德算法求每个交巡警服务平台到各个路口节点的最短距离,并用聚类分析方法,对各个路口节点进行分区。

对于在发生重大突发事件需要合理调度交巡警服务平台的警力,进行快速的全区封锁。

对于此类模型建立的解决,我们运用整数规划中的0—1线性规划及动态规划求解。

对于想要快速封锁案发现场,必须要求交巡警服务平台到需要封锁的案发地点用时最少,即距离最短。

因为交巡警服务平台之间的相互制约,需要运用运筹学的相关知识解决。

通过对各个进出路口周围相邻的交巡警服务平台路线的确定及计算其总路程比较。

最后确立其快速封锁的路线及所调用的交巡警服务平台的警力。

在现有的交巡警服务平台中,由工作量不均衡及出警时间过长等问题,需要适量的增加交巡警服务平台。

通过解决第一个问题得到的部分数据,考虑到人口密集度及不同节点处的案发率,选出案发率高且未被现有交巡警服务平台管辖区在限定时间覆盖的路口节点,通过与其周围节点和相邻交巡警服务平台的最短距离的比较,选出需要增加交巡警服务平台的节点。

在全市现有的交巡警服务平台中,根据其最初设置交巡警服务平台的原则和目的,及工作量是否均衡,人口密集度和节点的案发率,判断其设置是否合理。

交巡警服务平台的设置与调度

交巡警服务平台的设置与调度

2)每个节点到最近的交巡警平台距离(仅保留小数点后两位,距离单位千米) 。 22 23 24 25 26 27 节点编号 21 9.06 5.00 23.85 17.89 9.00 16.43 与 平 台 距 27.08 离 29 30 31 32 33 34 节点编号 28 57.01 5.83 20.56 11.40 8.28 5.02 与 平 台 距 47.52 离 36 37 38 39 40 41 节点编号 35 6.08 11.18 34.06 36.82 19.14 8.50 与 平 台 距 4.24 离 43 44 45 46 47 48 节点编号 42 8.00 9.49 10.95 9.30 12.81 12.90 与 平 台 距 9.85 离 50 51 52 53 54 55 节点编号 49 8.49 12.29 16.59 11.71 22.71 12.66 与 平 台 距 5.00 离 57 58 59 60 61 62 节点编号 56 18.68 23.02 15.21 17.39 41.90 3.50 与 平 台 距 20.84 离 64 65 66 67 68 69 节点编号 63 19.36 15.24 18.40 16.19 12.07 5.00 与 平 台 距 10.31 离 71 72 73 74 75 76 节点编号 70 11.40 16.06 10.30 6.26 9.30 12.84 与 平 台 距 8.60 离 78 79 80 81 82 83 节点编号 77 6.40 4.47 8.06 6.71 10.79 5.39 与 平 台 距 9.85 离 85 86 87 88 89 90 节点编号 84 4.47 3.61 14.65 12.95 9.49 13.02 与 平 台 距 11.75 离 92 节点编号 91 36.01 与 平 台 距 15.99 离
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B题交巡警服务平台的设置与调度
“有困难找警察”,是家喻户晓的一句流行语。

警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。

为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。

每个交巡警服务平台的职能和警力配备基本相同。

由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。

试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:
(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。

请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。

对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。

实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。

根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际
情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。

(2)针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。

如果有明显不合理,请给出解决方案。

如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。

为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。

附图1:A区的交通网络与平台设置的示意图
附图2:全市六区交通网络与平台设置的示意图
说明:
(1)图中实线表示市区道路;红色线表示连接两个区之间的道路;
(2)实圆点“·”表示交叉路口的节点,没有实圆点的交叉线为道路立体相交;
(3)星号“*”表示出入城区的路口节点;
(4)圆圈“○”表示现有交巡警服务平台的设置点;
(5)圆圈加星号“○*”表示在出入城区的路口处设置了交巡警服务平台;
(6)附图2中的不同颜色表示不同的区。

相关文档
最新文档