2015-2016学年北京市顺义区初三二模数学试题

合集下载

2015北京各区中考数学二模26、27、28题汇编(带答案)

2015北京各区中考数学二模26、27、28题汇编(带答案)
OC
(用含 x 的式子表示) ,
【问题解决】
2015 北京模拟 2 / 18
已知,如图 2,点 M、N、P 为圆 O 上的三点,且∠P=β,tanβ = 1 ,求 sin2β 的值. 2
y
C B

M
β
P
A
D
D
O
α
A
N
O
B
O C
x
图1
图2
26. 如图,在平面直角坐标系 xOy 中,矩形 ABCD 各边都平行于坐标轴,且 A(-2,2) ,C(3,-2) .对矩形 ABCD 及其内部的点进行如下操作: 把每个点的横坐标乘以 a, 纵坐标乘以 b, 将得到的点再向右平移 k (k 0) 个单位,得到矩形 A ' B ' C ' D ' 及其内部的点( A ' B ' C ' D ' 分别与 ABCD 对应) .E(2,1)经过上述操作后的对应 点记为 E ' . (1)若 a=2,b=-3,k=2,则点 D 的坐标为 ,点 D ' 的坐标为 ; (2)若 A ' (1,4) , C ' (6,-4) ,求点 E ' 的坐标. 26.阅读下面的材料: 小明遇到一个问题:如图 1,在□ABCD 中,点 E 是边 BC 的中点,点 F 是线段 AE 上一点,BF 的延长线交射线 CD 于点 G. 如果 AF 3 ,求 CD 的值. CG EF 他的做法是:过点 E 作 EH∥AB 交 BG 于点 H,那么可以得到△BAF∽△HEF. 请回答: (1)AB 和 EH 之间的数量关系是 ,CG 和 EH 之间的数量关系是 , CD 的值为 .
5 4 3 2 1 –5 –4 –3 –2 –1 o –1 –2 –3 –4 –5 1 2 3 4 5

北京市顺义区初三数学二模试卷 (1)

北京市顺义区初三数学二模试卷 (1)

顺义区房二摸2008届初三第二次统一练习 一、选择题1.13-的绝对值是( )A .3- B .3 C .13 D .13- 2.若分式11x x +-的值为0,则x 的值是( )A .-1 B .1 C .0 D .1± 3.若反比例函数的图象经过点)1,2(--M ,则反比例函数的解析式为( )A .x y 2=B . x y 2-=C . x y 21=D .xy 21-= 4.算式44442222+++的结果是( )A .162 B .48 C .82 D .625.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市实际人口约300万,为此他推断全市初中生人数约为12万.但市教委提供的全市初中生人数约为8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因是( )A .样本不能估计总体 B .样本不具代表性、广泛性、随机性C .市教委提供的数据有误D .推断时计算错误6.如图,AB 是⊙O 的直径,AC 是弦,若AB=2, 3则∠AOC 的度数是 ( )A .120°B .130°C .140°D .150°7.下面三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,则能组成分式的概率是 ( )A .13 B .12 C .23 D .568.如图是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别 表示4个入球孔.如果1个球按图中所示的方向被击中(球可以经过多次 反射,并且不会在台球桌中间停止),那么该球最后将落入的球袋是( ) A .1号袋B .2号袋 C .3号袋 D .4号袋 二、填空题(共4个小题,每小题4分,共16分)9.已知:如图,AB ∥CD ,CE 平分∠ACD ,交AB 于点E ,若∠A=110°,则∠BEC 的度数是 .10.如图,在△ABC 中,∠A=90,分别以B 、C 为圆心的两个等圆外切,两圆的半径都为2cm ,则图中阴影部分的面积为 cm 2.11.如图,图①,图②,图③,图④……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是 .a2a - 43号袋2号袋1…图①图②图③图④DEBCA12. 线段AB 、CD 在平面直角坐标系中的位置如图所示,O 为坐标原点.若线段AB 上一点P 的坐标为(a ,b ),则直线OP 与线段CD 的交点的坐标为________________. 13.分解因式:322224a ab a b +-.14.解2151132x x -+-≤,并将解集在数轴上表示出来.15.设25111x x A B x x -==---,,当x 为何值时,A 与B 的值相等?16.先化简,再求值:2224524422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中,a 是方程2310xx -+=的根.四、解答题(共2个小题,17小题5分,18小题6分,共11分) 17.如图,E 、F 是菱形ABCD 的对角线BD 所在直线上两点,且DE=BF .请你以F 为一个端点,和图中已标有字母的某一点连成一条新的线段,猜想并证明它和已有的某一条线段相等.(1)连结 ; (2)猜想: ; (3)证明:18.为了保护野生动物,某中学在全校所有学生中,对四种国家一级保护动物的喜爱情况进行问卷调查.要求每位学生只选一种自己最喜爱的动物,调查结果绘制成如下未完整的统计表和统计图,请你根据图表中提供的信息,解答以下问题:动物名称 频数(学生人数) 频率 金丝猴 0.20 大熊猫 1000 0.50 藏羚羊 500 丹顶鹤 100 0.05 合计1FEDCBA5%丹顶鹤(1)请把表格和统计图分别补充完整;(2)为了更好地保护野生动物,请你提出一条合理的建议. 19.已知关于x 的方程22(1)10kxk x k +++-=有两个不相等的实数根.(1)求k 的取值范围;(2)请选取一个你喜欢的k 值,代入方程并求出方程的根.20.一座建于若干年前的水库大坝的横断面为梯形ABCD ,如图所示,其中背水面为AB ,现准备对大坝背水面进行整修,将坡角由45°改为30°,若测量得AB=20米,求整修后需占用地面的宽度BE 的长.(精确到0.12 1.414,3 1.732,6 2.449≈≈≈)21.如图,在平面直角坐标系xOy 中,以点(3,0)A 为圆心的圆与x 轴交于原点O 和点B ,直线l 与x轴、y 轴分别交于点C (-2,0)、D (0,3). (1)求出直线l 的解析式;(2)若直线l 绕点C 顺时针旋转,设旋转后的直线与y 轴交于点E (0,b ),且03b <<,在旋转的过程中,直线CE 与⊙A 有几种位置关系?试求出每种位置关系时,b 的取值范围.频数(学生人数) 1000 800 600 400 200金丝猴 大熊猫 藏羚羊 丹顶鹤动物名称30°45°E DCB AlyxDC BA O22.已知:如图,平行四边形ABCD 中, AE 、BE 、CF 、DF 分别平分∠BAD 、∠ABC 、∠BCD 、∠CDA ,BE 、DF 的延长线分别交AD 、BC 于点M 、N ,连结EF ,若AD=7,AB=4,求EF 的长.23.已知:如图,在正方形ABCD 中,点G 是BC 延长线一点,连结AG ,分别交BD 、CD 于点E 、F .(1)求证:DCE DAE ∠=∠;(2)当CG=CE 时,试判断CF 与EG 之间有怎样的数量关系?并证明你的结论.(3)在(2)的条件下,求DF FC的值.24.某校开展“迎2008年北京奥运会”的主题校会活动,老师派小明同学去学校附近的超市购买笔记本作为奖品.小明选择了该超市单价为8元和4.8元的两种笔记本,他要购买这两种笔记本共40本. (1)如果他一共带了240元,全部用于购买奖品,那么能买这两种笔记本各多少本?(2)小明根据主题校会活动的设奖情况,决定所购买单价为8元笔记本的数量要少于单价为4.8元笔记本数量的12,但又不少于单价为4.8元笔记本数量的14.如果他买了单价为8元的笔记本x 本,买这两种笔记本共花了y 元.①请写出y (元)关于x (本)的函数关系式,并求出自变量x 的取值范围;②请帮小明计算一下,这两种笔记本各购买多少本时,所花的钱最少,此时花了多少元钱?25.在平面直角坐标系xOy 中,抛物线2y ax bx c =++经过A (3,0)、B (5,0)、C (0,5)三点.(1)求此抛物线的解析式;(2)设抛物线的顶点为D ,求△BCD 的面积; (3)若在抛物线的对称轴上有一个动点P ,当△OCP 是腰长为5的等腰三角形时,求点P 的坐标.NMFEDCBA GFEDC BA顺义区2008届初三第二次统一练习 一、选择题 题号 1 2 3 4 5 6 7 8 答案CBADBACD二、填空题9.145︒; 10.π; 11. 52n +; 12.(2,2)a b .三、解答题(共4个小题,13小题4分,其余每小题5分,共19分) 13.解:原式222(2)a a b ab =+- 22()a a b =-14.解:去分母,得 2(21)3(51)6x x --+≤去括号,得 421536x x ---≤移项,合并同类项,得 1111x -≤ 系数化1,得 1x ≥- 将解集在数轴上表示为:15.依题意,得25111x x x x -=--- 去分母,得 2(1)1(5)x x x x +=---去括号,得 2215x x x x +=--+移项,合并同类项,得 24x = 系数化1,得 2x =经检验,2x =是原方程的根∴当2x =时,A 与B 的值相等.16.解:原式2(2)(2)5(2)(2)22a a a a a a ⎡⎤+--=-⨯⎢⎥--⎣⎦25(2)222a a a a a +-⎛⎫=-⨯ ⎪--⎝⎭ (3)2a a -=21(3)2a a =-a 是方程2310x x -+=的根,∴2310a a -+= ,∴231a a -=- ∴原式12=-. 四、解答题(共2个小题,17小题5分,18小题6分,共11分)17.(1)连结 CF ; (2)猜想: CF=AE ; (3)证明:∵四边形ABCD 是菱形, ∴AD=BC ,AD ∥BC .∴∠1=∠2.∵∠1+∠3=180°,∠2+∠4=180°, ∴∠3=∠4∵DE=BF ,∴△ADE ≌△CBF (SAS )∴CF = AE . 或 连结 AF ;猜想: AF=AE ;证明略. 18.解:(1) 金丝猴 400 藏羚羊 0.25 合计2000(填表每空1分,共3分,两个统计图正确各1分)(2)答案如:①禁止乱捕滥杀野生动物.②禁止人为破坏野生动物的生存环境.(答案只要合理都得1分)五、解答题(共3个小题,每小题5分,共15分)19.解:(1)△24(21)4(1)k k k k =++--2248444k k k k =++-+ 124k =+ ∵方程22(1)10kx k x k +++-=有两个不相等的实数F 30°45°EDCB A EFlyxDC BA O3MDA根,∴01240k k ≠⎧⎨+>⎩ ∴013k k ≠⎧⎪⎨>-⎪⎩∴k 的取值范围是13k >-且0k ≠(2)取K=1,方程为240x x +=,解得 120,4x x ==-.20.解:过点A 作AF ⊥BC ,垂足为F .在Rt △ABF 中,∵∠ABF=45°,AB=20,∴2sin 4520102AF AB =⋅︒==102BF AF ==.在Rt △AEF 中,∠EAF=90°-∠E=90°-30°=60°.∴tan 601023106EFAF =⋅︒==10610210(62)10(2.449 1.414)10.4BE EF BF =-==≈-≈(米).答:整修后需占用地面的宽度BE 的长约为10.4米.21.解:(1)设直线l 的解析式为y kx b =+, 依题意,得203k b b -+=⎧⎨=⎩ ∴323k b ⎧=⎪⎨⎪=⎩ ∴直线l 的解析式为332y x =+. (2)在旋转的过程中,直线CE 与⊙A 有三种位置关系:相离、相切、相交. 当直线CE 与⊙A 相切时,如图所示,设切点为F ,连结AF ,有∠AFC=90°. ∵A 点坐标为(3,0),C 点坐标为(-2,0),∴OA=3,AF=3,OC=2,∴AC=5,CF=4.∵∠COE=∠CF A=90°,∠OCE=∠FCA ,∴△COE ∽△CF A .∴OC CF OE AF =, 即 243OE =.∴32OE =.∴当332b <<时,直线CE 与⊙A 相离;当32b =时,直线CE 与⊙A 相切;当302b <<时,直线CE 与⊙A 相交.六、解答题(共2个小题,22小题5分,23小题7分,共12分) 22.解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,AB=CD .∴∠2=∠3.∵BE 平分∠ABC ,∴∠1=∠2. ∴∠1=∠3.∴AM=AB=4.∵AE 平分∠BAD ,∴12EM BM =.同理,CN=CD ,12DF DN =.∴AM=CN .∴AD - AM=BC DA- CN ,即 DM=BN .∴四边形BNDM 是平行四边形.∴BM=DN ,BM∥DN .∴EM=DF ,EM ∥DF .∴四边形MEFD 是平行四边形. ∴EF=MD .∵D=AD -AM=AD -AB=7-4=3, ∴EF=3.23.(1)证明:∵四边形ABCD 是正方形,∴AD=CD ,∠ADE=∠CDE .∵DE=DE ,∴△ADE ≌△CDE .∴∠DAE=∠DCE . (2)13CFEG =.证明:∵四边形ABCD 是正方形, ∴AD ∥BC ,∠DCB=90° ∴∠DAE=∠G .∴∠DCE=∠G . ∵CG=CE ,∴∠1=∠G . ∴∠DCE=∠1. ∴CF=EF .∵∠2=∠1+∠DCE=2∠1=2∠G , 又∵∠DCG=180°-∠DCB=90°,∴∠G=30°∴12CFFG =. ∴13CF EG =.(3)设CF x =,则EF CF x ==,22FG CF x ==. 在Rt △CFG 中,223CG FG CF x =-=. ∵△ADE ≌△CDE ,∴AE=CE=CG 3x =.∴AF=AE +EF=31)x .∵AD ∥BC ,∴△ADF ∽△GCF ∴(31)3122DF AF x FC FG x +===. 七、解答题(本题满分7分)24.解:(1)设能买单价为8元的笔记本x 本,则能买单价为4.8元的笔记本(40)x -本.依题意,得8 4.8(40)240x x +-=.解得15x =.40401525x -=-=∴.答:能买单价8元的笔记本1 5本,单价为4.8元的笔记本25本.(2)①依题意,得8 4.8(40) 3.2192y x x x =+-=+.又由题意,有1(40)21(40)4x x x x ⎧<-⎪⎪⎨⎪-⎪⎩,.≥ 解得4083x <≤.y ∴关于x 的函数关系式为 3.2192y x =+,自变量x 的取值范围是4083x <≤且x 为整数.②对一次函数3.2192y x =+, 3.20k =>∵, y ∴随x 的增大而增大.∴对于4083x <≤,当8x =时,y 值最小.此时4040832x -=-=, 3.28192217.6y =⨯+=最小(元).答:当买单价为8元的笔记本8本,单价为4.8元的笔记本32本时,所花的钱最少为217.6元 八、解答题(本题满分8分)25.解:(1)根据题意,5c =. ∴935025550a b a b ++=⎧⎨++=⎩解得1,383a b ⎧=⎪⎪⎨⎪=-⎪⎩∴抛物线解析式为 218533y x x =-+. (2)22218116115(816)5(4)333333y x x x x x =-+=-+-+=--∴抛物线顶点D 的坐标为1(4,)3-设直线CD 的解析式为y kx b =+,则5,14.3b k b =⎧⎪⎨+=-⎪⎩∴4,35.k b ⎧=-⎪⎨⎪=⎩∴直线CD 的解析式为453y x =-+.设直线CD 与x 轴交于点F ,则F 点坐标为15(,0)4. ∴155544BF =-=.∴15115105243243BCD BFD BFC S S S ∆∆∆=+=⨯⨯+⨯⨯=. (3)分四种情况:设对称轴与x 轴交于点E .①当OP=OC=5,且∠COP 为锐角时,如图1, 则有2222543PEOP OE =-=-=,∴P 点坐标为(4,3).②当OP=OC=5,且∠COP 为钝角时,如图2,则有2222543PEOP OE =-=-=,∴P 点坐标为(4,-3).③当OC =CP =5,且∠OCP 为锐角时,如图3,作PQ ⊥y 轴,垂足为Q ,则有2222543CQ PC PQ =-=-=,∴532OQ OC CQ =-=-=.∴P 点坐标为(4,2).④当OC =CP =5,且∠OCP 为钝角时,如图4,作PQ ⊥y 轴,垂足为Q ,则有2222543CQ PC PQ =-=-=,∴538OQ OC CQ =+=+=.∴P 点坐标为(4,8).综上所述,点P 的坐标为(4,3)、(4,-3)、(4,2)或(4,8).以上各题答案若有其他解法,请老师们参照评分参考酌情给分.。

2016北京中考数学各区二模28题汇编(含答案)

2016北京中考数学各区二模28题汇编(含答案)

1.(海淀二模) 已知:AB BC =,90ABC ∠=︒.将线段AB 绕点A 逆时针旋转α(090α︒<<︒)得到线段AD .点C 关于直线BD 的对称点为E ,连接AE ,CE 。

(1)如图, ①补全图形;②求AEC ∠的度数;(2)若AE =1CE =,请写出求α度数的思路.(可以不写出计算结果.........)2.(石景山二模)如图,正方形ABCD ,G 为BC 延长线上一点,E 为射线BC 上一点,连接AE . (1)若E 为BC 的中点,将线段EA 绕着点E 顺时针旋转90°,得到线段EF ,连接CF . ①请补全图形; ②求证:∠DCF =∠FCG ;(2)若点E 在BC 的延长线上,过点E 作AE 的垂线交∠DCG 的平分线于点M ,判断AE 与EM 的数量关系并证明你的结论.EGD CBAMABCDGE3.(顺义二模)已知:如图,90ACD ∠=︒,MN 是过点A 的直线,AC DC =,DB MN ⊥于点B .图2图3图1ABCDNMABCDNMNMABCD(1)在图1中,过点C 作CE CB ⊥,与直线MN 于点E ,①依题意补全图形;②求证:BCE ∆是等腰直角三角形;③图1中,线段BD 、AB 、CB 满足的数量关系是 ; (2)当MN 绕A 旋转到如图(2)和图(3)两个位置时,其它条件不变. 在图2中,线段BD 、AB 、CB 满足的数量关系是 ; 在图3中,线段BD 、AB 、CB 满足的数量关系是 ; (3)MN 在绕点A 旋转过程中,当30BCD ∠=︒,BD =则CB = .4.(通州二模) 已知,在菱形ABCD 中,∠ADC=60°,点F 为CD 上任意一点(不与C 、D 重合),过点F 作CD 的垂线,交BD 于点E ,连接AE 。

(1)①依愿意补全图1;②线段EF 、CF 、AE 之间的等量关系是 . (2)在图1中将ΔDEF 绕点D 逆时针旋转,当点F 、E 、C 在一条直线上(如图2). 线段EF 、CE 、AE 之间的等量关系是 。

2015北京各区中考数学二模25题全面总结及答案

2015北京各区中考数学二模25题全面总结及答案

2015北京各区中考数学25题汇编及答案25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F . (1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG .(1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论;(2)如图2,当E 为半径OA 的中点,DG ∥AB,且OA PG 的长.25.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠BAC 的平分线交⊙O 于 点D ,交⊙O 的切线BE 于点E ,过点D 作DF ⊥AC ,交AC 的延长线于点F . (1)求证:DF 是⊙O 的切线;F(2)若DF =3,DE =2.①求值;②求FAB ∠的度数.25.如图,点A B C D E 、、、、在⊙O 上,AB CB ⊥于点B ,tan 3D =,2BC=,H为CE 延长线上一点,且AH =CH =(1)求证:AH 是⊙O 的切线;(2)若点D 是弧CE 的中点,且AD 交CE 于点F ,求EF 的长.25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,P A ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:P A 是⊙O 的切线;(2)若BC =4 ,求AD 的长.25.如图,△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE是⊙O 的直径,连结DE . (1)求证:AC 是⊙O 的切线;BEADCC(2)若4sin 5C =,AC =6,求⊙O 的直径.25.如图,AB 是⊙O 的直径.半径OD 垂直弦AC 于点E .F 是BA 延长线上一点,CDB BFD ∠=∠.(1)判断DF 与⊙O 的位置关系,并证明; (2)若AB =10,AC =8,求DF 的长.25.如图,AB 是⊙O 的直径,以AB 为边作△ABC ,使得AC = AB ,BC 交⊙O 于点D ,联结OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F .25.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD ⊥AE 于D .(1)求证:∠DBA =∠ABC ;(2)如果BD =1,tan ∠BAD =12,求⊙O 的半径.25.如图,AB 是⊙O 的直径,点C 是⊙O 上一点, AD ⊥ DC 于D , 且AC 平分∠DAB ,延长DC 交AB 的延长线于点P ,弦CE 平分∠ACB ,交AB 于点F ,连接BE . (1)求证:PD 是⊙O 的切线; (2)若tan ABC =43∠,BE =PC 的长.25.如图,△ABC 内接于⊙O ,OC ⊥AB 于点E ,点D 在OC 的延长线上,且∠B =∠D =30°.(1)求证:AD 是⊙O 的切线;(2)若AB =求⊙O 的半径.25.如图,已知,⊙O 为△ABC 的外接圆,BC 为直径,点E 在AB 边上,过点E 作EF ⊥BC ,延长FE 交⊙O 的切线AG 于点G . (1)求证:GA =GE .PE(2)若AC =6,AB =8,BE =3,求线段OE 的长.答案25.(本小题满分5分) 证明:连接OE ,OC .在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩F∴△OEC ≌△OAC . (1)分∴∠OEC =∠OAC .∵∠OAC =90°,∴∠OEC =90°. ∴OE ⊥CF 于E . ∴CF与⊙O相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴5OF ,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=, ∴tan 6AC AF F =⋅=.…………………………………………………………………………4分∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°,∴BC =F∴BD=.…………………………………………………………………………………….5分25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切. 证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A .∵ CD ⊥AB 于点E , ∴ ∠A +∠AFE =90°. 又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG . ∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB ,∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点, ∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,2CG OA ==A∴tan 4PG CG GCP =⋅∠==. …………………………… 5分25. (1)连结OD , ∵AD 平分∠BAC ∴∠DAF =∠DAO ∵OA =OD ∴∠OAD =∠ODA ∴∠ DAF =∠ODA ∴AF ∥OD .┉┉1分 ∵DF ⊥AC ∴OD ⊥DF ∴DF 是⊙O 的切线┉┉2分 (2)①连接BD ∵直径AB , ∴∠ADB =90° ∵圆O 与BE 相切 ∴∠ABE =90°∵∠DAB +∠DBA =∠DBA +∠DBE =90° ∴∠DAB =∠DBE ∴∠DBE =∠F AD ∵∠BDE=∠AFD =90° ∴△BDE ∽△AFD ∴32==DF DE AD BE ┉┉3分 ②连接OC ,交AD 于G 由①,设BE =2x ,则AD =3x ∵△BDE ∽△ABE ∴BE DE AE BE =∴xx x 22232=+∵AB BC ⊥于点B∴AC 是⊙O 的直径…………………………………1分 ∵D ACB ∠=∠,∴tan tan 3D ACB =∠= 在Rt ABC ∆中,2BC =,∴36AB BC == 由勾股定理AC =在CAH ∆中,由勾股定理逆定理:22250AC AH CH +==∴90CAH ∠=°即CA AH ⊥∴AH 是⊙O 的切线…………………………………2分 (2)解:∵点D 是弧CE 的中点∴EAD DAC ∠=∠…………………………………3分 ∵AC 是⊙O 的直径 ∴AE CH ⊥∴90H EAH H HCA ∠+∠=∠+∠=° ∴EAH HCA ∠=∠∴EAD EAH DAC HCA ∠+∠=∠+∠ 即AFH HAF ∠=∠∴HF HA =∵CA AH ⊥AE CH ⊥∴2AH EH CH =⨯可得EH = ∴EF =5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分C B∵PA ∥BC , ∴∠PAO =∠BEO =90°. ∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分 (2)解:根据(1)可得CE =21BC=2. Rt △ACE 中,122=-=CE AC AE . ………………………………3分∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分 又∵∠D =∠C , ∴AD =52tan =DAB.………………………………………………………5分25. (1)证明:∵AB =AC ,AD =DC ,∴∠1=∠C =∠B ,..................................................1分 又∵∠E =∠B ,∴∠1=∠E , ∵AE 是⊙O 的直径,∴∠ADE =90°, ∴∠E +∠EAD =90°, ∴∠1+∠EAD =90°,∴AC 是⊙O 的切线............................................2分 (2)解:过点D 作DF ⊥AC 于点F , ∵DA =DC ,AC =6, ∴CF =12AC =3,..................................... ............3分 ∵4sin 5E =,∴4sin 5C =, ∴在Rt △DFC 中,DF =4,DC =5, ∴AD =5,∵∠ADE =∠DFC =90°,∠E =∠C ,∴△ADE ∽△DFC ,.............................................4分C∴AD DFAE DC =, ∴545AE =, ∴AE =254,∴⊙O 的直径为254.....................5分25.解:(1)DF 与⊙O 相切. ∵CAB CDB ∠=∠, 又∵CDB BFD ∠=∠,∴BFD CAB ∠=∠. ∴AC ∥DF . ………………………………… 2分∵半径OD 垂直于弦AC 于点E ,∴DF OD ⊥. ∴DF 与⊙O 相切. ………………………………… 3分 (2)∵半径OD 垂直于弦AC 于点E ,AC =8,∴482121=⨯==AC AE . ∵AB 是⊙O 的直径, ∴5102121=⨯===AB OD OA . 在AEORt ∆中,3452222=-=-=AE OA OE . ……………………………………… 4分∵AC ∥DF , ∴OAE ∆∽OFD ∆. ∴DF AEOD OE = . ∴DF453=. ∴321DF CEB A O320=DF . ………………………………………………… 5分25.(1)证明:联结AD .∵AB 是⊙O 的直径,∴∠ADB =90°,AD ⊥BC .∵AC = AB ,∴12∠=∠.…….1分 ∵OA OD =,∴13∠=∠. ∴23∠=∠,∴OD ∥AC .…….2分(2)∵AC = AB =10,∴B C ∠=∠.∴cos C=cos 5ABC ∠=. 在Rt △ABD 中,∠ADB =90°,cos 5BD ABC AB ∠==, ∴BDCD = BD….3分∵EF 为⊙O 的切线,∴OD ⊥EF ,由∵OD ∥AC ,∴∠DFC =90°. …….4分 在Rt △CDF 中,cos C=5CF CD =,∴CF =2.∴AF =8. ∵OD ∥AC ,∴ODE ∆∽AFE ∆.∴OE OD AE AF =.∴OB BE ODAB BE AF+=+. ∵152OB OA OD AB ====,∴103BE =.…….5分 25.(本小题满分5分)(1)证明:连接OA .(如图)∵ AE 为⊙O 的切线,BD ⊥AE , ∴ ∠DAO =∠EDB =90°. ∴ DB ∥AO .∴ ∠DBA =∠BAO . …………1分 又 ∵OA =OB , ∴ ∠ABC =∠BAO .∴ ∠D B A =∠A B C . ………………………………………………2分(2)在Rt △ADB 中,∠ADB =90°,C∵ BD =1,tan ∠BAD =12, ∴ AD =2,……………………………………………………………………3分由勾股定理得AB .∴ cos ∠DBA 又∵ BC 为⊙O 的直径, ∴ ∠BAC =90°. 又∵∠DBA =∠ABC .∴ cos ∠ABC = cos ∠DBA∴ 5.cos ABBC ABC===∠…………………………………………4分 ∴ ⊙O 的半径为5.2…………………………………………………………5分25.解:(1)∵ OC =OA∴ ∠CAO =∠OCA ∵ AC 平分∠DAB ∴ ∠DAC =∠CAO , ∴ ∠ACO =∠DAC . ∴ OC ∥AD .…………………………………………………………………….1分 ∵ AD ⊥PD , ∴OC ⊥PD . ∴ PD 是⊙O 的切线……………………………………………………………...2分(2)连接AE .∵CE 平分∠ACB ,∴AE BE =,∴AE BE == ∵AB 为⊙O 的直径, ∴∠AEB =90°.在Rt △ABE 中,14AB =………………………………………3分 ∵ ∠P AC =∠PCB ,∠P =∠P , ∴ △P AC ∽△PCB , ∴ PC AC PB BC =.…………………………………………………………………..4分 又∵4tan 3ABC =∠,∴43AC PCBC PB==, 设PC =4k ,PB =3k ,则在Rt △POC 中,PO =3k +7,OC =7,∵ PC 2+OC 2=OP 2, ∴()()2224737k k +=+, ∴ 126,0k k ==(舍去).∴ PC =4k =4×6=24. …………………………………………………………..5分25证明:(1)连接OA .∵∠B =∠D =30°,∴∠AOC =2∠B =60°,……………………….(1分) ∴∠OAD =180°-∠AOD -∠D =90°,…………….(2分) 即OA ⊥AD ,∴AD 是⊙O 的切线.……………….(3分)(2)∵OA =OC ,∠AOC =60°,∴△ACO 是等边三角形, ∵CO ⊥AB ∴ ……………………….(4分)在Rt △ABC 中∴⊙O 的半径为6.……………………………….(5分)1122AE AB ==⨯=sin sin60AEACE AC∠==︒6AC ===。

初三数学二模题答案-顺义

初三数学二模题答案-顺义

顺义区2015届初三第二次统一练习数学答案一、选择题(本题共30分,每小题3分) 下面各题均有四个选项,其中只有一个是符合题意的.二、填空题(本题共18分,每小题3分)11.4a ; 12.()221m -; 13.14.3; 14.3; 15.12,8;(第一空1分第二空2分)16. 1A (1,1),3A (4,4),11nn n A --(2,2).(每空1分) 三、解答题(本题共30分,每小题5分)17.解:2113tan30+3-⎛⎫- ⎪⎝⎭19=-+…………...4分(其中第一、三项化简各1分,第二项化简2分)8=…………………………………………………………………………………....5分18. 证明:∵AB ∥CD ,∴∠C =∠ABC .…………………………....1分 又∵AB =BC ,∠A =∠1,……………………..3分 ∴△ABE ≌△BCD ,………………..……...4分 ∴BE =CD .………………………………....5分 19. 解:2(2)(32)x x x +-+224432x x x x =++--…………………………………………......2分(每项1分) 24x x =-+……………………………………………………………….……......3分∵25x x -=,∴原式24x x =-+54=-+1=-.………………………......5分20.解:()2214x x x +-=-…………………………………………………....2分22214x x x +-=-23x =-32x =-………………………………………………………………..…….....3分经检验可知32x =-是原方程的根,…………………………….…...……...4分∴原方程的根是32x =-.…………………………………………….…..……....5分1EACD21. 解:(1)∵点A 的坐标是(-1,a ),在直线22y x =-+上,∴a =4,…………………………………………………………………………………........1分 ∴点A 的坐标是(-1,4),代入反比例函数my x=, ∴m =-4.…………………………………………………………………………………......2分 (2)∵OP 与直线22y x =-+平行,∴OP 的解析式为2y x =-, …………………………………………………………......3分∵点P 是双曲线4y x =-上一点, ∴设点P 坐标为(x , 4x-),代入到2y x =-中, ∴4=2x x--,.......................................................................................................................4分∴x = ∴点P的坐标为-或(.………………………………..………......5分22. 解:设2012年到2014年烟花爆竹销售量的年平均下降率为x .…………….....1分 依题意可列:()2200011280x -=…………………………………………………......3分 解得0.2x =……………………………………………………………………………......4分 答:2012年到2014年烟花爆竹销售量的年平均下降率为20%.…………………......5分四、解答题(本题共20分,每小题5分)23. 画图………………………………………………………………………1分 (1)证明:∵四边形ABCD 是矩形, ∴∠ADC =90º,CD =AB , ∵EF ⊥AD , ∴∠EHD =90º, ∴∠EHD =∠ADC , ∴EF ∥CD , 又∵DE ∥AC ,∴四边形EFCD 是平行四边形,……………......2分 又∵DE =AB , ∴DE =CD ,∴四边形EFCD 是菱形.……………………......3分HEDC BAF(2)解:过点D作DG⊥AC于G.在Rt△ABC中,AB=3,BC=∴tan3ACB∠==,CD=3,∴∠ACB=30º,……………………………………......4分∴∠1=60º,∴在Rt△DCG中,CD=3,sin1322DG CD=⋅∠=⨯=∴平行线DE与AC…………......5分24.解:(1)5200;………………………….…......1分补图……………………………………..3分(2)0.40,0.35,0.30.………………………........4分说明恩格尔系数越小消费水平越高..................5分25.(1)证明:∵AB=AC,AD=DC,∴∠1=∠C=∠B,..................................................1分又∵∠E=∠B,∴∠1=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,∴AC是⊙O的切线............................................2分(2)解:过点D作DF⊥AC于点F,∵DA=DC,AC=6,∴CF=12AC=3,..................................... ............3分∵4sin5E=,∴4sin5C=,∴在Rt△DFC中,DF=4,DC=5,∴AD=5,∵∠ADE =∠DFC=90°,∠E =∠C,∴△ADE∽△DFC,.............................................4分∴AD DFAE DC=,∴545AE=,∴AE=254,∴⊙O的直径为254.....................5分CH1GFAB CDE26. 解:(1)D (3,2),'D (8,-6),..................................................................................2分 (2)依题可列:21,3 6.a k a k -+=⎧⎨+=⎩则a =1,k =3,2b =4,b =2,.........................................................4分(a ,b ,k 求出一个给1分) ∵点E (2,1),∴'E (5,2)......................................................................................................5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. 解:(1)24b ac -=()()2243m m ---........................................................1分 =244412m m m -+-+ =2816m m -+ =()24m - ∵()240m -≥,∴方程()2230x m x m +-+-=总有两个实数根...............................................2分(2)1,2x =()242m m -±-................................................3分∴11x =-,23x m =-+,∴抛物线()223y x m x m =+-+-总过x 轴上的一个定点(-1,0).................4分 (3)∵抛物线()223y x m x m =+-+-与x 轴的另一个交点为B ,与y 轴交于点C , ∴B (3-m ,0),C (0, m -3),...................................................................................5分 ∴△OBC 为等腰直角三角形, ∵△OBC 的面积小于或等于8, ∴OB ,OC 小于或等于4, 30m -≠,∴3m -≤4且3m ≠, ...........................................................................................6分 又∵A ,B 不重合,∴4m ≠,∴-1≤m ≤7且3m ≠,4m ≠.................................................................................7分(1)∵边BA绕点B顺时针旋转α角得到线段BP,∴BA= BP,∵α=60°,∴△ABP是等边三角形,..................................1分∴∠BAP=60º,AP= AC,又∵∠BAC=90°,∴∠P AC=30º,∠ACP=75º,∵PD⊥AC于点D,∴∠DPC=15º.....................................................................2分(2)结论:∠DPC=75º...................................................3分(3)画图.............................................................................4分过点A作AE⊥BP于E.∴∠AEB=90º,∵∠ABP=150°,∴∠1=30º,∠BAE=60º,又∵BA= BP,∴∠2=∠3=15º,∴∠P AE=75º,∵∠BAC=90°,∴∠4=75º,∴∠P AE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP =90º,∴△APE≌△APD,..............................................................5分∴AE= AD,在Rt△ABE中,∠1=30º,∴12AE AB=,又∵AB=AC,∴1122AE AD AB AC ===,∴AD=CD,又∵∠ADP=∠CDP=90º,∴△ADP≌△CDP,.............................................................6分∴∠DCP=∠4=75º,∴∠DPC=15º........................................................................7分4123EDBAC PEBP321EAPCBD(1)∵点C (0,8)在抛物线223y x bx c =-++上, ∴8c =,................................................................................................................................1分 又∵B (6,0)在抛物线2283y x bx =-++上, ∴02468b =-++, ∴83b =, ∴抛物线的表达式为228833y x x =-++.......................................................................2分 (2) 结论:以P ,C ,E ,'E 为顶点的四边形为菱形...............................................3分 证明:∵E 和'E 关于直线PC 对称,∴∠'E CP =∠ECP ,'EP E P =,'EC E C =, 又∵PE ∥y 轴,∴∠EPC =∠'E CP =∠ECP ,∴EP =EC ,..........................................................................................................................5分 ∴''EC E C EP E P ===,∴四边形'E CEP 为菱形.................................................................................................6分 (3)∵B (6,0),C (0,8), ∴BC 的表达式为483y x =-+. 设228,833P x x x ⎛⎫-++ ⎪⎝⎭,则4,83E x x ⎛⎫-+ ⎪⎝⎭, ∴PE 的长为228488333x x x ⎛⎫⎛⎫-++--+ ⎪ ⎪⎝⎭⎝⎭=2243x +x -,过点E 作EF ⊥y 轴于点F , ∴△CFE ∽△COB ,∴35EF CE =,∴53CE EF =,即53CE x =. 由PE =EC 得225433x +x x -=,解得72x =,∴点P 的坐标为755,26⎛⎫ ⎪⎝⎭.................................................8分(不需要过程,结论正确给2分)。

2016北京市各区初三数学二模分类汇编几何综合题汇编 无答案

2016北京市各区初三数学二模分类汇编几何综合题汇编 无答案

2016年各区二模几何综合题汇编1.(顺义)28.已知:如图,90ACD ∠=︒,MN 是过点A 的直线,AC DC =,DB MN ⊥于点B .图2图3图1ABCDNMABCDNMNMABCD(1)在图1中,过点C 作CE CB ⊥,与直线MN 于点E ,①依题意补全图形;②求证:BCE ∆是等腰直角三角形;③图1中,线段BD 、AB 、CB 满足的数量关系是 ; (2)当MN 绕A 旋转到如图(2)和图(3)两个位置时,其它条件不变. 在图2中,线段BD 、AB 、CB 满足的数量关系是 ; 在图3中,线段BD 、AB 、CB 满足的数量关系是 ; (3)MN 在绕点A 旋转过程中,当30BCD ∠=︒,BD =则CB = .2.(昌平)28. 在等边△ABC 中,AB =2,点E 是BC 边上一点,∠DEF =60°,且∠DEF 的两边分别与△ABC 的边AB ,AC 交于点P ,Q (点P 不与点A ,B 重合).(1)若点E 为BC 中点.①当点Q 与点A 重合,请在图1中补全图形;②在图2中,将∠DEF 绕着点E 旋转,设BP 的长为x ,CQ 的长为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)如图3,当点P 为AB 的中点时,点M ,N 分别为BC ,AC 的中点,在EF 上截取EP '=EP ,连接NP '. 请你判断线段NP '与ME 的数量关系,并说明理由.图3图1A BE C图2DPQF3.(东城)28.【问题】在△ABC 中,AC =BC ,∠ACB =90°,点E 在直线BC 上(B ,C 除外),分别经过点E 和点B 做AE 和AB 的垂线,两条垂线交于点F ,研究AE 和EF 的数量关系.【探究发现】某数学兴趣小组在探究AE ,EF 的关系时,运用“从特殊到一般”的数学思想,他们发现当点E 是BC 的中点时,只需要取AC 边的中点G (如图1),通过推理证明就可以得到AE 和EF 的数量关系,请你按照这种思路直接写出AE 和EF 的数量关系;图1【数学思考】那么当点E 是直线BC 上(B ,C 除外)(其它条件不变),上面得到的结论是否仍然成立呢?请你从“点E 在线段BC 上”;“点E 在线段BC 的延长线”;“点E 在线段BC 的反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明你的结论;图2【拓展应用】当点E 在线段CB 的延长线上时,若BE =nBC (01n <<),请直接写出ABC S △:AEFS △的值.4.(海淀)28. 已知:AB BC =,90ABC ∠=︒.将线段AB 绕点A 逆时针旋转α(090α︒<<︒)得到线段AD .点C 关于直线BD 的对称点为E ,连接AE ,CE . (1)如图, ①补全图形; ②求AEC ∠的度数;(2)若AE1CE =,请写出求α度数的思路.(可.以不写出计算结果........) 5.(西城)28.在等腰直角三角形ABC 中,AB =AC ,∠BAC =90°.点P为直线AB 上一个动点(点P 不与点A ,B 重合),连接PC ,点D 在直线BC 上,且PD =PC .过点P 作EP ⊥PC 于点P ,点D ,E 在直线AC 的同侧,且PE =PC ,连接BE .(1)情况一:当点P 在线段AB 上时,图形如图1所示;情况二:如图2,当点P 在BA 的延长线上,且AP <AB 时,请依题意补全图......2.; (2)请从问题(1)的两种情况中,任选..一种情况....,完成下列问题: ①求证:∠ACP =∠DPB ;②用等式表示线段BC ,BP ,BE 之间的数量关系,并证明.图1 图26.(朝阳)28.在ABC ∆中,点D 、E 分别在AB 、AC 上,BE 、CD 相交于点O ,且A EBC DCB ∠=∠=∠21.(1)如图1,若AB =AC ,则BD 与CE 的数量关系是______________;(2)如图2,若AC AB ≠,请你补全图2,思考BD 与CE 是否仍然具有(1)中的数量关系,并说明理由;(3)如图3,︒=∠105BDC ,BD =3,且BE 平分∠ABC ,请写出求BE 长的思路.(不用写出计算结果)7.(房山)28.在△ABC中,BD平分∠ABC(∠ABC<60°)(1)如图28-1,当点D在AC边上时,若∠ABC=42°,∠ACB=32°,请直接写出AB,DC和BC之间的数量关系.(2)如图28-2,当点D在△ABC内部,且∠ACD=30°时,①若∠BDC=150°,直接写出AB,AD和BC之间的数量关系,并写出结论成立的思路.②若∠ABC=2α,∠ACB=60°-α,请直接写出∠ADB的度数(用含α的式子表示).8.(丰台) 28.在△ABC中,AC=BC,∠ACB=90°. 点D为AC的中点.将线段DE绕点D逆时针旋转90°得到线段DF,连接EF,CF.过点F作FH FC,交直线AB于点H.(1)若点E在线段DC上,如图1,①依题意补全图1;②判断FH与FC的数量关系并加以证明.(2)若E为线段DC的延长线上一点,如图2,且CE=的面积请求出∠FCHCFEΔ,15=,20∠CFE=12°,请写出求△FCH的面积的思路.(可以不写....出计算...结果..)EDADAABAB9.(石景山)28.如图,正方形ABCD ,G 为BC 延长线上一点,E 为射线BC 上一点,连接AE .(1)若E 为BC 的中点,将线段EA 绕着点E 顺时针旋转90°,得到线段EF ,连接CF .①请补全图形; ②求证:∠DCF =∠FCG ;(2)若点E 在BC 的延长线上,过点E 作AE 的垂线交∠DCG 的平分线于点M ,判断AE 与EM 的数量关系并证明你的结论.10.(怀柔)28.在△ABC 中,∠ABC=90°,D 为△ABC 内一动点,BD=a,CD=b(其中a ,b 为常数,且a<b).将△CDB 沿CB 翻折,得到△CEB. 连接AE. (1)请在图1中补全图形;(2)若∠ACB=α,AE ⊥CE ,则∠AEB=;(3)在(2)的条件下,用含a,b,α的式子表示AE 的长.图1 备用图11.(通州)28. 已知,在菱形ABCD 中,∠ADC=60°,点F 为CD 上任意一点(不与C 、D 重合),过点F 作CD 的垂线,交BD 于点E ,连接AE.(1)①依愿意补全图1; ②线段EF 、CF 、AE 之间的等量关系是。

北京市顺义区2016届九年级上学期期末考试数学试题

北京市顺义区2016届九年级上学期期末考试数学试题

顺义区2015——2016学年度第一学期期末九年级教学质量检测数学试卷一、选择题(共10道小题,每小题3分,共30分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 13-的倒数是 A .3B .13 C.13- D .3- 2AB C . D .3.不等式321x +>-的解集是A .13x >- B .13x <- C .1x >- D .1x <- 4.下列银行标志中,既不是中心对称图形也不是轴对称图形的是5.若)0(43≠=xy y x ,则下列比例式成立的是 A .34yx = B .yx 43= C .43=y x D .43y x =6.在Rt △ABC 中,∠C =90º,35BC AB ==,,则cos A 的值为A .35B .45C . 34D . 437.如图,在平行四边形ABCD 中,点E 在AD 上,连接CE 并延长与BA 的延长线交于点F ,若2AE ED =,则FAFB的值是A .13 B .25 C .12 D . 238.如图,⊙O 的直径AB=2,弦AC=1,点D 在⊙O 上,则∠D 的度数为A .30°B .45°C .60°D . 75°9.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为 A .6, B. 3 C .6,3 D.,10.如图所示,扇形AOB 的圆心角为120°,半径为2,则图中 阴影部分的面积为A.43π-B.43π-C .43π-D .43π二、填空题(共6道小题,每小题3分,共18分)11.分解因式:269mn mn m ++= . 12.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是 .13.如图,身高是1.6m 的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m 和9m ,则旗杆的高度为________m . 14.若反比例函数1m y x-=的图象在同一象限内,y 随x 的增大而减小,则m 的取值范围是 .15.将抛物线y =2x 2向下平移3个单位, 再向左平移1个单位,所得抛物线的解析式为 . 16.如图,在平面直角坐标系xOy 中,ABC ∆外接圆的圆心坐标是 ,半径是 .三、解答题(共13道小题,第17—26小题,每小题5分,第27题7分,第28题7分,第29题8分,共72分)17.计算: 0)245(cos 60sin 30tan 60cos -︒-︒⋅︒+︒ 18.已知023a b=≠,求代数式2252(2)4a b a b a b -⋅--的值. 19.求二次函数342+-=x x y 的顶点坐标及对称轴,并在所给坐标系中画出该二次函数的图象.20.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点(2,5)A ,在反比例函数ky x=的图象上,过点A 的直线y x b =+交x 轴于点B . (1)求k 和b 的值; (2)求AOB ∆的面积.21.张大叔想用篱笆围成一个周长为80米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?22.已知: 如图,AB 是⊙O的直径,弦AC =B =60°,OD ⊥AC ,垂足为D . (1)求OD 的长; (2)求劣弧AC 的长.23.已知:如图,在四边形ABCD 中,8AB AD ==,60A ∠=︒°,150D ∠=︒,四边形的周长为32,求BC 和DC 的长.24.在一次数学实践活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31°的方向上,沿河岸向北前行40米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:3tan315︒≈)yxO 11j'DBA25.已知抛物线1)2()1(2--+-=x m x m y 与x 轴相交于A 、B 两点,且2AB =,求m 的值.26.在ABC ∆中,6AB =cm ,12AC =cm ,动点D 以1cm/s 的速度从点A 出发到点B 止,动点E 以2cm/s 的速度从点C 出发到点A 止,且两点同时运动,当以点A 、D 、E 为顶点的三角形与ABC ∆相似时,求运动的时间t .27.如图,AB 是O ⊙的直径,点C 在O ⊙上,CAB ∠的平分线交O ⊙于点D ,过点D 作AC 的垂线交AC 的延长线于点E ,连接BC 交AD 于点F .(1)猜想ED 与O ⊙的位置关系,并证明你的猜想; (2)若65AB AD ==,,求AF 的长.28.如图,在平行四边形ABCD 中,过点A 作AE BC ⊥,垂足为E ,连接DE ,F 为线段DE 上一点,且AFE B ∠=∠(1)求证:ADF ∆∽DEC ∆;(2)若8AB =,AD = AFAE 的长.29.已知:如图,直线33y x =+与x 轴交于C 点,与y 轴交于A 点,B 点在x 轴上,OAB △是等腰直角三角形.(1)求过A B C 、、三点的抛物线的解析式;(2)若直线CD AB ∥交抛物线于D 点,求D 点的坐标;(3)若P 点是抛物线上的动点,且在第一象限,那么PAB △是否有最大面积?若有,求出此时P点的坐标和PAB △的最大面积;若没有,请说明理由.BA参考答案一、选择题1、D2、B3、C4、D5、A6、B7、D8、C9、B 10、A 解析:二、填空题11、2(3)m n + 12、8 13、12 14、m >115、y =2(x +1)2-3 16、(5,2),三、解答题 17、原式=112+=0 18、原式=1061(26)4362-⨯-=- 19、顶点坐标(2,3),对称轴x =2,图象略。

中考试题北京市顺义区二模试卷.docx

中考试题北京市顺义区二模试卷.docx

2016年北京市顺义区中考二模数学试卷一、单选题(共10小题)1.实数4的算术平方根是()A.B.C.D.考点:平方根、算术平方根、立方根答案:B试题解析:4的算术平方根是22.2015年“十一”黄金周的第二天,北京故宫景点,接待游客超过了最大接待容量,当天接待92 800人次.将92 800用科学记数法表示应为()A.B.C.D.考点:科学记数法和近似数、有效数字答案:C试题解析:92 800=3.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A.点A与点B B.点B与点CC.点B与点D D.点A与点D考点:实数的相关概念答案:D试题解析:A表示的点为-2,D表示的点为2,-2和2是相反数,所以选D4.函数中,自变量的取值范围是()A.B.C.D.考点:二次根式及其性质答案:C试题解析:x-3≥0,x≥35.在下列调查中,适宜采用全面调查的是()A.了解七(1)班学生校服的尺码情况B.了解我市中学生视力情况C.检测一批电灯泡的使用寿命D.调查顺义电视台《师说》栏目的收视率考点:数据的收集与整理答案:A试题解析:适合全面调查的必须有2点,数量不是很多不能是损耗品,所以选A6.下图是顺义区地图的一部分,小明家在怡馨家园小区,小宇家在小明家的北偏东约15°方向上,则小宇家可能住在()A.裕龙花园三区B.双兴南区C.石园北区D.万科四季花城考点:平面直角坐标系及点的坐标答案:B试题解析:以小明家为坐标原点,建立平面直角坐标系,然后就可以得到答案,选B7.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是轴对称图形的概率为()A.B.C.D.1考点:概率及计算答案:A试题解析:概率及计算8.如图,四边形内接于⊙,,则的度数是()A .B.C.D.考点:圆周角定理及推论答案:D试题解析:∠A+∠C=180°,∠A=110°∴∠C=70°∵∠BOD=2∠C∴∠BOD=140° .9.如图是一个正方体的展开图,把展开图折叠成正方体后,“你”字一面相对的面上的字是()A.梦B.我C.中D.国考点:立体图形的展开与折叠答案:A试题解析:做一个正方体,然后展开,写上字,就可以得到答案,选A10.已知点M为某封闭图形边界上一定点,动点P从点M出发,沿其边界逆时针运动一周,设点P走过的路程为x,线段MP的长为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是()A.B.C.D.考点:函数的表示方法及其图像答案:D试题解析:MP是先增大,到达最大值后减小,只有圆的运动轨迹符合要求,故选D二、填空题(共6小题)11.若,则.考点:实数的相关概念答案:3试题解析:根据题意得:m-2=0,n-1=0,解得:m=2,n=1,所以m+n=312.甲、乙两地某月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为S甲2 S乙2(填>或<).考点:极差、方差、标准差答案:>试题解析:方差表示的数据变化情况,方差大,说明数据变化大,根据图形,发现甲地的气温变化大,所以甲地气温的数据的方差大.13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是.考点:二元一次方程(组)及其解法答案:21试题解析:设内圈得分为x分,外圈得分为y分,根据题意得:解得:x=5,y=3,3x+2y=15+6=2114.如图,在中,.按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交、于点、;②分别以点、为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为__________.考点:尺规作图答案:70°试题解析:根据尺规作图,AD是∠CAB的角平分线,∵∠CAB=40°,∴∠CAD=20°,∴∠CDA=70°15.某函数符合如下条件:①图象经过点(1,3);②随的增大而减小.请写出一个符合上述条件的函数表达式.考点:一次函数解析式的确定答案:y=-x+4试题解析:设解析式为y=kx+b,把x=1,y=3代入得:3=k+b,b=3-k,因为y随x的增大而减小,所以k<0,设k=-1,b=4,y=-x+416.如图,为了使电线杆稳固的垂直于地面,两侧常用拉紧的钢丝绳索固定,由于钢丝绳的交点E在电线杆的上三分之一处,所以知道BE的高度就可以知道电线杆AB的高度了.要想得到BE的高度,需要测量出一些数据,然后通过计算得出.请你设计出要测量的对象:;请你写出计算AB高度的思路:.考点:解直角三角形答案:和线段;思路:在Rt中,由,求出试题解析:和线段;思路:在Rt中,由,求出三、计算题(共1小题)17.计算:.考点:实数运算答案:见解析试题解析:四、解答题(共11小题)18.解不等式组:,并写出它的所有整数解.考点:一次不等式(组)的解法及其解集的表示答案:见解析试题解析:解不等式,得.解不等式,得,∴原不等式组的解集为,∴原不等式组的所有整数解为、、019.已知,求代数式的值.考点:代数式及其求值答案:见解析试题解析:原式====,∵,∴,∴原式=20.某地为了打造风景带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m,求甲、乙两个工程队分别整治了多长的河道.考点:一次方程(组)的应用答案:见解析试题解析:设甲工程队整治了米的河道,则乙工程队整治了米的河道根据题意得:,解得:,∴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.下图是顺义区地图的一部分,小明家在 怡馨家园小区,小宇家在小明家的北偏东约15°方向上,则小宇家可能住在 A .裕龙花园三区 B .双兴南区 C .石园北区D .万科四季花城顺义区2016届初三第二次统一练习数学试卷考 生 须 知1. 本试卷共8页,共三道大题,29道小题,满分120分.考试时间120分钟。

2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3 .试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5 .考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共 30分,每小题3分) 下面各题均有四个选项,其中只有一个 是符合题意的.[来™]1 •实数4的算术平方根是A . -2B . 2c . -2D . 42.2015年“ ^一”黄金周的第二天,北京故宫景点,接待游客超过了最大接待容量, 当天接待92 800人次.将92 800用科学记数法表示应为2345A . 928 10B . 92.8 10C . 9.28 10D . 9.28 10A ,B ,C ,D 四个点,其中表示互为相反数的点是4. 函数y=、、x-3中,自变量x 的取值范围是5. 在下列调查中,适宜采用全面调查的是 A. 了解七(1)班学生校服的尺码情况B. 了解我市中学生视力情况C.检测一批电灯泡的使用寿命D.调查顺义电视台《师说》栏目的收视率3.如图,数轴上有 A .点A 与点B C .点B 与点DB .点B 与点CD .点A 与点DABC-4 ------ -------------- u-2 -1 0 1B . x > 3C . x > 3D . x ::: 3I 的呼曰4■'号-APBM尊I 可・呼心 KStE >«■7•四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任 意抽出一张卡片,则抽出的卡片上的图形是轴对称图形的概率为直角三角形 平行四边形矩形 圆1 1 3 A. B. C. D.1244&如图,四边形 ABCD 内接于O O , ■ A =110,则• BOD 的度数是A. 70B. 110C. 120D. 1409•如图是一个正方体的展开图,把展开图折叠成正方体后, 一面相对的面上的字是 A .梦B.我C.中 D .国10.已知点M 为某封闭图形边界上一定点,动点 P 从点M 出发,沿其边界逆时针运动一周, 设点P走过的路程为x ,线段MP 的长为y ,表示y 与x 的函数关系的图象大致如图所示,则该封闭图形可 能是你我的中国梦A DOCAB C D件的函数表达式16•如图,为了使电线杆稳固的垂直于地面,两侧常用拉紧的钢丝绳索固 定,由于钢丝绳的交点 E 在电线杆的上三分之一处,所以知道 BE 的高度就可以知道电线杆 AB 的高度了 .要想得到 BE 的高度,需要测量出一些 数据,然后通过计算得出•请你设计出要测量的对象:; 请你写出计算AB 高度的思路:13.小林、小芳和小亮三人玩飞镖游戏,各投 情况如图,则小亮的得分是 •5支飞镖,规定在同一圆环内得分相同,中靶和得分14•如图,在 △ ABC 中,N C =90°忆CAB =40° .按以下 步骤作图:①以点 A 为圆心,小于 AC 的长为半径画弧,分别1 交AB 、AC 于点E 、F ;②分别以点E 、F 为圆心,大于丄EF2的长为半径画弧,两弧相交于点 G :③作射线AG 交BC 边于点D •则N ADC 的度数为 _____________ 15 •某函数符合如下条件:①图象经过点( 1, 3);②y 随x 的增大而减小.请写出一个符合上述条、填空题(本题共 18分,每小题3 分)10天日平均气温方差大小关系为小林19分 小方23分 小亮FD三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8 分)解答应写出文字说明,演算步骤或证明过程17•计算:f1p1- 1+ 1-72 + 78-2cos45= •13丿15x - 3 ::: 2x,7x 33x.218 •解不等式组: 并写出它的所有整数解219•已知x • x -3 =0,求代数式2x -2x 120•已知:如图,在. ABC , AB=AC , AD是BC边上的中线,E是AC的中点,BF _ CA延长线于点F .求证:/CBF = ADE .21 •某地为了打造风景带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m求甲、乙两个工程队分别整治了多长的河道.AC — BD,垂足为M ,过点A作AE — AC , 22. 已知:如图,在四边形ABCD中,AB // DC , 交CD的延长线于点E .(1)求证:四边形ABDE是平行四边形;4(2)若AC =8 , sin ABD ,求BD 的长.423. 在平面直角坐标系xOy中,一次函数y - -x • k的图象与反比例函数y 的图象交于点A (x4, n)和点B .(1 )求k的值和点B的坐标;(2)若P是x轴上一点,且AP = AB,直接写出点P的坐标.24.已知:如图,在ABC中,以AB为直径的O O分别交AC、BC于点D、E,且AD二DC(1)求证:AB =BC ;(2)过点B作O O的切线,交AC的延长线于点F,且CF二DC,求si n N CAE的值.25. 为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩X取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:频数(人数)请根据所给信息,解答下列问题:(1)a= ___________ ,b = ___________ ;(2)请补全频数分布直方图;(3 )这次比赛成绩的中位数会落在_____________ 分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?26. 阅读理解:如图1,在四边形ABCD的边AB上任取一点E (点E不与点A、点B重合),分别连接ED, EC , 可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把点E叫做四边形ABCD在边AB上的相似点;如果这三个三角形都相似,我们就把点E叫做四边形ABCD在边AB 上的强相似点•解决问题:(1)如图1,在四边形ABCD中,.A = /B=/DEC=50,试判断点E是否是四边形ABCD在边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5, BC =2,且A,B,C,D四边均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD在边AB上的一个强相似点E.成绩X/分频数频率50W X v 6020.04 60< X v 7060.12 70W x v 809b 80W x v 90a0.36 90 w x w100150.30图1 72.已知关于x的一元二次方程x -(2m • 1)x • 2m = 0.(1)求证:不论m为任何实数时,该方程总有两个实数根;2(2)若抛物线y =x -(2m 1)x 2m与x轴交于A、B两点(点A与点B在y轴异侧),且AB = 4,求此抛物线的表达式;2(3)在(2)的条件下,若抛物线y = x -(2m - 1)x 2m向上平移b个单位长度后,所得到的图象与直线y = x没有交点,请直接写出b的取值范围28.已知:如图,.ACD =90 , MN 是过点A 的直线,AC 二DC , DB _ MN 于点B .(1)在图1中,过点C 作CE — CB ,与直线MN 于点E ,① 依题意补全图形;② 求证::BCE 是等腰直角三角形;③ 图1中,线段BD 、AB 、CB 满足的数量关系是;(2) 当MN 绕A 旋转到如图(2)和图(3)两个位置时,其它条件不变 . 在图2中,线段BD 、AB 、CB 满足的数量关系是; 在图3中,线段BD 、AB 、CB 满足的数量关系是;(3) MN 在绕点A 旋转过程中,当一 BCD = 30 , BD = 2时,贝U CB 二.图229.在平面直角坐标系xOy中,对于点P和O C给出如下定义:若O O上存在两个点A , B,使得.APB =60,则称P为O C的关联点.1 i已知点M(2,2),N(-2,0) , E(0, -4) , F(2、,3,0)(1 )当0 O的半径为1时,①在点M , N , E , F中,O O的关联点是;②过点F作直线I交y轴正半轴于点G,使.GFO =30,若直线I上的点P(m, n)是O O的关联点,求m的取值范围;(2)若线段EF上的所有点都是半径为r的O O的关联点,求半径r的取值范围来源:Z*xx*]顺义区2016届初三第二次统一练习 数学答案及评分参考、填空题(本题共 18分,每小题3 分) 11. 3; 12.. ; 13. 21; 14. 70 ;16. • BCE 和线段 BC ;BE思路:①在 RtA BCE 中,由 tanNBCE =—— 求出 BE = BC tanZBCE BC , ,1 2 3 3②由 AE AB ,可求 BE AB ,求得 AB BE BC tan. BCE .3 3 2 2三、解答题(本题共 72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8 分)17•解:/X.-1由"砂J"。

沖也 .........2=2 - 2 2 …… .. ......................................18.解:解不等式 5x -3 :::2x ,得x < 1.…… . ........ …… . .... .…1分7x +3解不等式3x ,得x-3 . ................... ...... ..... .. ........ ... …2分2原不等式组的解集为-3 ::: X ::: 1............ .... ................ .…4分•••原不等式组的所有整数解为 -2、-1、0 .1X 1 x —1 x 215.-X 4 (不唯一);.... ....5 分 19. 解: 原式=(x 1)(x-1)(x-1)21 + x+1.…1分.(x-1)(x 1) ..........................(x-1)(x 2) (x_1)(x 2)........3 分2x x 1=~2 ..................................................................x 2 x-2J 来源 :]二 x 2 x =320. 证明:•/ AB 二AC , AD 是BC 边上的中线,••• . ADC =90 ... ................................................................................... .….1 分又E 是AC 的中点,•- AE = DE , ................................ ...... ...................................................................... .….2 分 • . ADE =/EAD=90 _ . C . ................................................................... ..…..3 分•/ BF _ CA 延长线于点F ,• . CBF=90 - . C . ................................................................................................................. .4 分_ CBF - ADE . .................................................................................................. ..….5 分21•解:设甲工程队整治了 x 米的河道,则乙工程队整治了 (360 - x)米的河道.…… ...................... 1分根据题意得: △•型 x=20 .............................................................. .…...…3分24 16解得:x =120 ................................................. .….….…4分••• 360-X =240答:甲工程队整治了 120米的河道,乙工程队整治了 240米的河道 … ...... ..5分22.(1) 证明:•/ AC _ BD , AE _ AC ,• AE // BD , ............................................................................................. ............. ............ .1 分 •/ AB // DC , • AB // DE .•四边形ABDE 为平行四边形. .................................... .. ....... ..….2分 (2) 解:•••四边形ABDE 为平行四边形,x 2 x 1 3 1x^TRT 4 ............................................ ....5 分••• BD =AE , E =/ABD .•「si n . ABD =4 ,5•- sin E E在 RT △ EAC 中,AC =8,4 23.解:(1 )把A (— 4, n )代入y 中,得n=1 , .......................... .…….1分x把A (— 4, 1)代入y = -X k 中,得k = -3 .................................. .….…….2分.…...…3分(2)点P 的是坐标(3,0)或(-11,0) .............................................. .………5分24. (1)证明:•/ AB 为O O 的直径,• • ADB =90 ................................................................................. ..……1 分 又••• AD = DC ,• AB 二 BC . .......................................................................................................................... 2 分 (2)解:•/ BF 切O O 于点B ,/ ABF =90【 .......................................................... .... 3-分 ....• BAF F =90 .又••• BAF ABD =90 ,• ABD = F , • △ ABD BFD , • AD _ BD "BD DF ,• BD 2 二 AD DF ....….3分• CE =10, AE =6 ,[来源:]••• BD =6 ..................................................................................• • • • • • ~~・・ ・・・ 丿」解方程组y 一x_3,4y「7y =1.x = 1, y一4.又••• CF = DC ,••• CF 二DC = AD ,设CF 二DC 二AD=k,贝V BD^ AD DF 二k 2k =2k2 ,• BD=、,2k .snCAE拐25.解:(1) 18, 0.18; ............................ ... .................... .……2 分(2) 频数(人数)20181612840 50 60 70 80 90 100 成绩/分 .......................................... 3分(3) 80-90; ............................................................. 4 分(4) 350 0.30 =105 (人) .............................. ... .......... ..……5 分答:约有105人.26.解:( 1)结论:点E是四边形ABCD在边AB上的相似点.......... •…1分证明:••• A=/B=/DEC =50 ,•1+ 2=130 , 1+ 3=130 ,•2= 3, ..................................................................... ..……2分•△ AED BCE ,•••点E是四边形ABCD在边AB上的相似点........ .. …3分(2)A E BC A E在RT^ BCD 中, BC=、、3k ,。

相关文档
最新文档