北师大数学八下期末综合复习(3)--解答题及答案

合集下载

北师大版2020八年级数学下册期末复习综合训练题3(基础 含答案)

北师大版2020八年级数学下册期末复习综合训练题3(基础  含答案)

北师大版2020八年级数学下册期末复习综合训练题3(基础 含答案)1.上复习课时,李老师叫小聪举出一些分式的例子,他举出了:1x ,12,212x +,3xy π,3x y +,a +1m,其中正确的个数为( ) A .2 B .3 C .4 D .52.已知x y >,下列变形正确的是( )A .11x y -<-B .2121x y +<+C .x y -<-D .22x y < 3.如图,已知直线l 1:y =-2x +4与直线l 2:y =kx +b(k≠0)在第一象限交于点M(1,2),若直线l 2与x 轴的交点为A(-2,0),则-2x +4> kx +b>0的解集 ( )A .-2<xB .-2<x <1C .x <2D .-2<x <24.如图,DE 是△ABC 的中位线,若BC 的长为3cm ,则DE 的长是( )A .2cmB .1.5cmC .1.2cmD .1cm5.如图,点A 的坐标是()2,2,若点P 在x 轴上,且APO ∆是等腰三角形,则点P 的坐标不可能是( )A .()1,0B .()2,0C .()22,0-D .()4,06.下列角度中,是多边形内角和的只有( )A .270°B .560°C .630°D .1 800°7.观察图中的函数图象,则关于的不等式的解集为( )A .B .C .D .8.下列多项式中不能用平方差公式分解的是( )A .-a 2+b 2B .-x 2-y 2C .49x 2y 2-z 2D .16m 4-25n 2p 2 9.英国和新加坡研究人员制造出观测极限为0.00000005m 的光学显微镜,这是迄今为止观测能力最强的光学显微镜.将数据0.00000005用科学记数法表示为( )A .0.5×10-7B .5×10-8C .5×10-9D .50×10-6 10.下列各式: 116,,1,32b a x a b ++- 其中,分式有( ) A .1个 B .2个 C .3个 D .4个11.一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多才华横溢的八中同学参赛.该比赛裁判小组由若干人组成,每名裁判员给选手的最高分不超过10分.今年大赛一名选手演唱后的得分情况是:全体裁判员所给分数的平均分是9.84分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分.那么,所有裁判员所给分数中的最低分最少可以是________分.12.如图,Rt ABC ∆中,ACB=90∠︒,AC=CB=42,BAD=ADE=60∠∠︒,AD=5,CE 平分ACB ∠,DE 与CE 相交于点E ,则DE 的长等于_____.13.如图,有边长为1的等边三角形ABC 和顶角为120°的等腰DBC ∆,以D 为顶点作60MDN ∠=︒角,两边分别交AB 、AC 于M 、N ,连结MN ,则AMN ∆的周长为________.14.如图,在矩形中,,,点为边上一点,且,点是的中点,点为的中点,则的长为______.15.如图,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,AB =2cm ,E 、F 分别是AB 、AC 的中点,动点P 从点E 出发,沿EF 方向匀速运动,速度为1cm /s ,同时动点Q 从点B 出发,沿BF 方向匀速运动,速度为2cm /s ,连接PQ ,设运动时间为ts (0<t <1),则当t =___时,△PQF 为等腰三角形.16.如图,在▱ABCD 中,AD =2AB ,点F 是BC 的中点,作AE ⊥CD 于点E ,点E 在线段CD 上,连接EF 、AF ,下列结论:①2∠BAF =∠C ;②EF =AF ;③S △ABF =S △AEF ;④∠BFE =3∠CEF .其中一定正确的是_____.17.直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB 所经过的平面面积为_______cm 2.18.分解因式:81x -=______.19.如果方程2a x -+3=12x x--有增根,那么a =________. 20.如图,在△ABC 中,∠C=70°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A'处,且A'C=A'E ,则∠A'ED=____°.21.某地组织20辆汽车装运A 、B 、C 三种苹果42吨到外地销售,按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2辆车.(1)设用x 辆车装运A 种苹果,用y 辆车装运B 种苹果,根据下表提供的信息,求y 与x 之间的函数关系式,并写出x 的取值范围; 苹果品种 A B C每辆汽车(吨) 2.2 2.1 2每吨苹果获利(百元) 6 8 5(2)设此次外销活动的利润为W 百元,求W 与x 之间的函数关系式,当x 为何值时,W (百元)取得最大利润,并安排此时相应的车辆调配方案.22.某市政部门为了保护生态环境,计划购买A ,B 两种型号的环保设备.已知购买一套A 型设备和三套B 型设备共需230万元,购买三套A 型设备和两套B 型设备共需340万元.(1)求A 型设备和B 型设备的单价各是多少万元;(2)根据需要市政部门采购A 型和B 型设备共50套,预算资金不超过3000万元,问最多可购买A 型设备多少套?23.如图,在等边三角形ABC 中,4AB =,点E 是AC 边上的一点,过点E 作//DE AB 交BC 于点D ,过点E 作EF DE ⊥,交BC 的延长线于点F .(1)求证:CEF ∆是等腰三角形;(2)点E 满足__________时,点D 是线段BF 的三等分点;并计算此时CEF ∆的面积.24.如图,四边形ABCD 是矩形(1)尺规作图:在图8中,求作AB 的中点E (保留作图痕迹,不写作法)(2)在(1)的条件下,连接CE ,DE ,若2,3AB AD ==, 求证:CE 平分∠BED25.如图,的三个顶点都在正方形网格的格点上(网格中每个小正方形的边长都为1个单位长度),将平移,使点到的位置.(1)画出平移后的; (2)连接、,则线段与的关系是______; (3)求的面积.26.阅读理解: 若一个整数能表示成a 2+b 2(a 、b 是整数)的形式,则称这个数为“平和数”,例如5是“平和数”,因为5=22+1,再如,M =x 2+2xy +2y 2=(x +y )2+y 2(x , y 是整数),我们称M 也是“平和数”.(1)请你写一个小于5的“平和数”,并判断34是否为“平和数”.(2)已知S =x 2+9y 2+6x ﹣6y +k (x ,y 是整数,k 是常数,要使S 为“平和数”,试求出符合条件的一个k 值,并说明理由.(3)如果数m ,n 都是“平和数”,试说明22()()4m n m n +--也是“平和数”. 27.分解因式:(1)22242x xy y -+. (2)()()229a b a b --+. 28.解不等式组3432(1)1x x x ①②>-⎧⎨+-≥⎩,并将解集在数轴上表示出来. 29.214416x x =--. 30.已知:∠AOB 和两点C 、D ,求作一点P ,使PC=PD ,且点P 到∠AOB 的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)参考答案1.B【解析】【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式进行分析即可.【详解】1 x ,3x y, a+1m是分式,只有3个,故选B.【点睛】此题主要考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.C【解析】【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A、两边都减3,不等号的方向不变,故A错误;B、两边都乘以2,不等号的方向不变,两边再加1,不等号的方向不变,故B错误;C、两边都乘以-1,不等号的方向改变,故C正确;D、两边都除以2,不等号的方向不变,故D错误;故选C.【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.3.B【解析】【分析】观察函数图象得到当-2<x<1时,-2x+4> kx+b>0.【详解】根据图象可得不等式-2x+4> kx+b>0的解集为:-2<x<1;故选:B【点睛】此题主要考查了一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.4.B【解析】试题分析:三角形中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半;本题利用定理计算即可由BC的长为3cm,得DE=1.5.故选B.考点:三角形中位线定理5.A【解析】【分析】∆是等腰三角形时P点的位本题可先根据勾股定理求出OA的长,然后结合选项分析APO置,然后用排除法求解.【详解】解:点A的坐标是(2,2),根据勾股定理:则OA=-,当OA=OP=,且点P在点O左侧时,P点坐标为:()4,0,当OA=AP时,由对称性可知P点坐标为:()2,0,当OP=AP时,则P点坐标为:()1,0∴点P的坐标不可能是()故选:A.【点睛】此题主要考查了坐标与图形的性质,勾股定理,等腰三角形的判定,关键是根据等腰三角形的判定和性质,分情况讨论.6.D【解析】【分析】n(n≥3)边形的内角和是(n-2)180°,因而多边形的内角和一定是180°的整数倍,由此即可求出答案.【详解】∵多边形的内角和是(n-2)180°(n≥3),∴多边形的内角和一定是180°的整数倍,四个选项中,只有1800°是180°的整数倍,故选D.【点睛】本题主要考查了多边形的内角和定理,多边形的内角和是(n-2)180°(n≥3),熟记定理并灵活运用是解题关键.7.D【解析】【分析】根据图象得出两图象的交点坐标是(1,2)和当x<1时,ax<bx+c,推出x<1时,ax<bx+c,即可得到答案.【详解】解:由图象可知,两图象的交点坐标是(1,2),当x>1时,ax>bx+c,∴关于x的不等式ax-bx>c的解集为x>1.故选:D.【点睛】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.8.B【解析】【分析】根据平方差公式的特点:两平方项,符号相反,对各选项分析判断后利用排除法就可.【详解】A、-a2+b2=(b+a)(b-a);B、-x2-y2=-(x2+y2),提取公因式-1后是两数的平方和,不能用平方差公式分解因式;C、49x2y2-z2 =(7xy+z)(7xy-z);D、16m4-25n2p2=(4m2+5np)(4m2-5np),故选B.【点睛】本题考查用平方差公式分解因式的多项式的特点,熟记平方差公式结构是解题的关键. 9.B【解析】【分析】根据科学记数法的表示形式写出即可.【详解】解:数据0.00000005用科学记数法表示为:0.00000005=5×10-8.故选:B.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.10.B【解析】【分析】根据分式的概念判断即可.【详解】解:在116,,1,32b axa b++-中,是分式的有:1a和62ab+,共2个.故选:B.【点睛】本题考查了分式的定义,属于基础概念题,熟知分式的概念是关键.11.9.36【解析】【分析】设裁判员有x名,根据全体裁判员所给分数的平均分是9.84分可得总分为9.84x,如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分,可求出最高分的代数式从而列出不等式,得到最高分就能求出最低分.【详解】设裁判员有x名,那么总分为9.84x;去掉最高分后的总分为9.82(x-1),由此可知最高分为9.84x-9.82(x-1)=0.02x+9.82;去掉最低分后的总分为9.9(x-1),由此可知最低分为9.84x-9.9(x-1)=9.9-0.06x.因为最高分不超过10,所以0.02x+9.82≤10,即0.02x≤0.18,所以x≤9.当x取7时,最低分有最小值,则最低分为9.9-0.06x=9.9-0.54=9.36.故答案是:9.36.【点睛】考查理解题意的能力,关键是表示出最高分的代数式,列出不等式求出最高分,然后求出最低分,根据平均分求出人数.12.3【解析】【分析】如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等边三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB=22AC CB=8,AG=12AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案为3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.13.2【解析】【分析】要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CND,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°,∵△ABC是边长为1的等边三角形,∴∠ABC=∠BAC=∠BCA=60°,∴∠DBA=∠DCA=90°,延长AB至F,使BF=CN,连接DF,在△BDF和△CND中,∵BF CNFBD DCN DB DC=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CND(SAS),∴∠BDF=∠CDN,DF=DN,∵∠MDN=60°,∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,在△DMN和△DMF中,∵DM MDFDM MDN DF DN=⎧⎪∠=∠⎨⎪=⎩,∴△DMN≌△DMF(SAS)∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=1+1=2,故答案为:2【点睛】此题考查全等三角形的判定与性质,角平分线的性质,等边三角形的性质,解题关键在于掌握判定定理.14.5【解析】【分析】过G作GM⊥AD,延长MG交BC于N,根据矩形性质可得四边形MNCD是矩形,MD=NC,MN=CD,根据EC=2BE可求出CE的长,由三角形中位线的性质可求出NG、NC的长,进而可得MG、AM的长,利用勾股定理求出AG的长即可.【详解】过G作GM⊥AD,延长MG交BC于N,∴四边形MNCD是矩形,∴MD=NC,MN=CD,∵EC=2BE,BC=6,∴EC=4,∵F为CD的中点,CD=AB=4,∴CF=2,∵G为EF中点,MN//CD,∴NC=EC=2,NG=CF=1,∴MG=MN-NG=4-1=3,AM=AD-MD=6-2=4,∴AG===5.故答案为:5【点睛】本题考查矩形的判定与性质、三角形中位线的性质及勾股定理,三角形的中位线,平行于第三边,且等于第三边的一半;三角掌握相关性质是解题关键.15.2. 【解析】【分析】 由勾股定理和含30°角的直角三角形的性质先分别求出AC 和BC ,然后根据题意把PF 和FQ 表示出来,当△PQF 为等腰三角形时分三种情况讨论即可.【详解】解:∵∠ABC =90°,∠ACB =30°,AB =2cm ,∴AC =2AB =4cm ,BC =∵E 、F 分别是AB 、AC 的中点,∴EF =12BC ,BF =12AC =2cm , 由题意得:EP =t ,BQ =2t ,∴PF t ,FQ =2﹣2t ,分三种情况:①当PF =FQ 时,如图1,△PQF 为等腰三角形.t =2﹣2t ,t =2;②如图2,当PQ =FQ 时,△PQF 为等腰三角形,过Q 作QD ⊥EF 于D ,∴PF =2DF ,∵BF =CF ,∴∠FBC =∠C =30°,∵E 、F 分别是AB 、AC 的中点,∴EF ∥BC ,∴∠PFQ =∠FBC =30°,∵FQ =2﹣2t ,∴DQ =12FQ =1﹣t ,∴DF = 1﹣t ),∴PF=2DF=23(1﹣t),∵EF=EP+PF=3,∴t+23(1﹣t)=3,t=6+311;③因为当PF=PQ时,∠PFQ=∠PQF=30°,∴∠FPQ=120°,而在P、Q运动过程中,∠FPQ最大为90°,所以此种情况不成立;综上,当t=2﹣3或6+3时,△PQF为等腰三角形.故答案为:2﹣3或6+3.【点睛】勾股定理和含30°角的直角三角形的性质及等腰三角形的判定和性质都是本题的考点,本题需要注意的是分类讨论不要漏解.16.①②④.【解析】【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【详解】解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠DAF,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,∠MBF=∠C,BF=CF,∠BFM=∠CFE,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF=S△AFM,∴S△ABF<S△AEF,故③错误;④设∠FEA=x,则∠F AE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EF A=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF =90°﹣x ,∴∠BFE =3∠CEF ,故④正确,故答案为:①②④.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF ≌△DME .17.9【解析】【分析】根据平移的性质,AB 经过的平面是底边长等于平移距离,高为AC 的平行四边形,然后根据平行四边形的面积公式列式计算即可得解.【详解】解:如图,边AB 所经过的平面是底边为3cm ,高为AC 的平行四边形,面积=3×3=9cm 2. 故答案为:9cm 2.【点睛】本题考查平移的性质,判断出AB 所经过的平面的形状是解题的关键.18.()()()()421111x x x x +++- 【解析】【分析】根据平方差公式因式分解即可.【详解】解:()()()()()()()()()844422421111111111x x x x x x x x x x -=+-=++-=+++- 故答案为:()()()()421111x x x x +++-. 【点睛】此题考查的是因式分解,掌握用平方差公式因式分解是解决此题的关键.19.1【解析】【分析】分式方程去分母转化为整式方程,根据分式方程有增根得到x=2,将x=2代入整式方程计算即可求出a 的值.【详解】解:分式方程去分母得:a+3(x-2)=x-1,根据分式方程有增根,得到x-2=0,即x=2,将x=2代入得:a=2-1=1,故答案为:1【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.55°【解析】【分析】根据等边对等角即可证出∠A'EC=∠C=70°,再根据翻折的性质即可求出∠A'ED.【详解】解:∵A'C=A'E∴∠A'EC=∠C=70°由翻折的性质可知:∠A'ED=∠AED=12(180°-∠A'EC )=55°. 【点睛】此题考查的是翻折的性质和等腰三角形的性质,根据翻折的性质找到相等的角和掌握等边对等角是解决此题的关键.21.(1)220y x =-+, 2≤x ≤9;(2)当2x =时,W 的值最大,315.2W =最大值(百元),安排车辆的方案如下:装运A 种苹果2车,B 种苹果16车,C 种苹果2车.【解析】【分析】(1)先表示出C 种苹果所用的车辆的数量,根据全部装满得到()2.2 2.122042x y x y ++--=,再由每种苹果不少于2辆车得到22202x x ≥⎧⎨-+≥⎩,解不等式组即可解题,(2)利用(1)中的数量关系表示出利润W 与x 之间的函数关系,再利用函数的增减性找到函数的最值即可解题.【详解】(1)根据题意,运A 种苹果x 车,B 种苹果y 车,∴运C 种苹果()20x y --车,由题意得:()2.2 2.122042x y x y ++--=,整理得220y x =-+由题意可知22202x x ≥⎧⎨-+≥⎩,解得2≤x ≤9 ∴y 与x 之间的函数关系式是220y x =-+,自变量x 的取值范围是2≤x ≤9.(2)由题意可知:W ()6 2.28 2.12205233610.4x x x x =⨯+⨯-++⨯=-∵10.40k =-<∴W 随x 的增大而减小∴当x 取最小值时,W 的值最大即当2x =时,W 的值最大,max 33610.42315.2W =-⨯=(百元)∴安排车辆的方案如下:装运A 种苹果2车,B 种苹果16车,C 种苹果2车.【点睛】本题考查了一次不等式与一次函数的实际应用,中等难度,综合性强,认真审题,找到题干中的等量关系是解题关键.22.(1)A 型设备的单价是80万元,B 型设备的单价是50万元;(2)最多可购买A 型设备16套.【解析】【分析】(1)设A 型设备的单价是x 万元,B 型设备的单价是y 万元,根据“购买一套A 型设备和三套B 型设备共需230万元,购买三套A 型设备和两套B 型设备共需340万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型设备m 套,则购进B 型设备(50-m )套,根据总价=单价×数量结合预算资金不超过3000万元,即可得出关于m 的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】(1)设A 型设备的单价是x 万元,B 型设备的单价是y 万元,依题意,得:323032340x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩. 答:A 型设备的单价是80万元,B 型设备的单价是50万元.(2)设购进A 型设备m 套,则购进B 型设备(50)m -套,依题意,得:8050(50)3000m m +-„, 解得:503m „. m Q 为整数,m ∴的最大值为16.答:最多可购买A 型设备16套.【点睛】此题考查二元一次方程组的应用,一元一次不等式的应用,解题关键在于根据题意列出方程.23.(1)见解析;(2)E 是AC 的中点,CEF S ∆.【解析】【分析】(1)根据等边三角形的性质以及平行线的性质得到60EDC B ∠=∠=︒,根据三角形的内角和求出30F ∠=︒,根据三角形外角的性质求出603030CEF ∠=︒-︒=︒,得到 CEF F ∠=∠,即可证明.(2)过点E 作EP DF ⊥,交DF 于点P ,当点E 是AC 的中点时,2AE EC CD DB CF =====,求出高,即可求出CEF ∆的面积.解:证明:(1)∵ABC ∆是等边三角形,∴AB BC AC ==,60A B ACB ∠=∠=∠=︒∵//DE AB ,∴60EDC B ∠=∠=︒∵EF DE ⊥∴90DEF ∠=︒∴30F ∠=︒∵ACB ∠是CEF ∆的外角,且60ACB ∠=︒,∴603030CEF ∠=︒-︒=︒,∴CEF F ∠=∠,∴CE CF =,∴CEF ∆是等腰三角形.(2)E 是AC 的中点(或AE CE =).过点E 作EP DF ⊥,交DF 于点P∵//DE AB ,∴60CED A ∠=∠=︒,∴CDE ∆是等边三角形.当点E 是AC 的中点时,2AE EC CD DB CF =====在CEF ∆中,90EPC ∠=︒,60ECP ∠=︒,∴30PEC ∠=︒,∴11,32CP CE PE ===. ∴11·23322CEF S CF EP ∆==⨯=. 【点睛】考查平行线的性质,等边三角形的判定与性质,三角形外角的性质等,难度一般.24.(1)见解析;(2)见解析.【分析】(1)作AB的垂直平分线即可得到AB的中点E,E点即为所求;(2)先利用勾股定理求出DE=2,再利用平行线的性质可得出结果.【详解】如图,四边形ABCD是矩形了(1)正确作出AB的垂直平分线下结论:点E为所求(2)∵E是AB的中点∴AE=11 2AB=∵四边形ABCD是矩形∴∠A=90°AB=CD=2∴222DE AD AE=+=∴DE=DC∴∠DEC=∠DCE∵AB∥CD∴∠CEB=∠DCE∴∠CEB=∠DEC∴CE平分∠BED【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).25.(1)见解析;(2)平行且相等;(3)4.【分析】(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后顺次连接即可;(2)由平移的性质即可解答;(3)利用经过点的长方形的面积减去3个小直角三角形的面积即可求得的面积.【详解】(1)如图所示:(2)由平移的性质可得线段与的关系是平行且相等;(3)的面积为:3×4-×1×2-×2×4-×2×3=4.【点睛】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.26.(1)2(答案不唯一),是;(2)10,理由见解析;(3)证明见解析.【解析】【分析】(1)利用“平和数”的定义可得;(2)利用配方法,将S配成平和数,可求k的值;(3)根据完全平方公式,可证明22()()4m n m n+--也是“平和数”.【详解】(1)∵2=12+12∴2是平和数∵34=52+32∴34是平和数(2)∵S=x 2+9y 2+6x-6y+k=(x+3)2+(3y-1)2+k-10∴k=10时,S 是平和数(3)设m=a 2+b 2,n=c 2+d 2 ∴22()()4m n m n +--=mn=(a 2+b 2)(c 2+d 2) =a 2c 2+b 2d 2+a 2d 2+b 2c 2=a 2c 2+b 2d 2+a 2d 2+b 2c 2+2abcd-2abcd∴mn=(ac+bd )2+(ad-bc )2∴mn 是平和数 ∴22()()4m n m n +--也是“平和数”. 【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是解决本题的关键.27.(1)()22x y -;(2)()()422a b a b -- 【解析】【分析】(1)首先提取公因式2,进而利用完全平方公式分解因式即可.(2)先用平方差公式分解,再化简即可.【详解】解:(1)原式()()222222x xy yx y =-+=-; (2)原式()()223a b a b ⎡⎤=--+⎣⎦()()()()33a b a b a b a b ⎡⎤⎡⎤=-++--+⎣⎦⎣⎦()()4224a b a b =--()()422a b a b =--.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,注意分解要彻底.28.0x≥【解析】【分析】本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【详解】3432(1)1x xx>-⎧⎨+-≥⎩①②由①得:x>-2;由②得:x≥0;所以不等式组的解集为:x≥0.在数轴上表示为:【点睛】本题在分别解完不等式后可以利用数轴或口诀“比大的小,比小的大,中间找”得到最终结果,此题考查利用数形结合解不等式组,是对学生基本运算方法、运算法则、基本性质的运用能力的考查.29.0x=【解析】【分析】先通过方程两边乘最简公分母216x-将分式方程化为整式方程,再解整式方程,最后检验整式方程的解是不是分式方程的解.【详解】214416x x=--解:44x+=x=经检验0x=是分式方程的解.【点睛】本题考查解分式方程. 切记解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.30.见详解.【解析】【分析】由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P点.【详解】解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于12CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.【点睛】本题考查作图-复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解题的关键.。

2019-2020年北师大版初中数学八年级下册期末综合测试卷附参考答案

2019-2020年北师大版初中数学八年级下册期末综合测试卷附参考答案

? ).
A. AC=BD, AD // CD; B. AD∥ BC,∠ A=∠ C; C. AO=BO=OC=DO;D. AO=CO, BO=DO,
AB=BC 三、解答题(每题 8 分,共 16 分)
x
16.有一道题 “先化简 ”,再求值: (
x
2 2
+
4x x2
4

÷1 x2
,其中 “x-=
4
3 ”,小玲做题时
把 “x-= 3 ”错抄成了 “x= 3 ”,但她的计算结果也是正确的,请你解释这是怎么回事?
17.某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:
年龄组
13 岁 14 岁 15 岁 16 岁
参赛人数 5
19
12
14
( 1)求全体参赛选手年龄的众数、中位数; ( 2)小明说,他所在年龄组的参赛人数占全体参赛人数的 龄组的选手?请说明理由.
二、选择题(每题 3 分,共 15 分)
15cm 的可活动菱形衣架, ?若墙上钉
11.在一次射击练习中,甲、乙两人前 5 次射击的成绩分别为(单位:环)
甲: 10 8 10 10 7
乙: 7 10 9 9 10
则这次练习中,甲、乙两人方差的大小关系是(
A. S2 甲>S2 乙
B. S2 甲<S2 乙
22.如图,正方形 ABCD的边 CD 在正方形 ECGF的边 CE上,连接 BE、DG.
( 1)观察猜想 BE 与 DG 之间的大小关系,并证明你的结论;
( 2)图中是否存在通过旋转能够互相重合的两个三角形?若存在, 若不存在,请说明理由.
?请说出旋转过程;
参考答案 :
5

北师大版八年级下期末数学考试试卷及答案(解析版5套试题) (3)

北师大版八年级下期末数学考试试卷及答案(解析版5套试题)  (3)

八年级(下)期末数学试卷(解析版)一、选择题(共6小题,每小题3分,满分18分)1.计算(﹣)(+)的结果是()A.﹣3 B.3 C.7 D.42.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是()A.3 B.4 C.5 D.63.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AD∥BC,AD=BC D.∠BAD=∠BCD,AB∥CD4.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm5.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B.7,7 C.9,9 D.9,76.在平面直角坐标系中,点P(x,﹣x+3)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(本大题共有8小题,每小题4分,共32分)7.计算:=.8.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是(填“平均数”或“中位数”)9.已知a、b、c是三角形的三边长,如果满足(a﹣6)2++|c﹣10|=0,则三角形的形状是.10.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C 的坐标为.11.如图,在矩形ABCD中,AB=6cm,点E、F分别是边BC、AD上一点,将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处.若C′E⊥AD,则EF的长为cm.12.如图,正方形ABCD中,对角线BD长为15cm.P是线段AB上任意一点,则点P到AC,BD的距离之和等于cm.13.直线y=x+2与两坐标轴所围成的三角形面积为.14.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=kx上,则(1)k=,(2)A2015的坐标是.三、解答题(本大题共有4小题,共20分)15.计算:3﹣+﹣.16.已知:在Rt△ABC中,∠C=90°,,∠A=60°,求b、c.17.如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)判断点C(﹣1,4)是否在该函数图象上.18.已知,如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BEDF是平行四边形.四、解答题(本大题共有2小题,共14分)19.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.20.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;2,(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2哪个大;s乙(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.五、解答题(本大题共有2小题,共16分)21.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升.22.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.六、解答题(本大题共有2小题,共20分)23.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,动点F在线段BC的垂直平分线DG上,垂足为D,DG交AB于E,连接CE,AF,动点F从D点出发以1cm/s的速度移动,设运动时间为t(s).(1)当t=6s时,求证:四边形ACEF是平行四边形;(2)①在(1)的条件下,当∠B=°时,四边形ACEF是菱形;②当t=s时,四边形ACDF是矩形.24.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.计算(﹣)(+)的结果是()A.﹣3 B.3 C.7 D.4【分析】利用平方差公式进行计算即可.【解答】解:(﹣)(+),=()2+()2,=2﹣5,=﹣3,故选:A.【点评】此题主要考查了二次根式的运算,关键是掌握平方差公式(a+b)(a﹣b)=a2﹣b2.2.在平面直角坐标系中有一点P(﹣3,4),则点P到原点O的距离是()A.3 B.4 C.5 D.6【分析】根据勾股定理,可得答案.【解答】解:PO==5,故选:C.【点评】本题考查了点的坐标,利用勾股定理是解题关键.3.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AD∥BC,AD=BC D.∠BAD=∠BCD,AB∥CD【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,可以证明四边形ABCD是平行四边形,故本选项错误;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项正确;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形,故本选项错误;D、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定,故本选项错误;故选:B.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.4.如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm【分析】先由平行四边形的性质和周长求出AD+DC=10,再根据线段垂直平分线的性质得出AE=CE,即可得出△CDE的周长=AD+DC.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC,OA=OC,∵▱ABCD的周长为20cm,∴AD+DC=10cm,又∵OE⊥AC,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=10cm;故选:C.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长的计算;熟练掌握平行四边形的性质,运用线段垂直平分线的性质得出AE=CE是解决问题的关键.5.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B.7,7 C.9,9 D.9,7【分析】根据众数与中位数的定义分别进行解答即可.【解答】解:由条形统计图给出的数据可得:9出现了6次,出现的次数最多,则众数是9;把这组数据从小到达排列,最中间的数是7,则中位数是7.故选D.【点评】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.在平面直角坐标系中,点P(x,﹣x+3)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】分x是正数和负数两种情况讨论求解.【解答】解:x>0时,﹣x+3可以是负数也可以是正数,∴点P可以在第一象限也可以在第四象限,x<0时,﹣x+3>0,∴点P在第二象限,不在第三象限.故选C.【点评】本题考查了点的坐标,根据x的情况确定出﹣x+3的正负情况是解题的关键.二、填空题(本大题共有8小题,每小题4分,共32分)7.计算:=.【分析】二次根式的除法运算,先运用法则,再化简.【解答】解:原式=2=.【点评】二次根式的乘除法运算,把有理数因数与有理数因数运算,二次根式与二次根式运算,结果要化简.8.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数(填“平均数”或“中位数”)【分析】由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故答案为:中位数.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9.已知a、b、c是三角形的三边长,如果满足(a﹣6)2++|c﹣10|=0,则三角形的形状是直角三角形.【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.【解答】解:∵(a﹣6)2≥0,≥0,|c﹣10|≥0,又∵(a﹣b)2+=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故答案为:直角三角形.【点评】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.10.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C 的坐标为(4,4).【分析】连接AC、BD交于点E,由菱形的性质得出AC⊥BD,AE=CE=AC,BE=DE=BD,由点B 的坐标和点D的坐标得出OD=2,求出DE=4,AC=4,即可得出点C的坐标.【解答】解:连接AC、BD交于点E,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AE=CE=AC,BE=DE=BD,∵点B的坐标为(8,2),点D的坐标为(0,2),∴OD=2,BD=8,∴AE=OD=2,DE=4,∴AC=4,∴点C的坐标为:(4,4);故答案为:(4,4).【点评】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.11.如图,在矩形ABCD中,AB=6cm,点E、F分别是边BC、AD上一点,将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处.若C′E⊥AD,则EF的长为6cm.【分析】根据矩形的性质和折叠的性质,由C′E⊥AD,可得四边形ABEG和四边形C′D′FG是矩形,根据矩形的性质可得EG和FG的长,再根据勾股定理可得EF的长.【解答】解:如图所示:∵将矩形ABCD沿EF折叠,使点C、D分别落在点C′、D′处,C′E⊥AD,∴四边形ABEG和四边形C′D′FG是矩形,∴EG=FG=AB=6cm,∴在Rt△EGF中,EF==6cm.故答案为:6cm.【点评】考查了翻折变换(折叠问题),矩形的判定和性质,勾股定理,根据关键是得到EG和FG的长.12.如图,正方形ABCD中,对角线BD长为15cm.P是线段AB上任意一点,则点P到AC,BD的距离之和等于cm.【分析】作PE⊥OA于E,PF⊥OB于F,连结OP,如图,先根据正方形的性质得OA=OC=OB=OD=BD=,OA⊥OB,然后根据三角形面积公式得到PEOA+PFOB=OAOB,则变形后可得PE+PF=OA=cm.【解答】解:作PE⊥OA于E,PF⊥OB于F,连结OP,如图,∵四边形ABCD为正方形,∴OA=OC=OB=OD=BD=,OA⊥OB,∵S△OPA+S△OPB=S△OAB,∴PEOA+PFOB=OAOB,∴PE+PF=OA=cm.故答案为.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.13.直线y=x+2与两坐标轴所围成的三角形面积为2.【分析】易得此直线与坐标轴的两个交点坐标,与坐标轴围成的三角形的面积等于×与x轴交点的横坐标的绝对值×与y轴交点的纵坐标.【解答】解:当x=0时,y=2,当y=0时,x=﹣2,∴所求三角形的面积=×2×|﹣2|=2.故答案为:2.【点评】考查的知识点为:某条直线与x轴,y轴围成三角形的面积为:×直线与x轴的交点坐标的横坐标的绝对值×直线与y轴的交点坐标的纵坐标的绝对值.14.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=kx上,则(1)k=,(2)A2015的坐标是(2015,2017).【分析】(1)先根据等边三角形的性质求出∠1的度数,过B1向x轴作垂线B1C,垂足为C,求出B1点的坐标.利用待定系数法求出直线y=kx的解析式即可;(2)根据题意得出直线AA1的解析式为:y=x+2,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:(1)∵△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,∴∠1=30°.过B1向x轴作垂线B1C,垂足为C,∵OB1=2,∴CB1=1,OC=,∴B1(,1),∴1=k,解得k=.故答案为:;(2)∵由(1)知,点B1,B2,B3,…都在直线y=x上,∴A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2015(2015,2017).故答案为:(2015,2017).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共有4小题,共20分)15.计算:3﹣+﹣.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣2+﹣3=﹣.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及合并.16.已知:在Rt△ABC中,∠C=90°,,∠A=60°,求b、c.【分析】根据三角函数关系即可求解a、c的值.在Rt△ABC中,∠C=90°,∠A=60°,所以b=atanB,c=,代入数据即可.【解答】解:在Rt△ABC中,∠C=90°,∠A=60°,∴∠B=30°,∴b=atanB=×=,c===2.即,.【点评】这道题目简单的考查了三角函数知识在解直角三角形中的一般应用,属于基础题,要求熟练掌握特殊角的三角函数值及其计算.17.如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)判断点C(﹣1,4)是否在该函数图象上.【分析】(1)设一次函数解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数解析式;(2)把x=﹣1代入一次函数解析式求出y,即可做出判断.【解答】解:(1)设一次函数解析式为y=kx+b,把A(6,﹣3)与B(﹣2,5)代入得:,解得:,则一次函数解析式为y=﹣x+3;(2)把x=﹣1代入一次函数解析式得:y=1+3=4,则点C在该函数图象上.【点评】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.18.已知,如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BEDF是平行四边形.【分析】连结BD,与AC交于点O,根据四边形ABCD是平行四边形可得AO=CO,BO=DO,再由AE=CF,可得EO=FO,进而得到四边形BEDF为平行四边形.【解答】证明:连结BD,与AC交于点O,如图所示:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,又∵AE=CF,∴AO﹣AE=CO﹣CF,∴EO=FO,∴四边形BEDF为平行四边形.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对角线互相平分;对角线互相平分的四边形是平行四边形.四、解答题(本大题共有2小题,共14分)19.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.【分析】(1)根据勾股定理,结合网格结构,作出两边分别为的等腰三角形即可;(2)根据勾股定理逆定理,结合网格结构,作出边长为的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.【解答】解:(1)如图①,符合条件的C点有5个:;(2)如图②,正方形ABCD即为满足条件的图形:;(3)如图③,边长为的正方形ABCD的面积最大..【点评】本题考查了作图﹣应用与设计作图.熟记勾股定理,等腰三角形的性质以及正方形的性质是解题的关键所在.20.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.【分析】(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.【解答】解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动大于乙的波动,则s甲2>s乙2;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.五、解答题(本大题共有2小题,共16分)21.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)当4≤x≤12时,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升.【分析】(1)用待定系数法求对应的函数关系式;(2)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.【解答】解:(1)设当4≤x≤12时的直线方程为:y=kx+b(k≠0).∵图象过(4,20)、(12,30),∴,解得:,∴y=x+15 (4≤x≤12);(2)根据图象,每分钟进水20÷4=5升,设每分钟出水m升,则5×8﹣8m=30﹣20,解得:m=.故每分钟进水、出水各是5升、升.【点评】此题考查了一次函数的应用,解题时首先正确理解题意,然后根据题意利用待定系数法确定函数的解析式,接着利用函数的性质即可解决问题.22.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.【分析】(1)根据折叠的性质得OA=OC,EF⊥AC,EA=EC,再利用AD∥AC得到∠FAC=∠ECA,则可根据“ASA”判断△AOF≌△COE,得到OF=OE,加上OA=OC,AC⊥EF,于是可根据菱形的判定方法得到四边形AECF为菱形;(2)设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中根据勾股定理得(8﹣x)2+42=x2,然后解方程即可得到菱形的边长;(3)先在Rt△ABC中,利用勾股定理计算出AC=4,则OA=AC=2,然后在Rt△AOE中,利用勾股定理计算出OE=,所以EF=2OE=2.【解答】(1)证明:∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)解:设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;(3)解:在Rt△ABC中,AC===4,∴OA=AC=2,在Rt△AOE中,OE===,∴EF=2OE=2.【点评】本题考查了菱形的判定与性质:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.也考查了折叠的性质.六、解答题(本大题共有2小题,共20分)23.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,动点F在线段BC的垂直平分线DG上,垂足为D,DG交AB于E,连接CE,AF,动点F从D点出发以1cm/s的速度移动,设运动时间为t(s).(1)当t=6s时,求证:四边形ACEF是平行四边形;(2)①在(1)的条件下,当∠B=30°时,四边形ACEF是菱形;②当t=4s时,四边形ACDF是矩形.【分析】(1)根据垂直平分线的性质找出∠BDE=∠BCA=90°,进而得出DE∥AC,再根据三角形中位线的性质可得出DE的长度,根据边与边之间的关系可得出EF=AC,从而可证出四边形ACEF是平行四边形;(2)①根据垂直平分线的性质可得出BE=EC=AB,再根据菱形的性质可得出AC=CE=AB,利用特殊角的正弦值即可得出∠B的度数;②根据矩形的性质可得出DF=AC,再根据运动时间=路程÷速度即可得出结论.【解答】(1)证明:当t=6时,DF=6cm.∵DG是BC的垂直平分线,∠ACB=90°,∴∠BDE=∠BCA=90°,∴DE∥AC,DE为△BAC的中位线,∴DE=AC=2.∵EF=DF﹣DE=4=AC,EF∥AC,∴四边形ACEF是平行四边形.(2)①∵DG是BC的垂直平分线,∴BE=EC=AB,∵四边形ACEF是菱形,∴AC=CE=AB,∴sin∠B==,∴∠B=30°.故答案为:30°.②∵四边形ACDF是矩形,∴DF=AC=4,∵动点F从D点出发以1cm/s的速度移动,∴t=4÷1=4(秒).故答案为:4.【点评】本题考查了平行四边形的判定、菱形的性质、特殊角的三角函数值以及矩形的性质,解题的关键是:(1)找出EF=AC,且EF∥AC;(2)①找出sin∠B==;②根据数量关系算出时间t.本题属于中档题,难度不大,解决该题型题目时,根据平行四边形(菱形或矩形)的性质找出相等的边角关系是关键.24.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.【分析】(1)求出P的坐标,当P在第一、二象限时,根据三角形的面积公式求出面积即可;当P在第三象限时,根据三角形的面积公式求出解析式即可;(2)把s的值代入解析式,求出即可;(3)根据全等求出OC、OD的值,如图①所示,求出C、D的坐标,设直线CD的解析式是y=kx+b,把C(﹣6,0),D(0,﹣8)代入,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可;如图②所示,求出C、D的坐标,求出直线CD的解析式,再求出直线CD和直线y=x+6的交点坐标即可.【解答】解:(1)∵P(x,y)代入y=x+6得:y=x+6,∴P(x,x+6),当P在第一、二象限时,△OPA的面积是s=OA×y=×|﹣6|×(x+6)=x+18(x>﹣8)当P在第三象限时,△OPA的面积是s=OA×(﹣y)=﹣x﹣18(x<﹣8)答:在点P运动过程中,△OPA的面积s与x的函数关系式是s=x+18(x>﹣8)或s=﹣x﹣18(x<﹣8).解:(2)把s=代入得:=x+18或=﹣x﹣18,解得:x=﹣6.5或x=﹣9.5,x=﹣6.5时,y=,x=﹣9.5时,y=﹣1.125,∴P点的坐标是(﹣6.5,)或(﹣9.5,﹣1.125).(3)解:假设存在P点,使△COD≌△FOE,①如图所示:P的坐标是(﹣,);②如图所示:P的坐标是(,)存在P点,使△COD≌△FOE,P的坐标是(﹣,)或(,).【点评】本题综合考查了三角形的面积,解二元一次方程组,全等三角形的性质和判定,用待定系数法求一次函数的解析式等知识点,此题综合性比较强,用的数学思想是分类讨论思想和数形结合思想,难度较大,对学生有较高的要求.八年级期末学业水平测试数学试题(卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。

北师大版八年级下册数学《期末》考试及答案【必考题】

北师大版八年级下册数学《期末》考试及答案【必考题】

北师大版八年级下册数学《期末》考试及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、D6、C7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、13、如果两个角互为对顶角,那么这两个角相等4、a+c5、36、6三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、11a-,1.3、(1)略(2)1或24、(1)略;(2)4.5、CD的长为3cm.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

北师大版八年级数学下册期末综合素质评价附答案

北师大版八年级数学下册期末综合素质评价附答案

北师大版八年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.若分式x 2-4x 的值为0,则x 的值是( )A .2或-2B .2C .-2D .02.【2021·牡丹江】下列美术字中,既是轴对称图形又是中心对称图形的是( )3.下列式子从左到右的变形中,属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .x 2-2x +1=x (x -2)+1C .a 2-b 2=(a +b )(a -b )D .mx +my +nx +ny =m (x +y )+n (x +y )4.【2021·丽水】若-3a >1,两边都除以-3,得( )A .a <-13B .a >-13C .a <-3D .a >-35.【2022·张家界】把不等式组⎩⎨⎧x +1>0,x +3≤4的解集表示在数轴上,下列选项正确的是( )6.【2022·雅安】在平面直角坐标系中,点(a +2,2)关于原点的对称点为(4,-b ),则ab 的值为( ) A .-4 B .4C .12D .-127.【2022·山西】化简1a -3-6a 2-9的结果是( ) A.1a +3 B .a -3 C .a +3 D.1a -3 8.在▱ABCD 中,对角线AC ,BD 交于点O ,下列结论不一定...成立的是( ) A .∠ABO =∠CDO B .∠BAD =∠BCDC .AB =CDD .AC ⊥BD9.【教材P 132复习题T 12变式】为了防止疫情扩散,确保人民健康,某区计划开展全员核酸检测,甲、乙两个检测队分别负责A,B两个生活区的核酸检测.已知A生活区参与核酸检测的共有3 000人,B生活区参与核酸检测的共有2 880人,乙检测队因工作原因比甲检测队晚开始检测10分钟.已知乙检测队的检测速度是甲检测队的1.2倍,结果两个检测队同时完成检测,设甲检测队每分钟检测x人,根据题意,可以得到的方程是()A.2 880x=3 0001.2x+10 B.3 000x=2 8801.2x+16C.3 000x=2 8801.2x D.3 000x=2 8801.2x+1010.【2022·百色】活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如已知△ABC中,∠A=30°,AC=3,∠A所对的边为3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为()A.2 3 B.23-3C.23或 3 D.23或23-3二、填空题(每题3分,共24分)11.【2022·金华】因式分解:x2-9=____________.12.【2022·福建】如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为________.(第12题)(第15题)(第16题)(第17题)13.计算mm2-1-11-m2的结果是__________.14.【教材P156例2改编】一个多边形的内角和是外角和的2倍,这个多边形的边数是________.15.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是边AB的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为________. 16.如图,已知函数y =kx +2与函数y =mx -4的图象交于点A ,根据图象可知不等式kx +2<mx -4的解集是__________.17.如图,将△ABC 绕点C 按顺时针方向旋转20°,B 点落在B′的位置,A 点落在A ′的位置,若AC ⊥A′B ′,则∠BAC =________. 18.【2022·齐齐哈尔】若关于x 的分式方程1x -2+2x +2=x +2m x 2-4的解大于1,则m 的取值范围是__________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.【2022·梧州】解方程:1-23-x =4x -3.20.【2022·常德】解不等式组:⎩⎪⎨⎪⎧5x -1>3x -4,-13x ≤23-x .21.【2022·盘锦】先化简,再求值:x -3x 2-1÷x -3x 2+2x +1-⎝ ⎛⎭⎪⎫1x -1+1,其中x =|-2|+1.22.【2021·达州】如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,4),B(0,2),C(3,2).(1)将△ABC以O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A的对应点A2的坐标为(2,2),求△A1C1C2的面积.23.【2023·云南大学附属中学模拟】如图,在平行四边形ABCD中,F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.24.【2022·聊城】为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3 600米的街道地下管网时,每天的施工效率比原计划提高了20%.按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?25.【动态探究题】点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点,连接EF.(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否仍然成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,请说明理由;如果变化,请直接写出EF,BE,CF之间的数量关系.答案一、1.A 2.C 3.C 4.A 5.D 6.D 7.A 8.D 9.D10.C 【提示】如图,满足已知条件的三角形为△ABC 和△AB ′C ,其中CB ′=CB ,作CH ⊥AB 于H . ∴B ′H =BH . ∵∠A =30°, ∴CH =12AC =32.∴AH =AC 2-CH 2=32 3.在Rt △CBH 中,由勾股定理得BH =BC 2-CH 2=3-94=32,∴AB =AH +BH =332+32=23,AB ′=AH -B ′H =AH -BH =332-32= 3.二、11.(x +3)(x -3) 12.6 13.1m -114.6 15.16 16.x <-3 17.70° 18. m >0且m ≠1【点思路】解分式方程,得x =m +1.经检验,当m +1≠2,m +1≠-2,即m ≠1且m ≠-3时,x =m +1是原分式方程的解.根据题意,得m +1>1,所以m >0且m ≠1. 三、19.解:去分母,得x -3+2=4,解得x =5.检验:当x =5时,x -3≠0. 所以x =5是原分式方程的根. 20.解:⎩⎪⎨⎪⎧5x -1>3x -4,①-13x ≤23-x .②解不等式①,得x >-32; 解不等式②,得x ≤1.所以这个不等式组的解集为-32<x ≤1. 21.解:x -3x 2-1÷x -3x 2+2x +1-⎝ ⎛⎭⎪⎫1x -1+1=x -3(x +1)(x -1)·(x +1)2x -3-⎝⎛⎭⎪⎫1x -1+x -1x -1 =x +1x -1-x x -1=1x -1. ∵x =|-2|+1=2+1, ∴原式=12+1-1=12=22.22.解:(1)如图,△A 1B 1C 1即为所求.(2)如图所示.S △A 1C 1C 2=8×4-12×3×2-12×2×8-12×4×5=11. 23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC . ∴AD ∥BE . ∴∠ADF =∠BEF . ∵F 是AB 的中点, ∴AF =BF .在△ADF 和△BEF 中,⎩⎨⎧∠ADF =∠BEF ,∠AFD =∠BFE ,AF =BF ,∴△ADF ≌△BEF (AAS). ∴AD =BE . 又∵AD ∥BE ,∴四边形AEBD 是平行四边形.(2)解:如图,过点D 作DG ⊥BC 于点G ,过点B 作BH ⊥CD 于点H . ∵BD =BC =5,CD =6, ∴CH =DH =12CD =3. ∴BH =BC 2-CH 2=4. ∵S △BCD =12BC ·DG =12CD ·BH , ∴DG =CD ·BH BC =6×45=245. ∵四边形AEBD 是平行四边形, ∴BE =AD . ∴BE =BC =5.∴S 平行四边形AEBD =BE ·DG =5×245=24.24.解:(1)设原计划每天改造管网x 米,则实际施工时每天改造管网(1+20%)x米.由题意得3 600x - 3 600(1+20%)x =10,解得x =60.经检验,x =60是原方程的解,且符合题意. 此时,60×(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米. (2)设以后每天改造管网还要增加m 米. 由题意得(40-20)(72+m )≥3 600-72×20, 解得m ≥36.答:以后每天改造管网至少还要增加36米.25.(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵DB=DC,∠BDC=120°,∴∠DBC=∠DCB=30°.∴∠DBE=∠DBC+∠ABC=90°,∠DCF=∠DCB+∠ACB=90°.∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°.∴∠AEF=∠AFE.∴AE=AF.∴BE=AB-AE=AC-AF=CF.又∵DB=DC,∠DBE=∠DCF=90°,∴△BDE≌△CDF(SAS).∴DE=DF,∠BDE=∠CDF.又∵∠BDC=120°,∠EDF=60°,∴△DEF是等边三角形,∠BDE=∠CDF=30°.∴DE=DF=EF,BE=12DE=12DF=CF.∴BE+CF=12DE+12DF=EF,即EF=BE+CF.(2)解:仍然成立.理由如下:如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得∠DBE=∠DCF=90°,则∠DBF′=∠DCF=90°.又∵BD=CD,∴△DCF≌△DBF′(SAS).∴DF=DF′,∠BDF′=∠CDF.∵∠BDC=120°,∠EDF=60°,∴∠EDB+∠CDF=60°.∴∠EDB+∠BDF′=∠EDF′=60°.∴∠EDF′=∠EDF.又∵DE=DE,∴△EDF′≌△EDF(SAS).∴EF=EF′=BE+BF′=BE+CF.(3)解:结论发生变化.EF=CF-BE.【点要点】利用旋转解决问题时要注意以下几点:1.旋转中的变(图形的位置)与不变(图形的形状、大小);2.旋转前后的对应关系(顶点、边、角);3.旋转过程中的相等关系.。

北师大版八年级数学下册第三章综合素质评价 附答案 (2)

北师大版八年级数学下册第三章综合素质评价 附答案 (2)

北师大版八年级数学下册第三章综合素质评价一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数学来源于生活,下列生活中的运动属于旋转的是()A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输的东西2.下列四个图形中,既是轴对称图形,又是中心对称图形的是()3.【2022·汕头澄海区期末】将点P(-3,4)先向右平移4个单位,再向下平移3个单位得到的点的坐标是()A.(-7,1) B.(-7,7) C.(1,7) D.(1,1)4.如图,在正方形网格中,△EFG绕某一点旋转某一角度得到△RPQ,则旋转中心可能是()A.点A B.点B C.点C D.点D5.如图,点A(0,8),△AOB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=45x上,则△AOB向右平移的长度为()A.241 B.10 C.8 D.66.如图,在△ABC中,∠BAC=138°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′刚好落在BC边上,且AB′=CB′,则∠C的度数为()A.16°B.15°C.14°D.13°7.如图,将等边三角形OAB放在平面直角坐标系中,A点坐标为(1,0),将△OAB 绕点O逆时针旋转60°,则旋转后点B的对应点B′的坐标为()A.(-12,32) B.(-1,12) C.(-32,32) D.(-32,12)8.如图,在平面直角坐标系中,点A,B的坐标分别为(2,0),(0,1),将线段AB 平移至A′B′,那么a+b的值为()A.2 B.3 C.4 D.59.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,将△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,连接BB′,则△A′BB′的周长为()A. 3 B.1+ 3 C.2+ 3 D.3+ 310.如图,矩形ABCD的顶点A,B分别在x轴,y轴上,OA=OB=2,AD=42,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2 023次旋转结束时,点C的坐标为()A.(6,4) B.(-6,-4) C.(4,-6) D.(-4,6)二、填空题:本大题共5小题,每小题3分,共15分.11.在平面直角坐标系中,点A的坐标为(m+1,2m-4),将点A向上平移两个单位后刚好落在x轴上,则m的值为______________.12.如图,将△ABC沿CB向左平移3 cm得到△DEF,AB,DF相交于点G,如果△ABC的周长是12 cm,那么四边形ACED的周长为______________.13.如图是一块长方形场地ABCD,长AB=a米,宽AD=b米,A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为______________平方米.14.如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,则△2 023的直角顶点的坐标为______________.15.如图,在△ABC中,∠ACB=50°,将△ABC绕点C逆时针旋转得到△DEC(点D、E分别与点A、B对应),如果∠ACD与∠ACE的度数之比为32,当旋转角大于0°且小于180°时,旋转角的度数为______________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.请你将下面的图形通过平移、旋转或轴对称,设计出一幅图案.17.如图,△ABC绕着顶点A逆时针旋转得到△ADE,∠B=40°,∠E=60°,AB∥DE,求∠DAC的度数.18.如图,四边形ABCD各顶点的坐标分别为A(-3,-4)、B(0,-3)、C(-1,-1),D(-3,-2).画出将四边形ABCD先向右平移3个单位长度,再向上平移3个单位长度得到的四边形A′B′C′D′,并写出点C′的坐标.四、解答题(二):本大题共3小题,每小题9分,共27分.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-1,0)、B(-3,3)、C(-4,-1)(每个方格的边长均为1个单位长度).(1)画出△ABC关于原点对称的图形△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕点O逆时针旋转90°后得到的图形△A2B2C2,并写出点B2的坐标;(3)写出△A1B1C1经过怎样的旋转可直接得到△A2B2C2.(请将(1)(2)小问的图都作在所给图中)20.如图,在Rt△ABC中,∠ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位长度,记平移后得到的三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.21.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB 边上时,(1)猜想线段DE与AC的位置关系是____________,并加以证明;(2)设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是____________,并加以证明.五、解答题(三):本大题共2小题,每小题12分,共24分.22.数学兴趣小组活动时,提出了如下问题:如图1,在△ABC中,若AB=5,AC =3,求BC边上的中线AD的取值范围.解决方法:延长AD到E,使DE=AD.再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”的字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.迁移应用:请参考上述解题方法,解答下列问题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,连接EF.(1)求证:BE+CF>EF;(2)若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.23.如图,在△ABC中,∠BAC=90°,AB=AC,边BA绕点B顺时针旋转α得到线段BP,连接P A,PC,过点P作PD⊥AC于点D.(1)如图1,若α=60°,求∠DPC的度数;(2)如图2,若α=30°,求∠DPC的度数;(3)如图3,若α=150°,依题意补全图,并求∠DPC的度数.答案一、1.C2.D3.D4.C5.B6.C7.A8.A9.D点拨:∵∠ACB=90°,∠A=60°,AC=1,∴BC=3AC=3,AB=2AC=2,∵△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,∴CA=CA′,CB=CB′,AB=A′B′,∠ACA′=∠BCB′,∵CA=CA′,∠A=60°,∴△CAA′为等边三角形,∴∠ACA′=60°,AA′=AC=1,∴∠BCB′=60°,A′B=AB-AA′=1,∴△CBB′为等边三角形,∴BB′=CB=3,∴△A′BB′的周长为A′B+A′B′+BB′=1+2+3=3+ 3.10.B点拨:如图,过点C作CE⊥y轴于点E,连接OC,∵OA=OB=2,∴∠ABO=∠BAO=45°,∵∠ABC=90°,∴∠CBE=45°,∵BC=AD=42,∴CE=BE=4,∴OE=OB+BE=6,∴C(-4,6),∵矩形ABCD绕点O顺时针旋转,每次旋转90°,则第1次旋转结束时,点C的坐标为(6,4);则第2次旋转结束时,点C的坐标为(4,-6);则第3次旋转结束时,点C的坐标为(-6,-4);则第4次旋转结束时,点C的坐标为(-4,6);….发现规律:旋转4次为一个循环,∵2 023÷4=505……3,则第2 023次旋转结束时,点C的坐标为(-6,-4).二、11.112.18 cm13.(ab-a-2b+2)14.(8 088,0)点拨:∵点A(-3,0),B(0,4),∴AB=32+42=5.由图可知,△OAB每旋转三次为一个循环,一个循环前进的长度为4+5+3=12.∵2 023÷3=674……1,∴△2 023的直角顶点是第675个循环组的第一个三角形的直角顶点,其与第674个循环组的最后一个三角形的直角顶点坐标相同.∵674×12=8 088,∴△2 023的直角顶点的坐标为(8 088,0).15.30°或150°点拨:当旋转角小于50°时,如图,旋转角为∠BCE.∵∠ACB=50°,△ABC绕点C逆时针旋转得到△DEC,∴∠DCE=50°,∵∠ACD与∠ACE的度数之比为3∶2,∴∠ACE=23+2×50°=20°,∴∠BCE=∠ACB-∠ACE=30°;当旋转角大于50°时,如图,∵∠ACD与∠ACE的度数之比为3∶2,∠DCE=∠ACB=50°,∴∠ACE=2∠DCE=100°,∴∠BCE=∠ACB+∠ACE=150°.三、16.解:如图所示.(答案不唯一)17.解:∵△ABC绕着顶点A逆时针旋转得到△ADE,∴△ABC≌△ADE,∴∠BCA=∠E=60°,∠D=∠B=40°,∴∠BAC=180°-40°-60°=80°,∵AB∥DE,∴∠BAD=∠D=40°,∴∠DAC=∠BAC-∠BAD=80°-40°=40°,∴∠DAC的度数为40°.18.解:如图所示,四边形A′B′C′D′即为所求,点C′的坐标为(2,2).四、19.解:(1)如图,△A1B1C1即为所求,点C1的坐标为(4,1);(2)如图,△A2B2C2即为所求,点B2的坐标为(-3,-3);(3)△A1B1C1绕点O顺时针旋转90°后得到△A2B2C2.(答案不唯一) 20.解:(1)∵将△ABC沿AB边所在直线向右平移3个单位长度得到△DEF,∴AD=3,∵AB=5,∴DB=AB-AD=2;(2)如图,作CG⊥AB于点G,在△ACB中,∠ACB=90°,AC=3,AB=5,由勾股定理得BC=AB2-AC2=4,由三角形的面积公式得CG·AB=AC·BC,∴3×4=5×CG,∴CG=12 5,∵将△ABC沿AB边所在直线向右平移3个单位长度得到△DEF,∴CF=BE=3,∴梯形CAEF的面积为12(CF+AE)×CG=12×(3+5+3)×125=665.21.解:(1)DE∥AC(或填平行)证明:∵△DEC绕点C旋转,点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°-∠B=90°-30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)S1=S2证明:∵∠B=30°,∠ACB=90°,∴CD=AC=12AB,由(1)可得∠DCB=30°,∴∠B=∠DCB,∴BD=CD=12AB,∴BD=AD=AC,根据等边三角形的性质可知,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2.五、22.(1)证明:如图,延长FD到G,使得DG=DF,连接BG,EG(或把△CFD绕点D逆时针旋转180°得到△BGD).易得△CFD≌△BGD,∴CF=BG,又∵DE⊥DF,∴ED垂直平分GF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF;(2)解:BE2+CF2=EF2.证明:∵∠A=90°,∴∠EBC+∠FCB=90°,由(1)知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2.23.解:(1)∵边BA绕点B顺时针旋转α得到线段BP,∴BA=BP,∵α=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=AC,又∵∠BAC=90°,∴∠P AC=30°,∴∠ACP=75°,∵PD⊥AC于点D,∴∠DPC=15°;(2)如图1,过点A作AE⊥BP于点E,∵∠1=30°,∴∠BAE=60°,∵BA=BP,∴∠BAP=∠BP A=12×(180°-∠1)=75°,∴∠2=∠BAP-∠BAE=75°-60°=15°,又∵∠3=∠BAC-∠BAP=90°-75°=15°,PD⊥AC,∴∠APD=75°,∴∠APD=∠APB=75°,∴P A平分∠BPD,又∵BP⊥AE,PD⊥AD,∴AE=AD,又∵在Rt△ABE中,∠1=30°,∴AE=12AB=12AC,∴AD=12AC=DC,∴∠DPC=∠APD=75°;(3)如图2,过点A作AE⊥BP,交PB的延长线于点E. ∴∠AEB=90°,∵∠ABP=150°,∴∠1=30°,∠BAE=60°,又∵BA=BP,∴∠2=∠3=12∠1=15°,∴∠P AE=75°,∵∠BAC=90°,∴∠4=75°,∴∠P AE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP=90°,在△APE和△APD中,∵∠AEP=∠ADP,∠P AE=∠4,P A=P A,∴△APE≌△APD,∴AE=AD,在Rt△ABE中,∠1=30°,∴AE=12AB,又∵AB=AC,∴AE=AD=12AB=12AC,∴AD=CD,又∵∠ADP=∠CDP=90°,∴PD垂直平分AC,∴P A=PC,∴∠DCP=∠4=75°,∴∠DPC=15°.。

2022-2023学年北师大新版八年级下册数学期末复习试卷(含答案)

2022-2023学年北师大新版八年级下册数学期末复习试卷(含答案)

2022-2023学年北师大新版八年级下册数学期末复习试卷一.选择题(共8小题,满分24分,每小题3分)1.下列图形中,是中心对称图形的是( )A.B.C.D.2.下列四个选项中是因式分解且分解正确的是( )A.2(x+y)=2x+2yB.am+bm﹣an﹣bn=(a+b)(m﹣n)C.x3﹣9x=x(x2﹣9)D.x2﹣3x+2=(x﹣1)(x+2)3.若将分式中的x与y的值都扩大为原来的2倍,则这个分式的值将( )A.扩大为原来的2倍B.不变C.扩大为原来的4倍D.无法确定4.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为( )A.4cm B.5cm C.6cm D.8cm5.如图,直线y1=kx+b与y2=mx的交点坐标为(2,﹣3),则使y1<y2<0的x的取值范围是( )A.x>2B.x<2C.0<x<2D.x<06.如图,△ABC中,∠A=90°,点M、N分别为边AB和AC的中点,若AB=2,AC=4,则MN的长度为( )A.2B.C.2D.7.如图,A,B的坐标分别为(4,1),(1,2),若将线段AB平移至A1B1,A1,B1分别在x轴和y轴上,则三角形OA1B1的面积为( )A.1B.1.5C.2D.2.58.若关于x的方程﹣1=的解为正数,则负整数m的值为( )A.﹣3,﹣2,﹣1B.﹣3,﹣2C.﹣3,﹣2,﹣1,0D.﹣3,﹣2,0二.填空题(共5小题,满分15分,每小题3分)9.因式分解:16x2﹣x2y2= .10.一个多边形的每一个外角都等于60°,则这个多边形的内角和为 度.11.在▱ABCD中,AB=14cm,两条对角线的长分别为16cm,18cm,则△AOB的周长为 cm.12.不等式2x﹣3≤4x+5的解集是 .13.如图,在等边三角形ABC中,AC=6,CD⊥AB,点E是线段CD上一动点,连接AE,将线段AE绕点A顺时针旋转60°,得到线段AP,连接DP,则DP长的最小值为 .三.解答题(共13小题,满分81分)14.(5分)解不等式组.15.(5分)计算:.16.(5分)解方程:.17.(5分)如图,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分线.(1)请在AD上确定点E,使得EA=EB;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,求证:DE=DB.18.(5分)如图,在▱ABCD中,AB>AD,∠ABC为锐角,点O是对角线BD的中点.某数学学习小组要在BD上找两点E,F,使四边形AECF为平行四边形,现总结出甲、乙两种方案如下:请回答下列问题:(1)以上方案能得到四边形AECF为平行四边形的是 ;(2)请将(1)中方案的证明过程写下来(如果有多种只写一种即可).19.(5分)探究:利用多项式乘法证明以下立方和(差)公式:(1)a3+b3=(a+b)(a2﹣ab+b2).(2)a3﹣b3=(a﹣b)(a2+ab+b2).应用:利用以上立方和(差)公式对以下两个多项式因式分解:(3)a3+8b3.(4)a6﹣b6.20.(5分)如图,AB=AC,∠A=36°,AB的垂直平分线MN交AC于点D,求∠DBC 的度数.21.(6分)如图,在平面直角坐标系中,已知△BC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),画出△A1B1C1;(2)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,则点A2的坐标为 ,点C2的坐标为 .(3)点D是平面直角坐标系内一点,若以A、B、C、D为顶点的四边形为平行四边形,直接写出满足条件的D点坐标 .22.(7分)2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品,爱民药店准备购进N95和普通医用两种类型的口罩,已知每个普通医用口罩的进价比每个N95口罩的进价少8元,且用300元购进普通医用口罩的数量与用1500元购进N95口罩的数量相同,设每个普通医用口罩进价为x元.(1)每个N95口罩的进价为 元,1500元购进N95口罩的数量为 个(用含x的式子表示);(2)求每个普通医用口罩、每个N95口罩的进价分别为多少元?(3)若爱民药店本次购进这两种口罩共800个,并将两种口罩均按进价加价50%全部售出,利润不少于1600元(不考虑其他因素),则这次至少购进N95口罩多少个?23.(7分)如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE 在AB边上,取AE的中点F,CD的中点G,连接GF.(1)FG与DC的位置关系是 ,FG与CD的数量关系是 ;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成图形,并判断(1)中的结论是否成立?请证明你的结论.24.(8分)2022年北京冬季奥运会和冬季残奥会备受关注,吉祥物“冰墩墩”、“雪容融”随之大卖,购买4个“冰墩墩”和2个“雪容融”共需480元,购买3个“冰墩墩”和4个“雪容融”共需510元.(1)分别求出“冰墩墩”和“雪容融”的销售单价.(2)若每个“冰墩墩”制作成本为60元,每个“雪容融”制作成本为40元,准备制作两种吉祥物共100个,总成本不超过5000元,且销售完该批次吉祥物,利润不低于2480元,请问有哪几种制作方案?25.(8分)我们知道,假分数可以化为带分数.例如:.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:,这样的分式就是假分式;,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式和的形式).例如:;.(1)将分式化为带分式;(2)若分式的值为整数,求x所有可能的整数值.26.(10分)如图,公园有一片绿地ABCD,它的形状是平行四边形,绿地上要修几条笔直的小路,已知AB=13m,BC=12m,AC⊥BC,求OC的长,并算出绿地的面积.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.2.解:A、2(x+y)=2x+2y,是整式的乘法,故此选项错误;B、am+bm﹣an﹣bn=(a+b)(m﹣n),是因式分解且分解正确,故此选项正确;C、x3﹣9x=x(x2﹣9),是因式分解,但是分解不完全,故此选项错误;D、x2﹣3x+2=(x﹣1)(x+2),是因式分解,但是分解错误,后面是﹣2,故此选项错误;故选:B.3.解:==,即分式的值不变,故选:B.4.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm,∴OA=OC=AC=5(cm),OB=OD=BD=3(cm),∵∠ODA=90°,∴AD===4(cm),∴BC=AD=4(cm),故选:A.5.解:如图所示:如图,直线y1=kx+b与y2=mx的交点坐标为(2,﹣3),则使y1<y2<0的x的取值范围是0<x<2.故选:C.6.解:在Rt△ABC中,∠A=90°,AB=2,AC=4,∴BC===2,∵点M、N分别为边AB和AC的中点,∴MN=BC=,故选:D.7.】解:由作图可知,线段AB向左平移1个单位,再向下平移1个单位得到线段A1B1,∵A(4,1),B(1,2),∴A1(3,0),B1(0,1),∴三角形OA1B1的面积为=.故选B.8.解:﹣1=,去分母得,1﹣(x﹣3)=﹣m,整理得,4﹣x=﹣m,解得,x=4+m,∵分式方程的解为正数,∴4+m>0,∴m>﹣4,当分式方程无意义时,4+m≠3,∴m≠﹣1,∴m>﹣4且m≠﹣1,则负整数m的值为:﹣3,﹣2.故选:B.二.填空题(共5小题,满分15分,每小题3分)9.解:原式=x2(16﹣y2)=x2(4+y)(4﹣y).故答案为:x2(4+y)(4﹣y).10.解:∵多边形的每一个外角都等于60°,∴它的边数为:360°÷60°=6,∴它的内角和:180°×(6﹣2)=720°,故答案为:720.11.解:∵平行四边形ABCD的对角线相交于点O,∴OB=OD=8cm,OA=OC=9cm,AB=CD=14cm,∴OB+OA+AB=8+9+14=31(cm),∴△AOB的周长为31cm,故答案为:31.12.解:移项,得:2x﹣4x≤5+3,合并同类项,得:﹣2x≤8,系数化为1,得:x≥﹣4,故答案为:x≥﹣4.13.解:取AC的中点K,连接DK,EK,如图:∵△ABC是等边三角形,AC=6,CD⊥AB,∴∠BAC=60°,AD=3=AK,∵将线段AE绕点A顺时针旋转60°,得到线段AP,∴∠PAE=60°,AE=AP,∴∠PAE=∠BAC=60°,∴∠PAD=∠EAK,在△APD和△AEK中,,∴△APD≌△AEK(SAS),∴DP=EK,∴当EK最小时,DP最小,此时EK⊥CD,而CD⊥AB,∴EK∥AD,∴EK是△ACD的中位线,∴EK=AD=,∴DP长的最小值为,故答案为:.三.解答题(共13小题,满分81分)14.解:解不等式2x+4≤3(x+2),得:x≥﹣2,解不等式3x﹣1<2,得:x<1,则不等式组的解集为﹣2≤x<1.15.解:原式=•+=+==1.16.解:去分母得x=3(2x﹣1)+8,去括号得x=6x﹣3+8,移项合并同类项得﹣5x=5,解得x=﹣1,检验:当x=﹣1时,2x﹣1≠0,所以x=﹣1是原方程的解.17.解:如图,(1)点E即为所求;(2)证明:在Rt△ABC中,∠C=90°,∠B=54°,∴∠CAB=90°﹣∠CBA=36°,∵AD是△ABC的角平分线,∴∠BAD=∠CAB=18°,∵点E在AB的垂直平分线上,∴EA=EB,∴∠EBA=∠CAB=18°,∴∠DEB=∠EBA+∠EAB=36°,∵∠DBE=∠CBA﹣∠EBA=36°,∴∠DEB=∠DBE,∴DE=DB.18.(1)解:以上方案都能得到四边形AECF为平行四边形,故答案为:甲、乙两种方案;(2)证明:甲方案,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴BO=DO,AO=CO,∵E、F分别为DO、BO的中点,OB=OD,∴EO=FO,∴四边形AECF为平行四边形;乙方案,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.19.解:(1)(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3,即:a3+b3=(a+b)(a2﹣ab+b2);(2)(a﹣b)(a2+ab+b2)=a3+a2b﹣ab2﹣a2b+ab2﹣b3=a3﹣b3,即:a3﹣b3=(a﹣b)(a2+ab+b2);(3)a3+8b3=a3+(2b)3=(a+2b)(a2﹣2ab+4b2);(4)a6﹣b6.=(a3)2﹣(b3)2=(a3+b3)(a3﹣b3)(a4+a2b2+b4)=(a+b)(a﹣b)(a2+ab+b2)(a2+ab+b2).20.解:∵DE是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=36°,∵AC=AB,∴∠C=∠ABC=(180°﹣∠A)=72°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°,答:∠DBC的度数是36°.21.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求,点A2的坐标为(5,3),点C2的坐标为(3,1).故答案为:(5,3),(3,1).(3)满足条件的D点坐标(﹣4,3),(﹣2,7),(0,﹣1).故答案为:(﹣4,3),(﹣2,7),(0,﹣1).22.解:(1)∵每个普通医用口罩的进价比每个N95口罩的进价少8元,∴每个N95口罩的进价为(x+8)元,∴1500元购进N95口罩的数量为个,故答案为:x+8,;(2)由题意得:,解得x=2,检验:x=2是原方程的解,∴每个N95口罩的进价为x+8=10(元),答:每个普通医用口罩进价为2元,每个N95口罩的进价为10元;(3)设购进N95口罩m个,则购进普通医用口罩(800﹣m)个,根据题意得:10×50%•m+2×50%•(800﹣m)≥1600,解得m≥200,∴m最小值为200,答:这次至少购进N95口罩200个.23.解:(1)如图1:延长DE交AC于M,连接FM、FC、FD,∴四边形BCMD是矩形,∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠AEM=∠A=45°,∴△AEM是等腰直角三角形.又F是AE的中点,∴MF⊥AE,EF=MF,∠E=∠FMC.在△EFD和△MFC中,,∴△EFD≌△MFC(SAS).∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90°,∴∠MFC+∠DFM=90°.即△CDF是等腰直角三角形,又G是CD的中点,∴FG=CD,FG⊥CD,故答案为:FG⊥CD,FG=CD;(2)如图2:延长ED交AC的延长线于M,连接FC、FD、FM,∴四边形BCMD是矩形,∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠AEM=∠A=45°,∴△AEM是等腰直角三角形.又F是AE的中点,∴MF⊥AE,EF=MF,∠E=∠FMC.在△EFD和△MFC中,,∴△EFD≌△MFC(SAS).∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90°,∴∠MFC+∠DFM=90°.即△CDF是等腰直角三角形,又G是CD的中点,∴FG=CD,FG⊥CD.24.解:(1)设“冰墩墩”的销售单价为x元,“雪容融”的销售单价为y元,依题意得:,解得:,答:“冰墩墩”的销售单价为90元,“雪容融”的销售单价为60元.(2)设制作m个“冰墩墩”,则制作(100﹣m)个“雪容融”,依题意得:,解得:48≤m≤50,∵m为正整数,∴m的值为48、49、50,∴有3种制作方案:①制作48个“冰墩墩”,52个“雪容融”;②制作49个“冰墩墩”,51个“雪容融”;③制作50个“冰墩墩”,50个“雪容融”.25.解:(1)==1+;(2)==2﹣,∵分式的值为整数,x为整数,∴x+1=1或﹣1或5或﹣5,解得:x=0或﹣2或4或﹣6,26.解:∵AC⊥BC,∴∠ACB=90°,∵AB=13m,BC=12m,∴AC===5(m),∵四边形ABCD是平行四边形,且AC、BD交于点O,∴OC=OA=AC=×5=(m),S平行四边形ABCD=BC•AC=12×5=60(m2),答:OC的长是m,绿地的面积是60m2.。

北师大版八年级数学(下)期末复习试卷及参考答案

北师大版八年级数学(下)期末复习试卷及参考答案

八年级数学(下)期末复习试卷一、解答题1.已知ABC ,按下列要求:(尺规作图,保留痕迹,不写作法) (1)作BC 边上的高AD ;(2)作ABC 的平分线BE .(尺规作图) (3)作出线段AB 的垂直平分线MN .(尺规作图)2.如图,在ABC ∆中,AB AC =,请你利用尺规在BC 边上求一点P ,使得ABC PAC ∆∆∽.3.如图,在Rt ABC 中.()1利用尺规作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长; ()2利用尺规作图,作出()1中的线段PD .4.尺规作图: 已知:∠AOB ,点M 、N求作:点P ,使点P 满足:PM=PN ,且P 到OA 、OB 的距离相等.5.如图,已知△ABC ,按要求做图.(1)过点 A 作 BC 的垂线段 AD (无需尺规作图,直接画出).(2)过点 C 作 AB 的平行线(尺规作图,不写作法,保留作图痕迹).6.如图,在等腰ABC 中,,36AB AC A ︒=∠=,点D E 、分别为AB AC 、上的点,将A ∠沿直线DE 翻折,使点A 落在点C 处.(1)用尺规作图作出直线DE ;(要求:尺规作图,保留作图痕迹,不写作法) (2)若AD =,求BC 的长.7.如图,已知△ABC 与△A′B′C′关于点O 成中心对称,点A 的对称点为点A′,请你用尺规作图的方法,找出对称中心O ,并作出△A′B′C′.(要求:尺规作图,保留作图痕迹,不写作法).8.如图,已知△ABC ,AC <BC ,(1)尺规作图:作△ABC 的边BC 上的高AD (2)试用尺规作图的方法在线段BC 上确定一点P ,使PA+PC =BC ,并说明理由.9.如图,ABC ∆为一钝角三角形,且90BAC ∠>︒(1)分别以AB ,AC 为底向外作等腰Rt DAB ∆和等腰 Rt EAC (要求:尺规作图,不写作法,保留作图痕迹)(2)已知P 为BC 上一动点,通过尺规作图的方式找出一点P ,连接PD ,PE ,使得 PD PE ⊥并证明.10.如图已知△ABC .(1)请用尺规作图法作出BC 的垂直平分线DE ,垂足为D ,交AC 于点E, (2)请用尺规作图法作出∠C 的角平分线CF ,交AB 于点F,(保留作图痕迹,不写作法); (3)请用尺规作图法在BC 上找出一点P ,使△PEF 的周长最小.(保留作图痕迹,不写作法).10.已知:如图,直线l 极其同侧两点A ,B .(1)在图1直线l 上求一点P ,使到A 、B 两点距离之和最短;(不要求尺规作图) (2)在图2直线l 上求一点O ,使OA=OB .(尺规作图,保留作图痕迹) 12.先尺规作图,后进行计算:如图,△ABC 中,∠A =105°.(1)试求作一点P ,使得点P 到B 、C 两点的距离相等,并且到∠ABC 两边的距离相等(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若∠ACP =30°,求∠PBC 的度数.13.如图,在平面直角坐标系xOy 中,点A 的坐标为(﹣2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD .(1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是 个单位长度; (2)△AOC 与△BOD 关于直线对称,则对称轴是 ;(3)△AOC 绕原点O 顺时针旋转可以得到△DOB ,则旋转角度是 度,在此旋转过程中,△AOC 扫过的图形的面积是 .14.如图,在平面直角坐标系内,ABC 的顶点坐标分别为()4,4A -,()2,5B -,()2,1C -.(1)平移ABC ,使点C 移到点()12,2C ,画出平移后的111A B C △; (2)将ABC 绕点()0,0旋转180︒,得到222A B C △,画出旋转后的222A B C △; (3)连接12A C ,21A C ,求四边形1221A C A C 的面积.15.如图,每个小正方形的边长都是1个单位长度,Rt ABC ∆的三个顶点(2,2)A -,(0,5)B ,(0,2)C . (1)将ABC ∆以点C 为旋转中心旋转180︒,得到△11A B C ,请画出△11A B C 的图形;(2)平移ABC ∆,使点A 的对应点2A 坐标为(2,6)--,请画出平移后对应的△222A B C 的图形;(3)若将△11A B C 绕某一点旋转180︒可得到△222A B C ,请直接写出旋转中心的坐标.16.如图1,ABC 中(2)A -,3,(31)B -,,(12)C -,.(1)将ABC 向右平移4个单位长度,画出平移后的111A B C △;(2)画出ABC 关于x 轴对称的222A B C △(3)将ABC 绕原点O 旋转180,画出旋转后的333A B C △; (4)在111A B C △,222A B C △,333A B C △中,______与______成轴对称,对称轴是______;______与______成中心对称,对称中心的坐标是____.17.综合题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大数学八下期末综合复习(3)
1、因式分解
(1)4a 2-16 (2)x 3-2x 2y+xy 2 (3)16(m-n )2-(m+n )2. (4)(a-3)2+(3-a )
2、解下列不等式组,并在数轴上表示出来
⎩⎨
⎧<--<-02)2(332)1(x x x ⎪⎩⎪⎨⎧≥--<+212
39
32)2(x x ⎪⎩⎪⎨⎧<--≤--x x
x x 35217)1(3)3(. ⎪⎩⎪
⎨⎧-<--+≥+-x x x x 8)1(311323)4(
3、解分式方程
x x x --=-3231)1(
13132)2(=-+--x
x x
9632)3(2=-++x x 2
3
311)4=--x
4、化简求值题
(1)已知x=-+
(3)先化简再求值:)181(÷--+x x
+
5、A ,B 两地相距80千米,一辆公共汽车从A 地出发开往B 地,2小时后,又从A 地开来一辆小汽车,小汽车的速度是公共汽车的3倍,结果小汽车比公共汽车早到40分钟到达B 地,求两种车的速度.
6、每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵。

若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?
7、已知:如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF=CE ,DF=BE ,DF ∥BE . 求证:(1)△AFD ≌△CEB ;(2)四边形ABCD 是平行四边形.
8、已知如图所示,点O 为平行四边形ABCD 的对角线BD 的中点,直线EF 经过点O ,分别交BA 、DC 的延长线于E 、F 两点,求证:AE=CF . 9、如图, 在菱形ABCD 中, ∠A=60°,AB=4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E.
(1)求∠ABD 的度数; (2)求线段BE 的长.
=+2
11、如图,△ABC 是等腰直角三角形,延长BC 至E 使BE=BA ,过点B 作BD ⊥AE 于点D ,BD 与AC 交于点F ,连接EF . (1)求证:BF=2AD ; (2)若CE=2,求AC 的长.
12、如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0), C (﹣1,0).
(1)请直接写出点B 关于点A 对称的点的坐标; (2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形,直接写出点B 的对应点的坐标;
(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.
答案
1、解:(1) 4a 2-16 = 4(a2-4) = 4(a+2)(a-2) (2) x 3-2x 2y+xy 2 = x(x 2-2xy+y 2) = x(x-y)2 (3) 16(m-n)2-(m+n)2
=[4(m-n)+(m+n)][(4(m-n)-(m+n)] =(5m-3n)(3m-5n)
(4) (a-3)2+(3-a)=(a-3)2-(a-3) =(a-4)(a-3) 2、解:

由①得:x >3
, 由②得:x
<2,
不等式组的解集为:无解, 在数轴上表示为:

由①得:x
<3, 由②得:x≤-2

不等式组的解集为:x≤-2;




由①得:x≤1, 由②得:x >-2,
不等式组的解集为:-2<x≤1, 在数轴上表示为:

x=-.
(1)
(2)
(3)
(4)
4、化简求值题
6、解:设该校一共有x人去植树,共有(4x+20)棵树.
由“每人植4棵,则余20棵没人植“和”若每人植8棵,则有一人比其他人植的少(但
有树植)”得:
4x+20-8(x-1)>0
y-8(x-1)<8,
将y=4x+20代入第二个式子得:
0<4x+20-8(x-1)<8,
5<x<7.
故该校一共有6人去植树,共有4×6+20=44棵树.
7、证明:(1)∵DF∥BE,
∴∠DFE=∠BEF.
又∵AF=CE,DF=BE,
∴△AFD≌△CEB(SAS).
(2)由(1)知△AFD≌△CEB,
∴∠DAC=∠BCA,AD=BC,
∴AD∥BC.
∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).
8、证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠E=∠F,∠EBO=∠FDO.
又∵OB=OD,
∴△EBO≌△FDO.
∴BE=DF.
又∵AB=CD,
∴BE-AB=DF-CD.
即AE=CF.
9、解:(1)在菱形ABCD中,AB=AD,∠A=60°,
∴△ABD为等边三角形,
∴∠ABD=60°;
(2)由(1)可知BD=AB=4,
又∵O为BD的中点,
∴OB=2,
又∵OE⊥AB,及∠ABD=60°,
∴∠BOE=30°,
∴BE=1。

10、解:方程两边都乘(x-3),得 k+2(x-3)=4-x , ∵原方程有增根,
∴最简公分母x-3=0,即增根为x=3, 把x=3代入整式方程,得k=1.
11、(1)证明:∵△ABC 是等腰直角三角
形, ∴AC=BC ,∴∠FCB=∠ECA=90°, ∵AC ⊥BE ,BD ⊥AE , ∴∠CBF+∠CFB=90°,∠DAF+∠AFD=90°, ∵∠CFB=∠AFD , ∴∠CBF=∠CAE ,
在△BCF 与△ACE 中,
⎪⎩

⎨⎧∠=∠=∠=∠CAE CBF BC
AC ECA FCB , ∴△BCF ≌△ACE , ∴AE=BF ,
∵BE=BA ,BD ⊥AE , ∴AD=ED ,即AE=2AD , ∴BF=2AD ;
(2)由(1)知△BCF ≌△ACE , 2=, ∵BD ⊥AE ,AD=ED , ∴AF=FE=2,
12、解:(1)点A 关于y 轴对称的点的坐标是(2,3); (2)图形如右,点B 的对应点的坐标是(0,﹣6);
(3)以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标为(﹣7,3)或 (﹣5,﹣3)或(3,3).。

相关文档
最新文档