最新人教版高中数学必修2第四章《圆与圆的位置关系》课后训练1
高中数学人教A版必修2《直线和圆的位置关系》课后练习一(含解析)

(同步复习精讲辅导)北京市2014-2015学年高中数学直线和圆的位置关系课后练习一(含解析)新人教A版必修2已知直线y=-2x+m,圆x2+y2+2y=0.(1)m为何值时,直线与圆相交?(2)m为何值时,直线与圆相切?(3)m为何值时,直线与圆相离?题1已知直线l:2x+3y+1=0被圆C:x2+y2=r2所截得的弦长为d,则下列直线中被圆C 截得的弦长同样为d的直线是().A.2x+4y-1=0 B.4x+3y-1=0 C.2x-3y-1=0 D.3x+2y=0题2过点M(2,1)作圆x2+y2=5的切线,求切线方程.题3已知点P(x,y)是圆C:(x+2)2+y2=1上任意一点.求P点到直线3x+4y+12=0的距离的最大值和最小值.题4求与圆x2+(y-2)2= 4相切且在两坐标轴上截距相等的直线方程.题5从直线x-y+3=0上的点向圆(x+2)2+(y+2)2=1引切线,则切线长的最小值是.题6若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是__________.题7已知圆C1:x2+y2+2x+6y+9=0和圆C2:x2+y2−4x+2y−4=0(1)判断两圆的位置关系;(2)求两圆的公共弦所在直线的方程;(3)求两圆公切线所在直线的方程. 题8已知圆1C 的圆心在坐标原点O ,且恰好与直线1:l 0x y --=相切. (Ⅰ) 求圆的标准方程;(Ⅱ)设点0,0()A x y 为圆上任意一点,AN x ⊥轴于N ,若动点Q 满足OQ mOA nON =+,(其中1,,0,m n m n m +=≠为常数),试求动点Q 的轨迹方程2C .题9点M (x 0,y 0)是圆x 2+y 2=a 2(a >0)内不为圆心的一点,则直线x 0x +y 0y =a 2与该圆的位置关系是( ).A .相切B .相交C .相离D .相切或相交课后练习详解题1答案:(1)1--m <1-+(2)m =1-m =1-(3)m <1-m >1-详解:由y =−2x +m 和x 2+y 2+2y =0,得5x 2-4(m +1)x +m 2+2m =0.△=16(m +1)2-20(m 2+2m )=-4[(m +1)2-5],当△>0时,(m +1)2-5<0,∴1-m <1-当△=0时,m =1-m =1-+当△<0时,m <1-或m >1-故5-1-<m <1-m =1--m =1-+m <1--m >1-+题2 答案:C .详解:∵圆x 2+y 2=r 2的圆心O (0,0)到直线l :2x +3y +1=0的距离m =1313, 又直线l :2x +3y +1=0被圆C :x 2+y 2=r 2所截得的弦长为d , ∴弦心距1313,弦长之半2d与圆半径r 组成的直角三角形,即222)1313()2(+=dr ,∵圆心O (0,0)到直线2x +4y -1=0的距离 1313105421221≠=+=m ,故A 与题意不符; 同理可得圆心O (0,0)到直线4x +3y -1=0的距离13132≠m ,故B 与题意不符;圆心O (0,0)到直线2x -3y -1=0的距离13133=m 符合题意;而圆心O (0,0)到直线3x +2y =0的距离13134≠m 故D 与题意不符;故选C . 答案:2x +y -5=0.详解:由圆x 2+y 2=5,得到圆心A 的坐标为(0,0),圆的半径5=r ,而|AM |=r ==+514,所以M 在圆上,则过M 作圆的切线与AM 所在的直线垂直,又M (2,1),得到AM 所在直线的斜率为21,所以切线的斜率为-2, 则切线方程为:y -1=-2(x -2)即2x +y -5=0. 题3答案:最大值为115,最小值为15.详解:圆心C (-2,0)到直线3x +4y +12=0的距离为 d =|3×(-2)+4×0+12|32+42=65. ∴P 点到直线3x +4y +12=0的距离的最大值为d +r =65+1=115,最小值为d -r =65-1=15.题4答案:y =0或x +y -222±=0.详解:设两坐标轴上截距相等(在坐标轴上截距不为0)的直线l 方程为x +y =a ,则由题意得:x 2+(y −2)2=4和x +y =a ,消去y 得:2x 2+(4-2a )x +a 2-4a =0,∵l 与圆x 2+(y -2)2=4相切,∴△=(4-2a )2-4×2(a 2-4a )=0,解得a =222±,∴l 的方程为:x +y -222±=0, 当坐标轴上截距都为0时,y =0与该圆相切; 故答案为:y =0或x +y -222±=0. 题5 答案:214. 详解:如图设从直线x -y +3=0上的点P 向圆C :(x +2)2+(y +2)2=1引切线PD ,切点为D ,则|CD |=1,在Rt △PDC 中,要使切线长PD 最小,只需圆心C 到直线上点P 的距离最小,∵点C (-2,-2)到直线x -y +3=0的距离CP ′最小为2d =,∴切线长PD 的最小值为214129'22=-=-CD C p 题6 答案:4.详解:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △OO 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4.答案:4 题7答案:(1)相交;(2)6x +4y +13=0;(3)4y =-和2512y +=x . 详解:(1)圆C 1:x 2+y 2+2x +6y +9=0化成标准形式:(x +1)2+(y +3)2=1 ∴圆心C 1(-1,-3),半径r 1=1同理,得到圆C 2:x 2+y 2−4x +2y −4=0的圆心C 2(2,-1),半径r 2=3 ∵|r 1-r 2|=2,r 1+r 2=4,圆心距12C C ==∴|r 1-r 2|≤C 1C 2≤r 1+r 2,得两圆的位置关系是相交;(2)∵圆C 1:x 2+y 2+2x +6y +9=0,圆C 2:x 2+y 2−4x +2y −4=0∴圆C 1和圆C 2的方程两边对应相减,得6x +4y +13=0, 即为两圆公共弦所在直线方程.(3)过C 1作y 轴的平行线,交圆C 1于D 点,过C 2作y 轴的平行线,交圆C 2于C 点,可得D (-1,-4),C (2,-4)∴直线DC 方程为y =-4,且DC 是两圆的一条公切线直线DC 交直线C 1C 2于点A ,则过A 点与圆C 2相切的直线必定与圆C 1也相切 设切点为B ,因此直线AB 是两圆的另一条公切线, 求得C 1C 2方程:3732y -=x ,可得A (-2.5,-4), 设直线AB 方程为y +4=k (x +2.5),即kx -y +2.5k -4=0 ∴点C 2到直线AB 的距离为3d ==,解之得512(k =0舍去),因此直线AB 的方程为2512y +=x ,综上所述,两圆公切线所在直线的方程为4y =-和2512y +=x .题8答案:(1)224x y +=;(2)222144x y m+= 详解:(Ⅰ)设圆的半径为r ,圆心到直线1l 距离为d ,则2d ==所以圆1C 的方程为224x y +=(Ⅱ)设动点(,)Q x y ,0,0()A x y ,AN x ⊥轴于N ,0(,0)N x由题意,000(,)(,)(,0)x y m x y n x =+,所以000()x m n x x y my =+=⎧⎨=⎩即: 001x xy y m =⎧⎪⎨=⎪⎩,将1(,)A x y m ,代入224x y +=,得222144x y m += 题9 答案:C .详解:由已知得2200x y +<a 2,且2200x y +≠0,又∵圆心到直线的距离d 2a ,∴直线与圆相离.。
最新人教A版数学必修二同步练习4.2.2圆与圆的位置关系(含答案解析)

圆与圆的地点关系一、选择题 ( 每题 6分,共 30分)1.两圆 (x-a) 2+(y-b) 2=c 2和 (x-b) 2+(y-a) 2=c2相切 ,则()2222A.(a-b) =cB.(a-b) =2cC.(a+b) 2=c2D.(a+b) 2=2c22.(2013 ·宁波高二检测2222交于 A,B 两点 ,则 AB的垂直均分)圆:x +y -4x+6y=0和圆 :x +y -6x=0线的方程是()A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.4x-3y+7=03.若圆 (x-a) 2+(y-b) 2=b 2+1 一直均分圆 (x+1) 2+(y+1) 2=4 的周长 ,则 a,b 应知足的关系式是 ()A.a 2-2a-2b-3=0B.a2+2a+2b+5=022C.a +2b +2a+2b+1=0D.3a 2+2b 2+2a+2b+1=04.设两圆 C1,C2都和两坐标轴相切,且都过点 (4,1),则两圆心的距离 |C1C2 |=()A.4B.4C.8D.82222)5.点 P 在圆 C1:x +y -8x-4y+11=0上 ,点 Q 在圆 C2:x +y +4x+2y+1=0 上 ,则 |PQ|的最小值是 (A.5B.1C.3-5D.3+5二、填空题 ( 每题 8分,共 24分)6. 若A={(x,y)|x22≤ 16},B={(x,y)|x22≤ a-1} 且A∩ B=B, 则a的取值范围+y+(y-2)是 ,.7.(2013 ·成都高二检测 )两圆订交于两点A(1,3) 和 B(m,-1), 两圆圆心都在直线x-y+c=0上,则m+c 的值为 ,.8. ☉ O:x 2+y2=1, ☉ C:(x-4) 2 +y 2=4, 动圆P 与☉ O 和☉ C 都外切 ,动圆圆心P 的轨迹方程为 ,.三、解答题 (9 题 ,10题 14 分,11 题 18 分)9.(2013 ·杭州高二检测)求圆心在直线x-y+1=0 上,且经过圆2222x +y +6x-4=0 与圆 x +y +6y-28=0的交点的圆的方程.10.圆 O1的方程为 x2+(y+1) 2=4,圆 O2的圆心 O2(2,1).(1)若圆 O2与圆 O1外切 ,求圆 O2的方程 ,并求公切线方程 .(2) 若圆 O2与圆 O1交于 A,B 两点 ,且 |AB|=2,求圆 O2的方程 .11.(能力挑战题 )如图 ,在平面直角坐标系 xOy 中 ,已知曲线 C 由圆弧 C1和圆弧 C2相接而成 , 两相接点M,N均在直线x=5 上 .圆弧C1的圆心是坐标原点O,半径为r 1=13;圆弧C2过点A(29,0).(1)求圆弧 C2所在圆的方程 .(2) 曲线 C 上能否存在点P,知足 |PA|=|PO|?若存在 ,指出有几个这样的点;若不存在 ,请说明原因 .答案分析1.【分析】选 B.两圆半径相等,故两圆外切 ,圆心距 d==|b-a|=2|c|,所以 (b-a)2=2c2,即 (a-b)2=2c2.2.【分析】选 C.将两圆方程相减 ,得公共弦 AB 所在直线的方程为 x+3y=0,AB的垂直均分线的斜率为 3,其方程为 y=3(x-3), 即 3x-y-9=0.【拓展提高】求解订交弦问题的技巧把两个圆的方程进行相减得:x2+y 2+D1 x+E 1y+F 1-(x 2+y 2 +D2x+E 2y+F 2)=0即 (D 1-D 2)x+(E 1-E2)y+(F 1-F2 )=0 ①我们把直线方程①称为两圆C1,C 2的根轴 ,当两圆 C1,C2订交时 ,方程①表示两圆公共弦所在的直线方程;当两圆 C1,C2相切时 ,方程①表示过圆C1,C2切点的公切线方程 .3.【分析】选 B. 利用公共弦一直经过圆22的圆心即可求得 .两圆的公共弦所在(x+1) +(y+1)=4的直线方程为(2a+2)x+(2b+2)y-a 2-1=0, 它经过圆心 (-1,-1), 代入得 a2+2a+2b+5=0.4.【解析】选 C. 设与两坐标轴都相切的圆的方程为 (x-a)2+(y-a) 2=a2, 将点 (4,1) 代入得a2-10a+17=0,解得 a=5±2,设 C1(5-2,5-2),C2(5+2,5+2),则|C1C2|==8.5.【分析】选 C. 圆22即22C1(4,2);圆C1:x +y -8x-4y+11=0,(x-4) +(y-2)=9,圆心为C2:x2 +y2+4x+2y+1=0,即 (x+2) 2+(y+1)2=4,圆心为C2(-2,-1), 两圆相离 ,|PQ| 的最小值为|C1C2|-(r1+r2)=3-5.6.【分析】会合 A,B分别表示两个圆面(a=1 时会合 B 表示一个点 ),A ∩B=B, 即 B A, 即两圆内含 ,又两圆圆心分别为原点和(0,2), 半径分别为 4和,于是有 2≤ 4-,解得 :1≤ a≤ 5,当 a<1 时 ,B=,故 a≤ 5.答案 :a≤ 57.【分析】由题意知 ,线段 AB 的中点在直线 x-y+c=0 上 ,且 k AB ==-1,即 m=5,又点 (,1)在该直线上 ,所以-1+c=0, 所以 c=-2, 所以 m+c=3.答案 :38.【解析】☉ P 与☉ O 和☉ C 都外切 , 设☉ P 的圆心 P(x,y), 半径为 R, 则|PO|==R+1,|PC|==R+2, 所以-=1,移项、平方化简得:60x 2-4y2-240x+225=0.答案 :60x 2-4y 2-240x+225=09.【分析】设圆22与圆22的交点为A,B,解方程x +y +6x-4=0x +y +6y-28=0组 :或不如设 A(-1,3),B(-6,-2),所以直线 AB 的垂直均分线方程为:x+y+3=0,x-y+1=0 与 x+y+3=0联立 ,解得 :x=-2,y=-1, 即所求圆心 C 为 (-2,-1), 半径 r=|AC|=.故所求圆 C 的方程为 :(x+2) 2+(y+1)2=17.10. 【解析】 (1) 由两圆外切 , 所以 |O1 O2|=r1 +r2,r2=|O1O2|-r1=2(-1), 故圆 O2的方程是 :(x-2) 2+(y-1) 2 =4(-1) 2,两圆的方程相减 ,即得两圆公切线的方程x+y+1-2=0.(2) 设圆 O2的方程为:(x-2)22, +(y-1) =由于圆 O1的方程为:x2+(y+1) 2=4, 此两圆的方程相减,即得两圆公共弦AB所在直线的方程 :4x+4y+-8=0.①作 O1H⊥ AB, 则|AH|= |AB|=,O1H=,由圆心 O1(0,-1) 到直线①的距离得=,得 =4 或 =20,故圆 O2的方程为 :2222(x-2) +(y-1)=4 或 (x-2) +(y-1)=20.11.【分析】 (1) 由题意得 ,圆弧 C1所在圆的方程为x2+y 2=169,令 x=5, 解得 M(5,12),N(5,-12), 又 C2过点 A(29,0),设圆弧 C2所在圆方程为x2+y 2+Dx+Ey+F=0, 则解得所以圆弧C2所在圆的方程为x2+y 2-28x-29=0.(2)假定存在这样的点 P(x,y),则由 |PA|=|PO|,得222222(x-29)+y =30(x+y ),即 x +y +2x-29=0.由解得 x=-70( 舍去 );由解得 x=0( 舍去 ).所以这样的点P 不存在 .。
高中数学必修二直线和圆的位置关系课后练习一(含解析)新人教A版必修2

题2 答案: C.
详解:∵圆 x2+y2 =r 2 的圆心 O( 0, 0)到直线 l : 2x+3y+1=0 的距离 m= 13 , 13
又直线 l :2x+3y+1=0 被圆 C:x2 +y2 =r 2 所截得的弦长为 d,
∴弦心距 13 ,弦长之半 d 与圆半径 r 组成的直角三角形,
13
2
即 r 2 ( d )2 ( 13 )2 ,∵圆心 O( 0, 0)到直线 2x+4y-1=0 的距离
-2 ,
题3
11
1
答案:最大值为 5 ,最小值为 5.
详解:圆心 C( - 2,0) 到直线 3x+ 4y+12= 0 的距离为
|3 × ( -2) +4×0+ 12| 6
d=
32+ 42
=5.
6
11
∴P 点到直线 3x+ 4y+ 12= 0 的距离的最大值为 d+ r = 5+ 1= 5 ,
6
1
最小值为 d- r = 5-1= 5.
题4
求与圆
x
2
+(
y-2
)
2
=
4
相切且在两坐标轴上截距相等的直线方程.
题5
从直线 x- y+3=0 上的点向圆( x+2) 2 +( y+2) 2 =1 引切线,则切线长的最小值是
.
题6 若⊙ O: x2+ y2=5 与⊙ O1: ( x-m) 2+ y2= 20( m∈ R) 相交于 A、B 两点,且两圆在点 线互相垂直,则线段 AB的长度是 __________ .
当△> 0 时, ( m+1) 2-5 <0,∴ 1 5 <m< 1 5 ;
人教版高中数学必修二 4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用 学案+课时训练

人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用学案【学习目标】1.掌握圆与圆的位置关系及判定方法.(重点、易错点)2.能利用直线与圆的位置关系解决简单的实际问题.(难点)【要点梳理夯实基础】知识点1圆与圆位置关系的判定阅读教材P129至P130“练习”以上部分,完成下列问题.1.几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|0≤d<|r1-r2| ⎭⎬⎫圆C1方程圆C2方程――→消元一元二次方程⎩⎨⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含[思考辨析学练结合]两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是()A.外离B.相交C.内切D.外切[解析]两圆x2+y2=9和x2+y2-8x+6y+9=0的圆心分别为(0,0)和(4,-3),半径分别为3和4.所以两圆的圆心距d=42+(-3)2=5.又4-3<5<3+4,故两圆相交.[答案] B知识点2 直线与圆的方程的应用阅读教材P130“练习”以下至P132“练习”以上部分,完成下列问题.用坐标方法解决平面几何问题的“三步曲”[思考辨析学练结合]一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A.1.4米B.3.5米C.3.6米D.2米[解析]建立如图所示的平面直角坐标系.如图,设蓬顶距地面高度为h,则A(0.8,h-3.6).半圆所在圆的方程为:x2+(y+3.6)2=3.62,把A(0.8,h-3.6)代入得0.82+h2=3.62,∴h=40.77≈3.5(米).[答案] B【合作探究析疑解难】考点1 圆与圆位置关系的判定[典例1] 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?[分析]求圆C1的半径r1→求圆C2的半径r2→求|C1C2|→利用|C1C2|与|r1-r2|和r1+r2的关系求k[解答]将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=(-2-1)2+(3-7)2=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即0≤k<14或34<k<50时,两圆相离.1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.1.已知圆C1:x2+y2-2ax-2y+a2-15=0,圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含.[解]圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C 1(a,1),C 2(2a,1),半径r 1=4,r 2=1.∴|C 1C 2|=(a -2a )2+(1-1)2=a .(1)当|C 1C 2|=r 1+r 2=5,即a =5时,两圆外切;当|C 1C 2|=r 1-r 2=3,即a =3时,两圆内切.(2)当3<|C 1C 2|<5,即3<a <5时,两圆相交.(3)当|C 1C 2|>5,即a >5时,两圆外离.(4)当|C 1C 2|<3,即a <3时,两圆内含.考点2 两圆相交有关问题[典例2] 求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长. [分析] 联立圆C 1、C 2的方程――→作差得公共弦所在的直线―→圆心C 3到公共弦的距离d ―→圆的半径r ―→弦长=2r 2-d 2[解答] 设两圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则A ,B 的坐标是方程组⎩⎨⎧x 2+y 2=1,x 2+y 2-2x -2y +1=0的解, 两式相减得x +y -1=0.因为A ,B 两点的坐标满足 x +y -1=0,所以AB 所在直线方程为x +y -1=0,即C 1,C 2的公共弦所在直线方程为x +y -1=0,圆C 3的圆心为(1,1),其到直线AB 的距离d =12,由条件知r 2-d 2=254-12=234,所以直线AB 被圆C 3截得弦长为2×232=23.1.圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x2.求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.[解] 联立两圆的方程得方程组⎩⎨⎧ x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此为两圆公共弦所在直线的方程.法一:设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎨⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎨⎧ x =-4,y =0或⎩⎨⎧x =0,y =2.所以|AB |=(-4-0)2+(0-2)2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=3 5. 设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.考点3 直线与圆的方程的应用探究1 设村庄外围所在曲线的方程可用(x -2)2+(y +3)2=4表示,村外一小路方程可用x-y+2=0表示,你能求出从村庄外围到小路的最短距离吗?[分析]从村庄外围到小路的最短距离为圆心(2,-3)到直线x-y+2=0的距离减去圆的半径2,即|2+3+2|12+(-1)2-2=722-2.探究2已知台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,请建立适当的坐标系,用坐标法求B城市处于危险区内的时间.[分析]如图,以A为原点,以AB所在直线为x轴建立平面直角坐标系.射线AC为∠xAy的平分线,则台风中心在射线AC上移动.则点B到AC的距离为202千米,则射线AC被以B为圆心,以30千米为半径的圆截得的弦长为2302-(202)2=20(千米).所以B城市处于危险区内的时间为t=2020=1(小时).[典例3] 为了适应市场需要,某地准备建一个圆形生猪储备基地(如图4-2-1),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A,接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,求DE的最短距离.图4-2-1[分析]建立适当坐标系,求出圆O的方程和直线BC的方程,再利用直线与圆的位置关系求解.[解答]以O为坐标原点,过OB,OC的直线分别为x轴和y轴,建立平面直角坐标系,则圆O的方程为x2+y2=1,因为点B(8,0),C(0,8),所以直线BC的方程为x8+y8=1,即x+y=8.当点D选在与直线BC平行的直线(距BC较近的一条)与圆的切点处时,DE为最短距离.此时DE长的最小值为|0+0-8|2-1=(42-1) km.[方法总结]解决关于直线与圆方程实际应用问题的步骤[跟踪练习]3.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?[解] 以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图),其中取10 km为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|-28|42+72=2865,而半径r=3,∴d>r,∴直线与圆外离,所以轮船不会受到台风的影响.【学习检测巩固提高】1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=25[解析]设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x-5)2+(y+1)2=25.[答案] B2.一辆卡车宽1.6 m,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过()A.1.4 m B.3.5 m C.3.6 m D.2.0 m [解析]圆半径OA=3.6,卡车宽1.6,所以AB=0.8,所以弦心距OB= 3.62-0.82≈3.5(m).[答案] B3.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是__相交__.[解析]圆x2+y2+6x-7=0的圆心为O1(-3,0),半径r1=4,圆x2+y2+6y-27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=(-3-0)2+(0+3)2=32,∴r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.4.已知实数x 、y 满足x 2+y 2=1,则y +2x +1的取值范围为__ [34,+∞) __. [解析] 如右图所示,设P (x ,y )是圆x 2+y 2=1上的点,则y +2x +1表示过P (x ,y )和Q (-1,-2)两点的直线PQ 的斜率,过点Q 作圆的两条切线QA ,QB ,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QA .设切线QA 的斜率为k ,则它的方程为y +2=k (x +1),由圆心到QA 的距离为1,得|k -2|k 2+1=1,解得k =34.所以y +2x +1的取值范围是[34,+∞). 5.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 解法一:联立两圆方程⎩⎨⎧ x 2+y 2-12x -2y -13=0x 2+y 2+12x +16y -25=0, 相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0x 2+y 2-12x -2y -13=0, 联立得两圆交点坐标(-1,2)、(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为12(5+1)2+(-6-2)2=5. ∴圆C 的方程为(x -2)2+(y +2)2=25.解法二:由解法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-122(1+λ),-16λ-22(1+λ)). ∵圆心C 在公共弦所在直线上,∴4·-(12λ-12)2(1+λ)+3·-(16λ-2)2(1+λ)-2=0, 解得λ=12.∴圆C 的方程为x 2+y 2-4x +4y -17=0.人教版高中数学必修二第4章 圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系课时检测一、选择题1.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( )A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=0[解析] 解法一:线段AB 的中垂线即两圆的连心线所在直线l ,由圆心C 1(1,0),C 2(-1,2),得l 方程为x +y -1=0.解法二:直线AB 的方程为:4x -4y +1=0,因此线段AB 的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),故选A .[答案] A2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( )A .外离B .相交C .外切D .内切[解析] 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2), 半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交.[答案] B3.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a 、b应满足的关系式是()A.a2-2a-2b-3=0 B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0[解析]利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.[答案] B4.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是()A.(x-5)2+(y+7)2=25 B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15 D.(x+5)2+(y-7)2=25[解析]设动圆圆心为P(x,y),则(x-5)2+(y+7)2=4+1,∴(x-5)2+(y+7)2=25.[答案] A5.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r =()A.5B.4C.3D.2 2 [解析]设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.[答案] C6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为()A.(x-6)2+(y-4)2=6 B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36 D.(x-6)2+(y±4)2=36[解析]半径长为6的圆与x轴相切,设圆心坐标为(a,b),则a=6,再由b2+32=5可以解得b=±4,故所求圆的方程为(x-6)2+(y±4)2=36.7.已知M 是圆C :(x -1)2+y 2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN |的最小值为( )A .4B .42-1C .22-2D .2[解析] ∵|CC ′|=5<R -r =7,∴圆C 内含于圆C ′,则|MN |的最小值为R -|CC ′|-r =2.[答案] D8.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( )A .4x -y -4=0B .4x +y -4=0C .4x +y +4=0D .4x -y +4=0[解析] 以线段OM 为直径的圆的方程为x 2+y 2-4x +y =0,经过两切点的直线就是两圆的公共弦所在的直线,将两圆的方程相减得4x -y -4=0,这就是经过两切点的直线方程.[答案] A9.已知两圆相交于两点A (1,3),B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值是( )A .-1B .2C .3D .0 [解析] 两点A ,B 关于直线x -y +c =0对称,k AB =-4m -1=-1. ∴m =5,线段AB 的中点(3,1)在直线x -y +c =0上,∴c =-2,∴m +c =3.[答案] C10.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a 2,所以2a 2-a 22=22,解得a =2.圆M 、圆N 的圆心距|MN |=2,两圆半径之差为1、半径之和为3,故两圆相交.二、填空题11.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=.[解析]两个圆的方程作差,可以得到公共弦的直线方程为y=1a,圆心(0,0)到直线y=1a的距离d=|1a|,于是由(232)2+|1a|2=22,解得a=1.[答案] 112.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4外切,则m的值为________.[解析]C1(m,-2),r1=3,C2(-1,m),r2=2,由题意得|C1C2|=5,即(m+1)2+(m+2)2=25,解得m=2或m=-5.[答案]2或-513.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.[解析]∵点A(a,b)在圆x2+y2=4上,∴a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则d=|C1C2|=a2+b2=4=2,∴d=r1+r2.∴两圆外切.[答案]外切14.与直线x+y-2=0和圆x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.[解析]已知圆的标准方程为(x-6)2+(y-6)2=18,则过圆心(6,6)且与直线x+y -2=0垂直的方程为x-y=0.方程x-y=0分别与直线x+y-2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x-2)2+(y-2)2=2.[答案](x-2)2+(y-2)2=215.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0. [解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=(2-1)2+(-1)2= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),半径r1=2,圆C2的圆心坐标为(-6,-3),半径r2=8,∴|C1C2|=(2+6)2+(3+3)2=10=r1+r2,∴两圆外切.(4)C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),半径r1=2,圆C2的圆心坐标为(2,3),半径r2=4,∴|C1C2|=(2+1)2+(3-1)2=13.∵|r1-r2|<|C1C2|<r1+r2,∴两圆相交.16.求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点且圆心在直线x -y -4=0上的圆的方程.[解] 法一:解方程组⎩⎨⎧x 2+y 2+6x -4=0,x 2+y 2+6y -28=0, 得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因为圆心在直线x -y -4=0上,故b =a -4. 则有(a +1)2+(a -4-3)2 =(a +6)2+(a -4+2)2,解得a =12,故圆心为⎝ ⎛⎭⎪⎫12,-72, 半径为⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫-72-32=892. 故圆的方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +722=892,即x 2+y 2-x +7y -32=0. 法二:∵圆x 2+y 2+6y -28=0的圆心(0,-3)不在直线x -y -4=0上,故可设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0(λ≠-1),其圆心为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,代入x -y -4=0,求得λ=-7. 故所求圆的方程为x 2+y 2-x +7y -32=0.17.已知圆M :x 2+y 2-2mx -2ny +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程.[解析] 两圆方程相减,得公共弦AB 所在的直线方程为2(m +1)x +2(n +1)y -m 2-1=0,由于A 、B 两点平分圆N 的圆周,所以A 、B 为圆N 直径的两个端点,即直线AB 过圆N 的圆心N ,而N (-1,-1),所以-2(m +1)-2(n +1)-m 2-1=0,即m 2+2m +2n +5=0,即(m +1)2=-2(n +2)(n ≤-2),由于圆M 的圆心M (m ,n ),从而可知圆心M 的轨迹方程为(x +1)2=-2(y +2)(y ≤-2).18.已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,|PQ |=|P A |成立,如图.(1)求a,b间的关系;(2)求|PQ|的最小值.[解析](1)连接OQ,OP,则△OQP为直角三角形,又|PQ|=|P A|,所以|OP|2=|OQ|2+|PQ|2=1+|P A|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2x+y-3=0上,所以|PQ|min=|P A|min,为A到直线l的距离,所以|PQ|min=|2×2+1-3|22+12=255.人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.3直线与圆的方程的应用课时检测一、选择题1.已知实数x、y满足x2+y2-2x+4y-20=0,则x2+y2的最小值是() A.30-105B.5-5C.5D.25[解析]x2+y2为圆上一点到原点的距离.圆心到原点的距离d=5,半径为5,所以最小值为(5-5)2=30-10 5.[答案] A2.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB 的垂直平分线方程为()A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0[解析]所求直线即两圆圆心(1,0)、(-1,2)连线所在直线,故由y-02-0=x-1-1-1,得x+y-1=0.[答案] A3.方程y=-4-x2对应的曲线是()[解析]由方程y=-4-x2得x2+y2=4(y≤0),它表示的图形是圆x2+y2=4在x轴上和以下的部分.[答案] A4.y=|x|的图象和圆x2+y2=4所围成的较小的面积是()A.π4B.3π4C.3π2D.π[解析]数形结合,所求面积是圆x2+y2=4面积的1 4.[答案] D5.方程1-x2=x+k有惟一解,则实数k的范围是()A.k=-2B.k∈(-2,2)C.k∈[-1,1)D.k=2或-1≤k<1[解析]由题意知,直线y=x+k与半圆x2+y2=1(y≥0只有一个交点.结合图形易得-1≤k<1或k= 2.[答案] D6.点P是直线2x+y+10=0上的动点,直线P A、PB分别与圆x2+y2=4相切于A、B两点,则四边形P AOB(O为坐标原点)的面积的最小值等于()A .24B .16C .8D .4[解析] ∵四边形P AOB 的面积S =2×12|P A |×|OA |=2OP 2-OA 2=2OP 2-4,∴当直线OP 垂直直线2x +y +10=0时,其面积S 最小.[答案] C7.已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为( )A .9B .14C .14-65D .14+6 5[解析] 圆C 的标准方程为(x +2)2+(y -1)2=9,圆心为C (-2,1),半径为3.|OC |=5,圆上一点(x ,y )到原点的距离的最大值为3+5,x 2+y 2表示圆上的一点(x ,y )到原点的距离的平方,最大值为(3+5)2=14+6 5.[答案] D8.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为( )A .(2,322)B .(0,322)C .(0,2)D .(2,322)∪(322,+∞)[解析] 圆C 的标准方程为(x +1)2+y 2=b 2.由两直线平行,可得a (a +1)-6=0,解得a =2或a =-3.当a =2时,直线l 1与l 2重合,舍去;当a =-3时,l 1:x -y -2=0,l 2:x -y +3=0.由l 1与圆C 相切,得b =|-1-2|2=322,由l 2与圆C 相切,得b =|-1+3|2= 2.当l 1、l 2与圆C 都外离时,b < 2.所以,当l 1、l 2与圆C “平行相交”时,b 满足⎩⎨⎧ b ≥2b ≠2,b ≠322,故实数b 的取值范围是(2,322)∪(322,+∞).[答案] D9.已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.106B.206C.306D.40 6 [解析]圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD和最长弦(即圆的直径)AC垂直,故最短弦的长为252-12=46,所以四边形ABCD的面积为12×AC×BD=12×10×46=20 6.[答案] B10.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A.4π5B.3π4C.(6-25)πD.5π4[解析]原点O到直线2x+y-4=0的距离为d,则d=45,点C到直线2x+y-4=0的距离是圆的半径r,由题知C是AB的中点,又以斜边为直径的圆过直角顶点,则在直角△AOB中,圆C过原点O,即|OC|=r,所以2r≥d,所以r最小为25,面积最小为4π5,故选A.[答案] A二、填空题11.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A、B两点,则直线AB 的方程是________.[解析] 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为:x2+y2-10-[(x-1)2+(y-3)2-20]=0,即x+3y=0.[答案]x+3y=012.已知M={(x,y)|y=9-x2,y≠0},N={(x,y)|y=x+b},若M∩N≠∅,则实数b的取值范围是.[解析] 数形结合法,注意y =9-x 2,y ≠0等价于x 2+y 2=9(y >0),它表示的图形是圆x 2+y 2=9在x 轴之上的部分(如图所示).结合图形不难求得,当-3<b ≤32时,直线y =x +b 与半圆x 2+y 2=9(y >0)有公共点.[答案] (-3,32]13.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 .[解析] 所选观景点应使对两景点的视角最大.由平面几何知识,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点,以小路所在直线为x 轴,过B 点与x 轴垂直的直线为y 轴上建立直角坐标系.由题意,得A (2,2)、B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2.由A 、B 在圆上,得⎩⎨⎧ a =0b =2,或⎩⎨⎧a =42b =52,由实际意义知⎩⎨⎧ a =0b =2.∴圆的方程为x 2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.[答案] B 景点在小路的投影处14.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A ∩B ≠∅,则实数a 的取值范围是 .[解析] 首先集合A 、B 实际上是圆上的点的集合,即A 、B 表示两个圆,A ∩B ≠∅说明这两个圆相交或相切(有公共点),由于两圆半径都是1,因此两圆圆心距不大于半径之和2,即(t -4)2+(at -2)2≤2,整理成关于t 的不等式:(a 2+1)t 2-4(a +2)t +16≤0,据题意此不等式有实解,因此其判别式不小于零,即Δ=16(a +2)2-4(a 2+1)×16≥0,解得0≤a ≤43. [答案] [0,43]三、解答题15.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.[解析] 以O 为坐标原点,过OB 、OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1,因为点B (8,0)、C (0,8),所以直线BC 的方程为x 8+y 8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆相切所成切点处时,DE 为最短距离,此时DE 的最小值为|0+0-8|2-1=(42-1)km. 16.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A 2P 2的长.(精确到0.01 m)[解析] 如图,以线段AB 所在的直线为x 轴,线段AB 的中点O 为坐标原点建立平面直角坐标系,那么点A 、B 、P 的坐标分别为(-18,0)、(18,0)、(0,6).设圆拱所在的圆的方程是x 2+y 2+Dx +Ey +F =0.因为A 、B 、P 在此圆上,故有⎩⎨⎧ 182-18D +F =0182+18D +F =062+6E +F =0,解得⎩⎨⎧ D =0E =48F =-324.故圆拱所在的圆的方程是x 2+y 2+48y -324=0.将点P 2的横坐标x =6代入上式,解得y =-24+12 6.答:支柱A 2P 2的长约为126-24 m.17.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)[解析]如图,以O为原点,东西方向为x轴建立直角坐标系,则A(40,0),B(0,30),圆O方程x2+y2=252.直线AB方程:x40+y30=1,即3x+4y-120=0.设O到AB距离为d,则d=|-120|5=24<25,所以外籍轮船能被海监船监测到.设监测时间为t,则t=2252-24228=12(h)答:外籍轮船能被海监船监测到,时间是0.5 h.18.已知隧道的截面是半径为4.0 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m、高为3 m的货车能不能驶入这个隧道?假设货车的最大宽度为a m,那么要正常驶入该隧道,货车的限高为多少?[解析]以某一截面半圆的圆心为坐标原点,半圆的直径AB所在的直线为x轴,建立如图所示的平面直角坐标系,那么半圆的方程为:x2+y2=16(y≥0).将x=2.7代入,得y=16-2.72=8.71<3,所以,在离中心线2.7 m处,隧道的高度低于货车的高度,因此,货车不能驶入这个隧道.将x=a代入x2+y2=16(y≥0)得y=16-a2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a2m.。
人教A版数学必修二第四章第四课时同步练习4.2.2圆与圆的位置关系

§4.2.2圆与圆的位置关系一、填空题:1. 判断下列两个圆的位置关系:2222(1)(3)(2)1(7)(1)36x y x y -++=-+-=与位置关系是_________.2222(2)2232030x y x y x y x y +-+=+--=与3位置关系是_________.2. 若圆22x y m +=与圆2268x y x y ++-110-=相交,实数m 的取值范围是________.3.一个圆经过圆221:890C x y x +--=和圆222:8150C x y y +-+=的两个交点,且圆心在直线210x y --=上,则该圆的方程为_______________________________.4.已知一个圆经过直线240x y ++=与圆222410x y x y ++-+=的两个交点,并且有最小面积,则此圆的方程为__________________________.二、解答题:5. 判断下列两圆的位置关系:2222(1)(2)(2)1(2)(5)16x y x y ++-=-+-=与222226706270x y x x y y ++-=++-=()与6. 求过点(0,6)A 且与圆22:10100C x y x y +++=切于原点的圆的方程.7. 已知圆221:2610C x y x y ++-+=,圆222:42110C x y x y +-+-=,求两圆的公共弦所在的直线方程及公共弦长.8.求过两圆22640x y x ++-=和 226280x y y ++-=的交点,且圆心在直线40x y --=上的圆的方程.参考答案一、填空题:1. 答案:(1)内切,(2)相交.2. 答案:1121m <<.3.答案:22101412033x y x y +---=. 4.答案:221364()()555x y ++-=. 二、解答题:5. 【解】(1)根据题意得,两圆的半径分别为1214r r ==和,两圆的圆心距5.d ==因为 12d r r =+,所以两圆外切.(2)将两圆的方程化为标准方程,得2222(3)16,(3)36x y x y ++=++=. 故两圆的半径分别为1246r r ==和,两圆的圆心距d ==.因为1212||r r d r r -<<+,所以两圆相交.点评:判断两圆的位置关系,不仅仅要判断d 与12r r +的大小,有时还需要判断d 与12r r -的关系.6. 分析:如图,所求圆经过原点和(0,6)A ,且圆心应在已知圆的圆心与原点的连线上.根据这三个条件可确定圆的方程.【解】将圆C 化为标准方程,得22(5)(5)50x y +++=,则圆心为(5,5)C --,半径为0x y -=.设所求圆的方程为222()()x a y b r -+-=.由题意知,(0,0),(0,6)O A 在此圆上,且圆心(,)M a b 在直线0x y -=上,则有222222(0)(0),3,(0)(6),3,0a b r a a b r b a b r ⎧-+-=⎧=⎪⎪-+-=⇒=⎨⎨⎪⎪-==⎩⎩于是所求圆的方程是22(3)(3)18x y -+-=.点评:此题还可以通过弦的中垂线必过圆心这一性质来解题,由题意,圆心必在直线3y =上,又圆心在直线0x y -=,从而圆心坐标为(3,3),r =,所以所求圆的方程为22(3)(3)18x y -+-=.7. 分析:因两圆的交点坐标同时满足两个圆方程,联立方程组,消去2x 项、2y 项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.【解】设两圆交点为11(,)A x y 、22(,)B x y ,则A B 、两点坐标满足方程组 22222610,(1)42110,(2)x y x y x y x y ⎧++-+=⎪⎨+-+-=⎪⎩,(1)(2)-得3460x y -+=. 因为,A B 、两点坐标都满足此方程,所以,3460x y -+=即为两圆公共弦所在的直线方程.易知圆1C 的圆心(1,3)-,半径3r =.又1C到直线的距离为95d ==.所以,245AB ===.即两圆的公共弦长为245. 点评:本题较为复杂,要讨论的情况比较多,解题过程中要 注重分析.8.分析:所求圆圆心是两已知圆连心线和已知直线的交点,再利用弦心距、弦长、半径之间的关系求圆半径【解】(法一)可求得两圆连心线所在直线的方程为30x y++=.由40,30,x yx y--=⎧⎨++=⎩得圆心17(,)22-.利用弦心距、弦长、半径之间的关系可求得公共弦长d=所以,圆半径22217|()4|89()22dr⎛⎫--+⎪=+=.所以,所求圆方程为221789()()222x y-++=,即227320x y x y+-+-=(法二)设所求圆的方程为222264(628)0x y x x y yλ++-+++-=即2266428111x y x yλλλλλ++++-=+++.故此圆的圆心为33(,)11λλλ--++,它在直线40x y--=上,所以334011λλλ--+-=++,所以7λ=-.所以所求圆方程为227320x y x y+-+-=点评:“解法二”中设出的经过两已知圆交点的圆方程叫做经过两已知圆的圆系方程.。
高中数学必修2-4.2.2《圆与圆的位置关系》同步练习

4.2.2 《圆与圆的位置关系》同步练习一、选择题1.圆C1:x2+y2+4x+8y-5=0与圆C2:x2+y2+4x+4y-1=0的位置关系为()A.相交B.外切C.内切D.外离[答案] C[解析]由已知,得C1(-2,-4),r1=5,C2(-2,-2),r2=3,则d=|C1C2|=2,∴d=|r1-r2|.∴两圆内切.2.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=25[答案] B[解析]设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x-5)2+(y+1)2=25.3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是() A.a2-2a-2b-3=0 B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0[答案] B[解析]利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.4.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r=()A.5 B.4C.3 D.2 2[答案] C[解析]设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.5.若集合A={(x,y)|x2+y2≤16|,B={(x,y)|x2+(y-2)2≤a-1},且A∩B=B,则a的取值范围是() A.a≤1 B.a≥5C.1≤a≤5 D.a≤5[答案] D[解析]A∩B=B等价于B⊆A.当a>1时,集合A和B分别代表圆x2+y2=16和圆x2+(y-2)2=a-1上及内部的点,容易得出当B对应的圆的半径长小于等于2时符合题意.由0<a-1≤4,得1<a≤5;当a =1时,集合B中只有一个元素(0,2),满足B⊆A;当a<1时,集合B为空集,也满足B⊆A.综上可知,当a ≤5时符合题意.6.若圆(x -a )2+(y -a )2=4上,总存在不同的两点到原点的距离等于1,则实数a 的取值范围是( )A .⎝⎛⎭⎫22,322B .⎝⎛⎭⎫-322,-22 C .⎝⎛⎭⎫-322,-22∪⎝⎛⎭⎫22,322 D .⎝⎛⎭⎫-22,22 [答案] C [解析] 圆(x -a )2+(y -a )2=4的圆心C (a ,a ),半径r =2,到原点的距离等于1的点的集合构成一个圆,这个圆的圆心是原点O ,半径R =1,则这两个圆相交,圆心距d =a 2+a 2=2|a |,则|r -R |<d <r +R ,则1<2|a |<3,所以22<|a |<322, 所以-322<a <-22或22<a <322. 二、填空题7.若点A (a ,b )在圆x 2+y 2=4上,则圆(x -a )2+y 2=1与圆x 2+(y -b )2=1的位置关系是________.[答案] 外切[解析] ∵点A (a ,b )在圆x 2+y 2=4上,∴a 2+b 2=4.又圆x 2+(y -b )2=1的圆心C 1(0,b ),半径r 1=1,圆(x -a )2+y 2=1的圆心C 2(a,0),半径r 2=1,则d =|C 1C 2|=a 2+b 2=4=2,∴d =r 1+r 2.∴两圆外切.8.与直线x +y -2=0和圆x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是________.[答案] (x -2)2+(y -2)2=2[解析] 已知圆的标准方程为(x -6)2+(y -6)2=18,则过圆心(6,6)且与直线x +y -2=0垂直的方程为x -y =0.方程x -y =0分别与直线x +y -2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x -2)2+(y -2)2=2.9.已知点P 在圆x 2+y 2-8x -4y +11=0上,点Q 在圆x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是________.[答案] 35-5[解析] 两圆的圆心和半径分别为C 1(4,2),r 1=3,C 2(-2,-1),r 2=2,∴d =|C 1C 2|=45>r 1+r 2=5.∴两圆外离.∴|PQ |min =|C 1C 2|-r 1-r 2=35-3-2=35-5.三、解答题10.已知圆M :(x +1)2+y 2=1.圆N :(x -1)2+y 2 =9,动圆P 与圆M 外切并且与圆N 内切,圆心P的轨迹为曲线C 求C 的方程.[分析] 根据动圆P 与圆M 外切并且与圆N 内切得|PM |+|PN |=(R +r 1)+(r 2-R )=4,再根据两点间距离公式求得C 的方程.[解析] 由已知得圆M 的圆心为M (-1,0),半径长r 1=1,圆N 的圆心为N (1,0),半径长r 2=3. 设动圆P 的圆心为P (x ,y ),半径长为R ,∵圆P 与圆M 外切并且与圆N 内切,∴|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4. 由两点间距离公式得(x +1)2+y 2+(x -1)2+y 2=4,即(x +1) 2+y 2=4-(x -1)2+y 2,两边平方化简得C 的方程为x 24+x 23=1(x ≠-2). 11.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 方法1:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0, 相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎪⎨⎪⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0, 联立得两圆交点坐标(-1,2),(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为 12(5+1)2+(-6-2)2=5. ∴圆C 的方程为(x -2)2+(y +2)2=25.方法2:由方法1可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-122(1+λ),-16λ-22(1+λ)). ∵圆心C 在公共弦所在直线上,∴4·-(12λ-12)2(1+λ)+3·-(16λ-2)2(1+λ)-2=0, 解得λ=12. ∴圆C 的方程为x 2+y 2-4x +4y -17=0.12.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.[解析] (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在,设直线l 的方程为y =k (x -4),圆C 1的圆心C 1(-3,1)到直线l 的距离为d =|1-k (-3-4)|1+k 2, 因为直线l 被圆C 1截得的弦长为23,∴4=(3)2+d 2,∴k (24k +7)=0,即k =0或k =-724, 所以直线l 的方程为y =0或7x +24y -28=0(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ),因为C 1和C 2的半径相等,及直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等, 即|1-k (-3-a )-b |1+k 2=⎪⎪⎪⎪5+1k (4-a )-b 1+1k 2整理得:|1+3k +ak -b |=|5k +4-a -bk |,∴1+3k +ak -b =5k +4-a -bk或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5.因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧ a +b -2=0b -a +3=0,或⎩⎪⎨⎪⎧ a -b +8=0a +b -5=0, 解得⎩⎨⎧ a =52b =-12或⎩⎨⎧ a =-32b =132这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭⎫-32,132. 经检验点P 1和P 2满足题目条件.。
高一数学人教A版必修2练习4.2.2 圆与圆的位置关系 Word版含解析

.圆与圆的位置关系
圆与圆位置关系的判定有两种方法.
()几何法.若两圆的半径分别为,,两圆的圆心距为,则两圆的位置关系的判断方法如下:
()代数法.联立两圆的方程组成方程组,则方程组解的个数与两圆的位置关系如下表所示:
两圆的位置关系有相切、相交、相离.
两圆的半径分别为,,圆心距设为.
当>+时,两圆外离;
当=+时,两圆外切;
当-<<+时,两圆相交;
当=-时,两圆内切;
当<-时,两圆内含.
如何根据圆的方程,判断它们之间的位置关系?
答案:联立圆的方程组,当交点个数为时,则外离或内含;
当交点个数为时,则外切或内切;当交点个数为时,则相交.
►思考应用
两圆的公切线有几条?
解析:当两圆内切时有一条公切线;当两圆外切时,有三条公切线:两条外公切线、一条内公切线;当两圆相交时,有两条外公切线;当两圆相离时有四条公切线:两条外公切线、两条内公切线;当两圆内含时,没有公切线.。
【创新设计】高中数学(人教版必修二)配套练习:4.2.2圆与圆的位置关系(含答案解析)

4.2.2 圆与圆的位置关系【课时目标】 1.掌握圆与圆的位置关系及判定方法.2.会利用圆与圆位置关系的判断方法进行圆与圆位置关系的判断.3.能综合应用圆与圆的位置关系解决其他问题.圆与圆位置关系的判定有两种方法:1.几何法:若两圆的半径分别为r 1、r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下:2.代数法:通过两圆方程组成方程组的公共解的个数进行判断.⎭⎪⎬⎪⎫圆C 1方程圆C 2方程――→消元一元二次方程⎩⎪⎨⎪⎧Δ>0⇒ Δ=0⇒Δ<0⇒一、选择题1.两圆(x +3)2+(y -2)2=4和(x -3)2+(y +6)2=64的位置关系是( ) A .外切 B .内切 C .相交 D .相离2.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公切线有( ) A .1条 B .2条 C .3条 D .4条3.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A 、B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=04.圆C 1:(x -m)2+(y +2)2=9与圆C 2:(x +1)2+(y -m)2=4外切,则m 的值为( )A.2 B.-5C.2或-5 D.不确定5.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是() A.(x-5)2+(y+7)2=25B.(x-5)2+(y+7)2=17或(x-5)2+(y+7)2=15C.(x-5)2+(y+7)2=9D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=96.集合M={(x,y)|x2+y2≤4},N={(x,y)|(x-1)2+(y-1)2≤r2,r>0},且M∩N=N,则r的取值范围是()A.(0,2-1) B.(0,1]C.(0,2-2] D.(0,2]二、填空题7.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,则实数a的值为________.8.两圆交于A(1,3)及B(m,-1),两圆的圆心均在直线x-y+n=0上,则m+n的值为________.9.两圆x2+y2-x+y-2=0和x2+y2=5的公共弦长为____________.三、解答题10.求过点A(0,6)且与圆C:x2+y2+10x+10y=0切于原点的圆的方程.11.点M在圆心为C1的方程x2+y2+6x-2y+1=0上,点N在圆心为C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.能力提升12.若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度为________.13.已知点P(-2,-3)和以点Q为圆心的圆(x-4)2+(y-2)2=9.(1)画出以PQ为直径,Q′为圆心的圆,再求出它的方程;(2)作出以Q为圆心的圆和以Q′为圆心的圆的两个交点A,B.直线PA,PB是以Q为圆心的圆的切线吗?为什么?(3)求直线AB的方程.1.判定两圆位置关系时,结合图形易于判断分析,而从两圆方程出发往往比较繁琐且不准确,可充分利用两圆圆心距与两圆半径的和差的比较进行判断.2.两圆的位置关系决定了两圆公切线的条数.3.两圆相交求其公共弦所在直线方程,可利用两圆方程作差,但应注意当两圆不相交时,作差得出的直线方程并非两圆公共弦所在直线方程.4.2.2圆与圆的位置关系答案知识梳理1.d>r1+r2r1+r2d=|r1-r2||r1-r2|2.相交内切或外切外离或内含作业设计1.A[圆心距d=r+R,选A.]2.C[∵两圆标准方程为(x-2)2+(y+1)2=4,(x +2)2+(y -2)2=9,∴圆心距d =(2+2)2+(-1-2)2=5, r 1=2,r 2=3,∴d =r 1+r 2,∴两圆外切,∴公切线有3条.]3.C [两圆圆心所在直线即为所求,将两圆圆心代入验证可得答案为C .] 4.C [外切时满足r 1+r 2=d ,即(m +1)2+(-2-m)2=5,解得m =2或-5.]5.D [设动圆圆心为P ,已知圆的圆心为A(5,-7),则外切时|PA|=5,内切时|PA|=3,所以P 的轨迹为以A 为圆心,3或5为半径的圆,选D .]6.C [由已知M∩N =N 知N ⊆M ,∴圆x 2+y 2=4与圆(x -1)2+(y -1)2=r 2内切或内含, ∴2-r≥2,∴0<r≤2-2.] 7.±25或0解析 ∵圆心分别为(0,0)和(-4,a),半径分别为1和5,两圆外切时有 (-4-0)2+(a -0)2=1+5,∴a =±25, 两圆内切时有(-4-0)2+(a -0)2=5-1, ∴a =0.综上,a =±25或a =0. 8.3解析 A 、B 两点关于直线x -y +n =0对称, 即AB 中点(m +12,1)在直线x -y +n =0上,则有m +12-1+n =0,①且AB 斜率41-m=-1②由①②解得:m =5,n =-2,m +n =3. 9. 2解析 由⎩⎪⎨⎪⎧x 2+y 2-x +y -2=0 ①x 2+y 2=5 ②②-①得两圆的公共弦所在的直线方程为x -y -3=0, ∴圆x 2+y 2=5的圆心到该直线的距离为 d =|-3|1+(-1)2=32,设公共弦长为l ,∴l =25-⎝⎛⎭⎫322=2.10.解 设所求圆的方程为 (x -a)2+(y -b)2=r 2, 则⎩⎨⎧a=b ①b =3 ②a 2+b 2=r ③由①②③得⎩⎨⎧a =b =3r =32.∴(x -3)2+(y -3)2=18.11.解 把圆的方程都化成标准形式,得(x +3)2+(y -1)2=9, (x +1)2+(y +2)2=4.如图,C 1的坐标是(-3,1),半径长是3;C 2的坐标是(-1,-2),半径长是2.所以, |C 1C 2|=(-3+1)2+(1+2)2=13. 因此,|MN|的最大值是13+5. 12.4解析 如图所示,在Rt △OO 1A 中,OA =5,O 1A =25, ∴OO 1=5, ∴AC =5×255=2, ∴AB =4. 13.解(1)∵已知圆的方程为 (x -4)2+(y -2)2=32, ∴Q(4,2).PQ 中点为Q′⎝⎛⎭⎫1,-12, 半径为r =|PQ|2=612,故以Q′为圆心的圆的方程为(x -1)2+⎝⎛⎭⎫y +122=614. (2)∵PQ 是圆Q′的直径,∴PA ⊥AQ(如图所示) ∴PA 是⊙Q 的切线,同理PB 也是⊙Q 的切线. (3)将⊙Q 与⊙Q′方程相减,得6x +5y -25=0. 此即为直线AB 的方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后训练
1.⊙A ,⊙B ,⊙C 两两外切,半径分别为2,3,10,则△ABC 的形状是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
2.设集合A ={}
22(,)4x y x y +≤,B ={(x ,y )|(x -1)2+(y -1)2≤r 2(r >0)},当A ∩B =B 时,r 的取值范围是( )
A .(01)
B .(0,1]
C .(0, 2
D .(03.一圆过圆x +y 2-2x =0与直线x +2y -3=0的交点,且圆心在y 轴上,则这个圆的方程是( )
A .x 2+y 2-4x -4y +6=0
B .x 2+y 2+4y -6=0
C .x 2+y 2-2x =0
D .x 2+y 2+4x -6=0
4.若圆x 2+y 2=4与圆x 2+y 2+ay -2=0的公共弦的长度为则常数a 的值为( )
A .±2
B .2
C .-2
D .±4
5.点P 在圆O :x 2+y 2=1上运动,点Q 在圆C :(x -3)2+y 2=1上运动,则|PQ |的最
小值为( )
A .3
B .2
C .1
D .4
6.若圆x 2+y 2-2ax +a 2=2和圆x 2+y 2-2by +b 2=1相外离,则a ,b 满足的条件是__________.
7.两圆相交于点A (1,3),B (m ,-1),两圆的圆心均在直线x -y +c =0上,则m +c 的值为__________.
8.过原点O 作圆x 2+y 2-4x -8y +16=0的两条切线,设切点分别为P ,Q ,则直线PQ 的方程为________.
9.求过点A (4,-1)且与圆C :(x +1)2+(y -3)2=5相切于点B (1,2)的圆的方程.
10.已知圆M :x 2+y 2=10和圆N :x 2+y 2+2x +2y -14=0.
求过两圆交点且面积最小的圆的方程.
参考答案1答案:B
2答案:C
3答案:B
4答案:A
5答案:C
6答案:a2+b2>3+
7答案:3
8答案:x+2y-8=0
9答案:所求圆的方程为(x-3)2+(y-1)2=5.
10答案:所求圆的方程为(x-1)2+(y-1)2=8.。