人教版高中数学必修一教案

合集下载

人教a版数学必修1教案6篇

人教a版数学必修1教案6篇

人教a版数学必修1教案6篇人教a版数学必修1教案篇1教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。

教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。

而这个数列就是我们今天要研究的等比数列了。

)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

新人教版高中数学必修一全套教案

新人教版高中数学必修一全套教案

b. {(x,y) ∣ x+y=6 ,x、 y∈ N}用列举法表示为
.
c. 用列举法表示下列集合 , 并说明是有限集还是无限集 ?
(1){x ∣ x 为不大于 20 的质数 }; (2){100
以下的 ,9 与 12 的公倍数 };
(3){(x,y)
∣ x+y=5,xy=6};
d. 用描述法表示下列集合 , 并说明是有限集还是无限集 ?
1. 1. 2 集 合间的基 本关系 (1 课时 )
教学目标: 1. 理解子集、真子集概念;
2. 会判断和证明两个集合包含关系;
3. 理解“ ”、“ ”的含义; 4. 会判断简单集合的相等关系;
5. 渗透问题相对的观点。
教学重点: 子集的概念、真子集的概念
教学难点: 元素与子集、属于与包含间区别、描述法给定集合的运算
, 以提供某种规律 ,
例 1.用列举法表示下列集合: (1) 小于 5 的正奇数组成的集合; (2) 能被 3 整除而且大于 4 小于 15 的自然数组成的集合; (3) 从 51 到 100 的所有整数的集合; (4) 小于 10 的所有自然数组成的集合;
(5) 方程 x 2 x 的所有实数根组成的集合;
②若 a Ν ,b Ν , 则 a+b 的最小值是 2 ④ x 2+4=4x 的解集可表示为 {2,2}
其中正确命题的个数是 ( )
A .0
B
.1
C
.2
D
.3
( IV )课时小 结
1. 集 合的含 义;
2. 集合元素的三个特征中,确定性可用于判定某些对象是否是给定集合的元素,互异性可用于简化集
合的表示,无序性可用于判定集合的关系。

人教版高中数学新教材必修第一册第一、二章教案(表格式、值得收藏)

人教版高中数学新教材必修第一册第一、二章教案(表格式、值得收藏)

B 三者之间的关系.让学生独立完成后,教师通过检查,进行反馈,并强调:(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.(2)对于表示不等式解集的集合的运算,可借助数轴解题.2.交集(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A .B 与集合C 之间有什么关系?①{2,4,6,8,10},{3,5,8,12},{8};A B C ===②{|20049}.A x x =是国兴中学年月入学的高一年级女同学B={x |x 是国兴中学2004年9月入学的高一年级同学},C={x |x 是国兴中学2004年9月入学的高一年级女同学}.教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义;一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:A ∩B. 读作:A 交B其含义用符号表示为:{|,}.A B x x A x B =∈∈且接着教师要求学生用Venn 图表示交集运算.(2)练习.检查和反馈①设平面内直线1l 上点的集合为1L ,直线1l 上点的集合为2L ,试用集合的运算表示1l 的位置关系.②学校里开运动会,设A={x |x 是参加一百米跑的同学},B={x |x 是参加二百米跑的同学},C={x |x 是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A ∩B 与A ∩C的含义.学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.(三)学生自主学习,阅读理解1.教师引导学生阅读教材第10页中有关补集的内容,并思考回答下例问题:(1)什么叫全集?(2)补集的含义是什么?用符号如何表示它的含义?用Venn 图又表示?(3)已知集合{|38},R A x x A =≤<求.(4)设S={x |x 是至少有一组对边平行的四边形},A={x |x 是平行四边形},B={xABA S思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学中学教案2020年月日中学教案2020年月日中学教案2020年月日2sin x x+≥x +恒成立,则1x ax -+2sin 3x x -+的值域;sin x x +-中学教案2020年月日中学教案2020年月日中学教案 2020年 月 日课题 2.2基本不等式1教 学 目 标 知识目标学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等能力目标 通过实例探究抽象基本不等式情感目标 通过本节的学习,体会数学来源于生活,提高学习数学的兴趣教学重点 应用数形结合的思想理解不等式,并从不同角度探索不等式2a bab +≤的证明过程教学难点基本不等式2a bab +≤等号成立条件 主要教法 教学媒体教学过程1.课题导入基本不等式2a bab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

人教版高一数学必修一教案(优秀4篇)

人教版高一数学必修一教案(优秀4篇)

人教版高一数学必修一教案(优秀4篇)人教版高一数学必修一教案篇一教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。

二、新课教学1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∪A,或x∪B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x≤2} B={x|0≤x≤3}(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B 读作:“A交B”即:A∩B={x|∪A,且x∪B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

例题2求集合A与B的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x≤2} B={x|0≤x≤3}拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解例3(P12例1):理解所给集合的含义,可借助venn图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。

人教版高中数学必修1集合教案

人教版高中数学必修1集合教案

集 合教学目标: 1、理解集合的概念和性质.2、了解元素与集合的表示方法.3、熟记有关数集.4、培养学生认识事物的能力.教学重点: 集合概念、性质教学难点: 集合概念的理解教学过程:1、 定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集).元素:集合中每个对象叫做这个集合的元素.由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x-2> x+3的实数x ,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学.一般用大括号表示集合,{ … }如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。

则上几例可表示为……为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}2(1)确定性;(2)互异性;(3)无序性.3、元素与集合的关系:隶属关系元素与集合的关系有“属于∈”及“不属于∉(∉ 也可表示为 )两种。

如A={2,4,8,16},则4∈A ,8∈A ,32 A.∈∉集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集A 记作a ∈A ,相反,a 不属于集A 记作 a ∉A (或a A )注:1、集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……2、“∈”的开口方向,不能把a ∈A 颠倒过来写。

4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。

记作N *或N + 。

Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *请回答:已知a+b+c=m ,A={x|ax 2+bx+c=m},判断1与A 的关系。

1.1.2 集合间的基本关系教学目标:1.理解子集、真子集概念;2.会判断和证明两个集合包含关系;3.理解 ”、“⊆”的含义; 4.会判断简单集合的相等关系;5.渗透问题相对的观点。

人教版高中数学必修1教案

人教版高中数学必修1教案

人教版高中数学必修1教案课程名称:高中数学必修1课时:第一课时教学内容:集合与逻辑教学目标:1. 掌握集合与元素的概念,能正确描述给定集合的特征;2. 理解集合的相等与包含关系,并能运用相关概念进行简单的集合运算;3. 熟练掌握逻辑联结词的含义,能正确运用逻辑联结词构建简单的命题;4. 能够根据已知信息推出结论,培养逻辑思维能力。

教学重点与难点:1. 集合的概念与运算规则;2. 逻辑联结词的含义与运用。

教学准备:1. 教材《高中数学必修1》;2. 课件;3. 讲义。

教学过程:一、导入(5分钟)教师引入集合与逻辑的概念,通过一个实际生活中的例子来引发学生对集合与逻辑的思考。

二、学习内容讲解(15分钟)1. 集合的概念与表示方法;2. 集合的分类与相等关系;3. 集合的运算规则;4. 逻辑联结词的含义与运用。

三、案例分析与讨论(15分钟)教师给出一些集合与逻辑的案例题目,让学生分组讨论并解答,引导学生通过实例加深对集合与逻辑知识的理解。

四、练习与巩固(10分钟)教师布置相关练习题,让学生独立完成并交流答案,巩固所学知识。

五、课堂总结(5分钟)教师对本节课的内容进行总结,强调要复习巩固所学知识,培养逻辑思维能力。

六、作业布置(5分钟)布置相关作业,要求学生认真复习本节课所学内容,做好相关题目。

教师反思:通过这节课的教学,我发现学生对于集合与逻辑的概念不够清晰,需要加强实例引导与案例分析,以提高学生的学习效果。

下节课我将更加注重实例的应用和练习题的设计,帮助学生更好地掌握相关知识。

人教A版高中数学必修1教案完整版

人教A版高中数学必修1教案完整版

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn 图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

高中数学必修一教案(优秀10篇)

高中数学必修一教案(优秀10篇)

高中数学必修一教案(优秀10篇)高中数学必修一教案篇一重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。

一。

教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法。

二。

教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B 的一个函数(function),记作:(),yfxxA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。

显然,值域是集合B的子集。

注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。

3.映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高中数学教案必修一篇二1.通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进学生全面认识数学的科学价值、应用价值和文化价值。

2.通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。

如何建立实际问题的目标函数是教学的重点与难点。

一、问题情境问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?问题3做一个容积为256l的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础。

许多重要的数学分支,都是建立在集合理论的基础上。

此外,集合理论的应用也变得更加广泛。

课型:新授课课时:1课时教学目标:1.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)牢记常用的数集及其专用的记号。

(3)理解集合中的元素具有确定性、互异性、无序性。

(4)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的问题。

2.过程与方法(1)学生经历从集合实例中抽象概括出集合共同特征的过程,深入理解集合的含义。

(2)学生自己归纳本节所学的知识点。

3.情感态度价值观使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣。

教学重点:集合的概念与表示方法。

教学难点:对待不同问题,表示法的恰当选择。

教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。

3.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

例:(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

例:(3)无序性:只要构成两个集合的元素一样,我们称这两个集合是相等的。

例:4.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

答案:(1)把3-11的每一个偶数作为元数,这些偶数全体就构成一个集合。

(2)不能组成集合,因为组成它的元素是不确定的。

5. 元素与集合的关系;(1)如果a 是集合A 的元素,就说a 属于(belong to )A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于(not belong to )A ,记作a ∉A 例:我们用A 表示“1~20以所有的素数”组成的集合,则3,4A A ∈∉6. 常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N *或N +;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1) 列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列表法。

如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…;例1.(课本例1)思考2,引入描述法答案:(1)1~9所有偶数组成的集合(2)不能,因为集合中元素的个数是无穷多个。

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:用集合所含元素的共同特征表示集合的方法称为描述法。

具体方法:在大括号先写上表示这个集合元素的一般符号及取值(或变化)围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P6思考)强调:描述法表示集合应注意集合的代表元素{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。

下列写法{实数集},{R}也是错误的。

如果写{实数}是正确的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P6练习)三、归纳小结本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

四、作业布置(书面作业:习题1.1,第1- 4题)课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课型:新授课课时:1课时教学目标:1.知识与技能(1)了解集合之间的包含与相等的含义;(2)能用venn图表达集合之间的关系;(3)理解子集、真子集和空集的概念。

2.过程与方法(1)通过对照实数的相等与不相等的关系,类比出集合之间的包含和相等关系。

(2)体会使用集合语言,发展运用数学语言进行交流的能力。

3.情感态度价值观感受集合语言在描述客观现实和数学问题中的意义。

教学重点:子集与真子集的概念;用Venn图表达集合间的关系。

教学难点:弄清楚元素与集合、集合与集合间的关系。

教学过程:四、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 ∈N;(2;(3)-1.5 ∈R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)五、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A 。

一般地,对于两个集合A ,B ,如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。

记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A 当集合A 不包含于集合B 时,记作A B用Venn 图表示两个集合间的“包含”关系)(A B B A ⊇⊆或(二) 集合与集合之间的 “相等”关系;如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 的元素是一样的,因此,集合A 与集合B 相等。

记作:A=BA B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=A B B A B A 练习结论:⊆任何一个集合是它本身的子集(三) 真子集的概念如果集合B A ⊆,但存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。

记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念例:方程210x +=的所有实数根组成的集合。

把不含有任何元素的集合叫做空集(empty set ),记作:∅ 规定:空集是任何集合的子集,是任何非空集合的真子集。

(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。

(2)化简集合A={x|x-3>2},B={x|x ≥5},并表示A 、B 的关系;(七) 课堂练习(八) 归纳小结,强化思想两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系。

同时还要注意区别“属于”与“包含”两种关系及其表示方法;(九) 作业布置1、 书面作业:习题1.1 第5题2、 提高作业:○1 已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,数a 的取值围。

○2 设集合}{}{}{矩形平行四边形四边形===,C ,B A , }{正方形=D ,试用Venn 图表示它们之间的关系。

课题:§1.3集合的基本运算课 型:新授课课 时:1课时教学目标:1.知识与技能(1) 理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2) 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3) 能用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

2.过程与方法学生通过观察和类比,借助Veen图理解集合的基本运算。

3.情感态度价值观进一步树立属性数形结合的思想;体会类比的作用;感受集合作为一种语言,在表示数学容时的简洁与准确。

教学重点:交集与并集、全集与补集的概念。

教学难点:理解交接与并集的概念和符号之间的区别与联系。

教学过程:六、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。

答案:①A和B都是C的子集;②A中的元素和B中的元素合在一起组成的集合正好是集合C。

七、新课教学1.并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。

例题(P 9-10例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

集合并的运算性质(思考):①A A A =;②A A ∅=问题:在上图中我们除了研究集合A 与B 的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A 与B 的交集。

2. 交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。

记作:A ∩B读作:“A 交B ” 即: A ∩B={x|∈A ,且x ∈B}交集的Venn 图表示说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。

问:如果A 与B 没有公共部分,他们的交接还是一个集合吗?答案:是,因为空集仍是一个集合。

说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集。

交集的运算性质:①A A A =;②A ∅=∅例题(P 9-10例6、例7)拓展:求下列各图中集合A 与B 的并集与交集3. 补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。

相关文档
最新文档