matlab图像处理的几个实例

合集下载

MATLAB技术图像旋转实例

MATLAB技术图像旋转实例

MATLAB技术图像旋转实例导言图像处理是计算机科学领域中的一个重要分支,而旋转是图像处理中经常遇到的一个操作。

在本文中,我们将使用MATLAB来演示如何使用该软件进行图像旋转。

一、图像旋转的基本概念在图像处理中,旋转是指将图像绕着一个中心点进行旋转变换,使得图像在平面上发生方向的变化。

旋转操作通常可以通过应用旋转矩阵来实现。

旋转矩阵包含了旋转角度和旋转中心等信息,通过将旋转矩阵应用于图像,我们可以得到旋转后的图像。

二、MATLAB中的图像旋转函数MATLAB提供了多种图像旋转函数,其中最常用的是imrotate函数。

该函数可以实现对图像进行任意角度的旋转操作。

使用imrotate函数的基本用法如下:rotated_image = imrotate(original_image, angle);其中,original_image是待旋转的图像,angle是旋转的角度。

通过该函数,我们可以得到旋转后的图像rotated_image。

三、MATLAB实例:图像旋转操作为了更好地理解MATLAB中的图像旋转函数的使用,我们将通过一个实际的例子来演示。

假设我们有一张名为"lena.jpg"的图像,我们希望将该图像按顺时针方向旋转45度。

首先,我们需要在MATLAB中加载该图像。

可以使用imread函数实现图片的加载:image = imread('lena.jpg');然后,我们使用imrotate函数对图像进行旋转操作:rotated_image = imrotate(image, 45);最后,我们使用imshow函数来显示旋转后的图像:imshow(rotated_image);通过运行上述代码,我们可以在MATLAB的图像窗口中看到旋转后的图像。

如图1所示,旋转后的lena图像呈现出45度旋转的效果。

图1:旋转后的lena图像四、其他图像旋转技术除了imrotate函数,MATLAB还提供了其他的图像旋转技术,如基于仿射变换的图像旋转、基于坐标变换的图像旋转等。

MATLAB程序设计及应用实例

MATLAB程序设计及应用实例

MATLAB程序设计及应用实例MATLAB(Matrix Laboratory)是一种用于算法开发、数据分析、可视化和数值计算的高级技术计算语言和环境。

它的强大功能和灵活性使其成为各个领域研究和工程实践中广泛使用的工具。

下面将介绍几个MATLAB程序设计及应用的实例。

1.信号处理:MATLAB是信号处理的强大工具,它可以用于滤波、频谱分析、小波变换、分析和合成音频信号等。

例如,可以利用MATLAB进行语音信号的去噪处理,通过设计特定的滤波器来去除信号中的噪声成分,从而提取出清晰的语音信号。

2.图像处理:MATLAB可以进行图像的加载、处理和分析。

它提供了丰富的图像处理函数和工具箱,可以实现图像的滤波、二值化、边缘检测、图像增强等操作。

例如,可以使用MATLAB对医学图像进行分割,将感兴趣的区域提取出来,辅助医生进行病灶诊断。

3.控制系统设计:MATLAB是控制系统设计的有效工具。

它提供了丰富的控制系统分析和设计函数,可以进行系统建模、模拟和优化。

例如,可以使用MATLAB进行PID控制器的参数调整,通过对系统建模和后续仿真,优化PID控制器的参数,提高控制系统的性能和稳定性。

4.机器学习:MATLAB提供了强大的机器学习和深度学习工具箱,可以进行数据预处理、特征提取、模型训练和评估等操作。

例如,可以利用MATLAB进行图像分类,通过构建深度卷积神经网络模型,将输入的图像进行分类和识别。

5.数值计算:MATLAB对线性代数、数值优化和统计分析等有着强大的支持。

它提供的优化和求解函数可以解决复杂的线性和非线性优化问题,例如最小二乘拟合和参数估计等。

此外,MATLAB还拥有强大的统计分析工具,可以进行假设检验、数据拟合、方差分析等统计分析操作。

6.仿真模拟:MATLAB可以进行动态系统的建模和仿真,通过搭建系统方程和初始条件,可以对系统的动态响应进行模拟。

例如,在电力系统中,可以使用MATLAB进行电力系统稳定性分析,对电力系统的动态响应进行跟踪和分析。

用matlab实现数字图像处理几个简单例子

用matlab实现数字图像处理几个简单例子

实验报告实验一图像的傅里叶变换(旋转性质)实验二图像的代数运算实验三filter2实现均值滤波实验四图像的缩放朱锦璐04085122实验一图像的傅里叶变换(旋转性质)一、实验内容对图(1.1)的图像做旋转,观察原图的傅里叶频谱和旋转后的傅里叶频谱的对应关系。

图(1.1)二、实验原理首先借助极坐标变换x=rcosθ,y=rsinθ,u=wcosϕ,v=wsinϕ,,将f(x,y)和F(u,v)转换为f(r,θ)和F(w,ϕ).f(x,y) <=> F(u,v)f(rcosθ,rsinθ)<=> F(wcosϕ,wsinϕ)经过变换得f( r,θ+θ。

)<=>F(w,ϕ+θ。

)上式表明,对f(x,y)旋转一个角度θ。

对应于将其傅里叶变换F(u,v)也旋转相同的角度θ。

F(u,v)到f(x,y)也是一样。

三、实验方法及程序选取一幅图像,进行离散傅里叶变换,在对其进行一定角度的旋转,进行离散傅里叶变换。

>> I=zeros(256,256); %构造原始图像I(88:168,120:136)=1; %图像范围256*256,前一值是纵向比,后一值是横向比figure(1);imshow(I); %求原始图像的傅里叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figure(2)imshow(J1,[5 50])J=imrotate(I,45,'bilinear','crop'); %将图像逆时针旋转45°figure(3);imshow(J) %求旋转后的图像的傅里叶频谱J1=fft2(J);F=abs(J1);J2=fftshift(F);figure(4)imshow(J2,[5 50])四、实验结果与分析实验结果如下图所示(1.2)原图像(1.3)傅里叶频谱(1.4)旋转45°后的图像(1.5)旋转后的傅里叶频谱以下为放大的图(1.6)原图像(1.7)傅里叶频谱(1.8)旋转45°后的图像(1.9)旋转后的傅里叶频谱由实验结果可知1、从旋转性质来考虑,图(1.8)是图(1.6)逆时针旋转45°后的图像,对比图(1.7)和图(1.9)可知,频域图像也逆时针旋转了45°2、从尺寸变换性质来考虑,如图(1.6)和图(1.7)、图(1.8)和图(1.9)可知,原图像和其傅里叶变换后的图像角度相差90°,由此可知,时域中的信号被压缩,到频域中的信号就被拉伸。

MATLAB技术卷积运算实例

MATLAB技术卷积运算实例

MATLAB技术卷积运算实例卷积运算是数字图像处理中一种常用的操作,它在信号处理、图像处理、神经网络以及其它许多领域都有广泛的应用。

MATLAB作为一款功能强大的数学软件,提供了各种函数和工具箱,使得卷积运算在MATLAB中变得非常方便和高效。

本文将通过几个实例演示如何使用MATLAB进行卷积运算,并介绍一些常见的卷积运算技巧和应用。

一、一维离散卷积在信号处理中,一维离散卷积是一种将两个离散信号相乘后求和的运算。

在MATLAB中,我们可以使用conv函数来实现一维离散卷积运算。

假设我们有两个长度分别为N和M的一维信号x和h,我们可以通过以下代码实现卷积运算:```matlabx = [1, 5, 2, 3, 4]; % 一维信号xh = [2, 1, 3]; % 一维信号hy = conv(x, h); % 进行卷积运算```在上述代码中,x和h分别表示两个一维信号,y表示卷积运算的结果。

通过运行以上代码,我们可以得到卷积运算的结果。

二、二维离散卷积除了一维信号,MATLAB也支持对二维图像进行卷积运算。

二维离散卷积是一种常见的图像处理操作,它在边缘检测、模糊处理等方面具有广泛的应用。

在MATLAB中,我们可以使用conv2函数来实现二维离散卷积运算。

假设我们有两个大小分别为NxM和PxQ的二维图像A和B,我们可以通过以下代码实现卷积运算:```matlabA = imread('image.jpg'); % 读取图像AB = [1, 2, 1; 0, 0, 0; -1, -2, -1]; % 卷积核BC = conv2(double(A), B, 'same'); % 进行卷积运算```在上述代码中,A表示二维图像,B表示卷积核,C表示卷积运算的结果。

我们首先使用imread函数读取图像A,并将其转换为double类型,以便于计算。

然后,我们定义一个卷积核B,可以根据需求进行设定。

matlab imfilter原理

matlab imfilter原理

matlab imfilter原理摘要:1.MATLAB imfilter 简介2.MATLAB imfilter 原理3.MATLAB imfilter 应用实例4.结论正文:【1】MATLAB imfilter 简介MATLAB中的imfilter函数是一种图像滤波工具,它可以对图像进行各种滤波操作,从而实现对图像的增强、去噪、边缘检测等处理。

imfilter函数基于线性滤波器原理,通过对图像进行卷积操作来实现滤波效果。

【2】MATLAB imfilter 原理imfilter函数的工作原理可以简单地概括为以下几点:1.准备输入图像:首先,我们需要一个输入图像,这个图像可以是8位或32位数值型。

2.设计滤波器:接下来,我们需要设计一个滤波器,这个滤波器可以是理想的低通、高通、带通等类型,也可以是自定义的滤波器。

3.卷积操作:imfilter函数会对输入图像和滤波器进行卷积操作,从而得到滤波后的图像。

4.输出结果:最后,imfilter函数将卷积操作的结果作为输出图像返回。

【3】MATLAB imfilter 应用实例以下是一个简单的MATLAB imfilter应用实例:1.加载图像:我们首先加载一张名为“example.jpg”的图像。

2.设计滤波器:接着,我们设计一个简单的低通滤波器,如5x5的卷积核。

3.应用滤波器:然后,我们使用imfilter函数对原始图像应用滤波器,得到滤波后的图像。

4.显示结果:最后,我们使用imshow函数显示原始图像和滤波后的图像,以便对比观察滤波效果。

【4】结论MATLAB中的imfilter函数为图像处理提供了强大的滤波功能,通过设计不同的滤波器,我们可以实现对图像的多种处理目的。

无论是基本的线性滤波,还是复杂的非线性滤波,imfilter函数都能轻松应对。

matlab卷积提取边缘实例

matlab卷积提取边缘实例

当谈到图像处理和边缘检测时,Matlab中的卷积技术无疑是一个非常有用且强大的工具。

在本文中,我将探讨Matlab中卷积提取边缘的实例,以及如何利用这一技术来实现高质量的图像处理。

我将从简单的概念和原理开始,逐步深入,帮助您更好地理解这一主题。

1. 初识卷积在图像处理中,卷积是一种非常重要的数学运算。

通过卷积,可以在图像中提取出一些特定的信息,比如边缘、纹理等。

在Matlab中,我们可以使用conv2函数来进行二维卷积运算。

这个函数非常灵活,可以对图像进行各种滤波操作。

2. 边缘检测边缘是图像中的一个非常重要的特征,常常被用来进行目标检测和识别。

在Matlab中,我们可以利用卷积来提取图像中的边缘信息。

常见的边缘检测算子包括Sobel、Prewitt、Canny等。

这些算子利用卷积的原理,通过对图像进行滤波,可以有效地提取出图像中的边缘信息。

3. 实例演示接下来,我将通过一个实例来演示如何在Matlab中利用卷积来提取图像中的边缘。

我们需要加载一张待处理的图像,并将其转化为灰度图像。

我们可以利用conv2函数和Sobel算子来对图像进行卷积操作,从而提取出图像中的边缘。

4. 结果展示通过卷积提取边缘后,我们可以将处理前后的图像进行对比,以展示卷积技术在边缘提取中的有效性。

我们也可以通过调整卷积核的参数,来观察其对边缘检测结果的影响。

这样可以帮助我们更好地理解卷积在边缘检测中的作用。

5. 个人观点在我看来,Matlab中的卷积技术在图像处理领域中具有非常重要的意义。

通过卷积,我们可以有效地提取图像中的各种特征信息,包括边缘、纹理等。

而且,Matlab提供了非常丰富和灵活的函数库,使得我们可以很方便地进行各种卷积操作。

我认为掌握卷积技术对于图像处理领域的学习和应用是非常重要的。

总结回顾通过本文的介绍,我希望您能对Matlab中卷积提取边缘的实例有一个更全面、深刻和灵活的理解。

我们从卷积的概念开始,介绍了卷积在边缘检测中的重要性,并通过实例演示和结果展示,帮助您更直观地理解了卷积在图像处理中的应用。

MATLAB在信号处理领域的应用案例

MATLAB在信号处理领域的应用案例

MATLAB在信号处理领域的应用案例随着科技的发展,信号处理已经成为了许多领域中不可或缺的一部分。

而在信号处理中,MATLAB作为一种高效且灵活的编程环境,广泛应用于各种信号处理算法的研究和实现。

本文将通过几个实际应用案例,介绍MATLAB在信号处理领域的丰富功能及其在实际问题中的应用。

一、音频信号处理音频信号是人们日常生活中最常接触到的信号之一。

MATLAB提供了丰富的音频处理工具箱,可以方便地实现音频的采集、处理和分析。

例如,我们可以使用MATLAB的音频录制函数进行音频信号的采集,并使用预先定义的滤波器函数对音频进行去噪。

此外,MATLAB还提供了音频压缩算法的实现,使得音频文件的存储和传输更加高效。

二、图像信号处理在图像处理中,MATLAB同样发挥着重要的作用。

通过MATLAB提供的图像处理工具箱,我们可以对图像进行各种滤波、增强和分割操作。

例如,可以使用MATLAB的图像平滑函数对图像进行模糊处理,或者使用边缘检测算法实现图像的边缘提取。

此外,MATLAB还提供了图像压缩算法的实现,可以对图像进行有损或无损的压缩,以满足不同应用的需求。

三、生物信号处理生物信号是一种具有时变特性的信号,如心电图(ECG)和脑电图(EEG)。

MATLAB提供了一系列函数和工具箱,用于处理和分析生物信号的特征。

例如,使用MATLAB的波形识别工具箱,可以对ECG信号进行心律失常的自动检测和分析。

此外,还可以使用MATLAB的信号处理工具箱对EEG信号进行频谱分析,以研究大脑的活动。

四、通信信号处理通信信号处理是将信息进行编码、传输和解码的过程,是现代通信系统中不可或缺的一环。

MATLAB提供了丰富的通信信号处理工具箱,用于设计和模拟各种调制、解调和误码控制算法。

例如,可以使用MATLAB的OFDM工具箱对正交频分复用(OFDM)系统进行仿真和性能分析。

此外,MATLAB还提供了对数字滤波器和符号调制算法的支持,方便了通信系统的设计和验证。

matlab图像处理基础实例

matlab图像处理基础实例

matlab图像处理基础实例·边缘检测(edge)边缘检测时先要把其他格式图像转化为灰度图像>> f=imread('');>> a=rgb2gray(f);>> [g,t]=edge(a,'canny');>> imshow(g)·剪贴(imcrop)、subplot等imfinfo colormap subimageimadd imsubtract immultiply imdivide imresize imrotate(旋转)>> a=imread('');>> b=imcrop(a,[75 68 130 112]);% I2 = IMCROP(I,RECT)% RECT is a 4-element vector with the form [XMIN YMIN WIDTH HEIGHT]; % subplot(121)⼀⾏两列的显⽰,当前显⽰第⼀个图⽚>> subplot(121);imshow(a);>> subplot(122);imshow(b);·roipoly选择图像中的多边形区域>> a=imread('');>> c=[200 250 278 248 199 172];>> r=[21 21 75 121 121 75];>> b=roipoly(a,c,r);>> subplot(121);imshow(a);>> subplot(122);imshow(b);·roicolor按灰度值选择的区域>> a=imread('');>> i=rgb2gray(a);>> b=roicolor(i,128,255);>> subplot(121);imshow(a);>> subplot(122);imshow(b);·转化指定的多边形区域为⼆值掩膜poly2mask>> x=[63 186 54 190 63];>> y=[60 60 209 204 60];>> b=poly2mask(x,y,256,256); >> imshow(b);>> holdCurrent plot held>> plot(x,y,'b','LineWidth',2)·roifilt2区域滤波a=imread('');i=rgb2gray(a);c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];b=roipoly(i,c,r);h=fspecial('unsharp');j=roifilt2(h,i,b);subplot(121),imshow(i);subplot(122),imshow(j);·roifill区域填充>> a=imread('');>> i=rgb2gray(a);>> c=[200 250 278 248 199 172]; >> r=[21 21 75 121 121 75]; >> j=roifill(i,c,r); >> subplot(211);imshow(i);>> subplot(212);imshow(j);·FFT变换f=zeros(100,100);f(20:70,40:60)=1;imshow(f);F=fft2(f);F2=log(abs(F));imshow(F2),colorbar·补零操作和改变图像的显⽰象限f=zeros(100,100);f(20:70,40:60)=1;subplot(121);imshow(f);F=fft2(f,256,256);F2=fftshift(F);subplot(122);imshow(log(abs(F2)))·离散余弦变换(dct)>> a=imread('');>> i=rgb2gray(a);>> j=dct2(i);>> subplot(131);imshow(log(abs(j))),colorbar >> j(abs(j)<10)=0;>> k=idct2(j);>> subplot(132);imshow(i);>> subplot(133);imshow(k,[0,255]);info=imfinfo('')%显⽰图像信息·edge提取图像的边缘canny prewitt sobelradon函数⽤来计算指定⽅向上图像矩阵的投影>> a=imread('');>> i=rgb2gray(a);>> b=edge(i);>> theta=0:179;>> [r,xp]=radon(b,theta);>> figure,imagesc(theta,xp,r);colormap(hot); >> xlabel('\theta(degrees)'); >> ylabel('x\prime');>> title('r_{\theta}(x\prime)');>> colorbar·filter2均值滤波>> a=imread('');>> i=rgb2gray(a);>> imshow(i)>> k1=filter2(fspecial('average',3),i)/255;%3*3 >> k2=filter2(fspecial('average',5),i)/255;%5*5 >> k3=filter2(fspecial('average',7),i)/255;%7*7 >> figure,imshow(k1)>> figure,imshow(k2)>> figure,imshow(k3)wiener2滤波eg:k=wiener(I,[3,3]))medfilt2中值滤波同上deconvwnr维纳滤波马赫带效应(同等差⾊带条)·减采样>> a=imread('');>> b=rgb2gray(a);>> [wid,hei]=size(b);>> quarting=zeros(wid/2+1,hei/2+1); >> i1=1;j1=1;>> for i=1:2:widfor j=1:2:heiquarting(i1,j1)=b(i,j);j1=j1+1;endi1=i1+1;j1=1;end>> figure>> imshow(uint8(quarting))>> title('4倍减采样')>> quarting=zeros(wid/4+1,hei/4+1); i1=1;j1=1;for i=1:4:widfor j=1:4:heiquarting(i1,j1)=b(i,j);j1=j1+1;endi1=i1+1;j1=1;end>> figure,imshow(uint8(quarting)); title('16倍减采样')结论:在采⽤不同的减采样过程中,其图像的清晰度和尺⼨均发⽣了变化灰度级转化>> a=imread('');>> b=rgb2gray(a);>> figure;imshow(b)>> [wid,hei]=size(b);>> img2=zeros(wid,hei);>> for i=1:widfor j=1:heiimg2(i,j)=floor(b(i,j)/128);endend>> figure;imshow(uint8(img2),[0,2]) %2级灰度图像图像的基本运算>> i=imread('');>> figure;subplot(231);imshow(i);>> title('原图');>> j=imadjust(i,[.3;.6],[.1 .9]);%Adjust image intensity values or colormap图像灰度值或colormap调整% J = IMADJUST(I,[LOW_IN; HIGH_IN],[LOW_OUT; HIGH_OUT])>> subplot(232);imshow(j);title('线性扩展');>> i1=double(i);i2=i1/255;c=2;k=c*log(1+i2);>> subplot(233);imshow(k);>> title('⾮线性扩展');>> m=255-i;>> subplot(234);imshow(m)>> title('灰度倒置')>> n1=im2bw(i,.4);n2=im2bw(i,.7);>> subplot(235);imshow(n1);title('⼆值化阈值')>> subplot(236);imshow(n2);title('⼆值化阈值')图像的代数运算加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab图像处理的几个实例(初学者用)1.图像的基本信息及其加减乘除clear,clc;P=imread('yjx.jpg');whos PQ=imread('dt.jpg');P=im2double(P);Q=im2double(Q);gg1=im2bw(P,0.3);gg2=im2bw(P,0.5);gg3=im2bw(P,0.8);K=imadd(gg1,gg2);L=imsubtract(gg2,gg3);cf=immultiply(P,Q);sf=imdivide(Q,P);subplot(421),imshow(P),title('郁金香原图');subplot(422),imshow(gg1),title('0.3');subplot(423),imshow(gg2),title('0.5');subplot(424),imshow(gg3),title('0.8');subplot(425),imshow(K),title('0.3+0.5');subplot(426),imshow(L),title('0.5-0.3');subplot(427),imshow(cf),title('P*Q');subplot(428),imshow(sf),title('P/Q');2.图像缩放clear,clc;I=imread('dt.jpg');A=imresize(I,0.1,'nearest');B=imresize(I,0.4,'bilinear');C=imresize(I,0.7,'bicubic');D=imresize(I,[100,200]);F=imresize(I,[400,100]);figuresubplot(321),imshow(I),title('原图');subplot(322),imshow(A),title('最邻近插值');subplot(323),imshow(B),title('双线性插值');subplot(324),imshow(C),title('二次立方插值');subplot(325),imshow(D),title('水平缩放与垂直缩放比例为2:1'); subplot(326),imshow(F),title('水平缩放与垂直缩放比例为1:4');灰度变换、直方图变换clear,clc;fg=imread('fg.jpg');zl=imread('zl.jpg');hfg=rgb2gray(fg);fg1=double(hfg);out1=255*(fg1/255).^0.7;out1(find(out1>255))=255;fg1=uint8(fg1);out1=uint8(out1);img=rgb2gray(zl);[harm,x]=imhist(img);J=histeq(hfg,harm);figuresubplot(421),imshow(fg1),title('复古灰度图');subplot(422),imhist(fg1),title('复古灰度图的直方图');subplot(423),imshow(out1),title('对复古灰度图像进行幂次变换'); subplot(424),imhist(out1),title('幂次变换图像的直方图');subplot(425),imshow(img),title('朱莉');subplot(426),imhist(img),title('朱莉图像对应的直方图');subplot(427),imshow(J),title('直方图变换后的复古图');subplot(428),imhist(J),title('直方图变换后的复古图对应的直方图');傅里叶变换、频域滤波1.傅里叶变换clear,clc;rgb=imread('zl.jpg');rgb=imresize(rgb,0.7,'bilinear');rgb=im2double(rgb);fR=rgb(:,:,1);fG=rgb(:,:,2);fB=rgb(:,:,3);flyfR=fft2(fR);flyfG=fft2(fG);flyfB=fft2(fB);Frgb(:,:,1)=flyfR;Frgb(:,:,2)=flyfG;Frgb(:,:,3)=flyfB;tzR=fftshift(flyfR);tzG=fftshift(flyfG);tzB=fftshift(flyfB);tzF(:,:,1)=tzR;tzF(:,:,2)=tzG;tzF(:,:,3)=tzB;iflyfR=ifft2(flyfR);iflyfG=ifft2(flyfG);iflyfB=ifft2(flyfB);out(:,:,1)=iflyfR;out(:,:,2)=iflyfG;out(:,:,3)=iflyfB;figuresubplot(221),imshow(rgb),title('原图');subplot(222),imshow(Frgb),title('图像频谱');subplot(223),imshow(tzF),title('调整中心后的图像频谱'); subplot(224),imshow(out),title('逆变换得到的原图');2.频域滤波clear,clc;I=rgb2gray(imread('ml.jpg'));J=imnoise(I,'gaussian',0.1);Jzz1=medfilt2(J,[3 3]);Jzz2=medfilt2(J,[10 10]);XJ=imnoise(I,'salt & pepper');f=im2double(XJ);g=fft2(f);g=fftshift(g);[M,N]=size(g);nn=2;d0=50;m=fix(M/2);n=fix(M/2);for i=1:Mfor j=1:Nd=sqrt((i-m)^2+(j-n)^2);h1=1/(1+0.414*(d/d0)^(2*nn));result1(i,j)=h1*g(i,j);endendresult1=ifftshift(result1);J2=ifft2(result1);J3=im2uint8(real(J2));figuresubplot(231),imshow(I),title('原图的灰度图像');subplot(232),imshow(J),title('加高斯噪声');subplot(233),imshow(Jzz1),title('模板3*3中值滤波后的图像'); subplot(234),imshow(Jzz2),title('模板10*10中值滤波后的图像'); subplot(235),imshow(J3),title('低通滤波图');彩色图像处理clear,clc;rgb=imread('yjx.jpg');fR=rgb(:,:,1);fG=rgb(:,:,2);fB=rgb(:,:,3);R=rgb;R(:,:,[2 3])=0;G=rgb;G(:,:,[1 3])=0;B=rgb;B(:,:,[1 2])=0;yiq=rgb2ntsc(rgb);fY=yiq(:,:,1);fI=yiq(:,:,2);fQ=yiq(:,:,3);fR=histeq(fR,256);fG=histeq(fG,256);fB=histeq(fB,256);RGB=cat(3,fR,fG,fB);figuresubplot(341),imshow(rgb),title('原图');subplot(342),imshow(R),title('图像的红色分量');subplot(343),imshow(G),title('图像的绿色分量');subplot(344),imshow(B),title('图像的蓝色分量');subplot(345),imshow(yiq),title('NTSC彩色空间');subplot(346),imshow(fY),title('亮度');subplot(347),imshow(fI),title('色调');subplot(348),imshow(fQ),title('饱和度');subplot(349),imshow(RGB),title('rgb均衡化后的彩色图像');原图最邻近插值双线性插值二次立方插值水平缩放与垂直缩放比例为2:1水平缩放与垂直缩放比例为1:4原图图像的红色分量图像的绿色分量图像的蓝色分量NTSC 彩色空间亮度色调饱和度rgb 均衡化后的彩色图像郁金香原图0.30.50.80.3+0.50.5-0.3P*QP/Q原图图像频谱调整中心后的图像频谱逆变换得到的原图原图的灰度图像加高斯噪声模板3*3中值滤波后的图像模板10*10中值滤波后的图像低通滤波图。

相关文档
最新文档