6.2解一元一次方程(3)

合集下载

第六章华师版7年级一元一次方程学案

第六章华师版7年级一元一次方程学案

课题: 第一课时 6.1从实际问题到方程学习目标: 1、体会方程是刻画实际问题中数量关系的有效数学模型。

2.学会用检验的方法判断一个数是否为方程的解。

重点:会列一元一次方程解决一些简单的应用题。

难点:弄清题意,找出“相等关系”。

一、新知准备自学:(学生自学教材,独立完成互评)时间:15分钟1、小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?例如:一本笔记本1.2元。

小红有6元钱,那么她最多能买到几本这样的笔记本呢?解:设小红能买到X 本笔记本,那么根据题意,小红共用( )元。

于是可得方程: 因为1.2× =6,所以小红能买到 本笔记本。

2、某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? 问:你能解决这个问题吗?有哪些方法?算术法:( )÷ = ÷ = (辆)列方程解应用题: 设需要租用x 辆44座客车,那么这些客车共可乘 人,加上乘坐校车的 人,就是全体师生 人,可得方程: 解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看? (学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。

)3、在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?” 小敏同学很快说出了答案。

“三年”。

他是这样算的:1年后,老师 岁,同学们的年龄是 岁,不是老师的三分之一。

2年后,老师 岁,同学们的年龄是 岁,也不是老师的三分之一。

3年后,老师 岁,同学们的年龄是 岁,恰好是老师的三分之一。

你能否用方程的方法来解呢? 请通过分析,列出方程:4、这个方程方程不容易求出它的解,用小敏同学的方法,把x =1,2,3,4,…代人所列方程 的两边,看哪个数能使两边的值 ,这个数就是这个方程的 。

当把x = 代人方程 ,左边= = ,右边=31(45+3)=31×48= 发现: 边= 边,所以x = 就是这个方程的解。

兴隆台区五中七年级数学下册 第6章 一元一次方程6.2 解一元一次方程 2解一元一次方程第2课时 去

兴隆台区五中七年级数学下册 第6章 一元一次方程6.2 解一元一次方程 2解一元一次方程第2课时 去

七年级数学下册第一章整式的乘除4整式 的乘法第3课时多项式与多项式相乘课件 新版北师大版3
同学们,下课休息十分钟。现在是休
息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
(2) (ax + b)(cx + d) = ax·cx + ax·d + b·cx + bd = acx2 + (ad + bc)x + bd
3 2
2.商店降价销售某种商品 , 每件降5元 , 售出 60件后 , 与按原价销售同样数量的商品相比 , 销售额有什么变化 ?
解 : -5×60 =-300 答 : 销售额下降300元.
随堂演练
1.假设a、b互为相反数 , 假设x、y互为倒数 ,
那么a-xy +-b=1
.
2.相反数等于它本身的数是 0 ; 倒数等于 它本身的数是 1 , -1; 绝対值等于它本身 的数是 非负数.
例3 用正负数表示气温的变化量 , 上升为正 , 下降为负.登山队攀登一座山峰 , 每登高1 km气温的变化量为-6 ℃ , 攀登3 km后 , 气 温有什么变化 ?
解 : 〔-6〕×3 =-18
答 : 气温下降18℃.
强化练习 1.计算 :
〔﹣6〕×0 = 0
1 3
1 4
1 12
2 3
9 4
7 4 28 , …………__把__绝__対___值__相__乘___
所以 (7) 4 —-—28——.
思考: 通过上题,你认为:非零两数相乘,关键是 什么?
有理数乘法的步骤 :
两个有理数相乘 , 先确定积的__符_号__ , 再确定积的_绝__対_值__.

§6.2.2 解一元一次方程(3)

§6.2.2  解一元一次方程(3)

§6.2.2 解一元一次方程(3)科目:七年级数学备课人:王淑轶导学目标:1、掌握列一元一次方程解应用题的一般步骤,提高综合解题能力;2、进一步体会解方程中的化归思想,提高分析问题、解决问题的能力。

内容分析:学习重点:掌握列一元一次方程解应用题的一般步骤。

学习难点:灵活运用解题步骤。

导学过程:一、复习回顾,导入新课:1、解一元一次方程的基本步骤是什么?2、解方程:2x-13-10x+16=2x+14-1。

二、自主探索:自学课本10页~11页内容,完成下列问题:1、完成例6表6.2.1中的填空。

题目中的等量关系是。

若设从A盘中取出x克盐放入B盘,则A盘现有克盐,B盘现有克盐。

列方程为。

2、完成例7表6.2.2中的填空。

题目中的等量关系是。

若设新团员中有x名男同学,则女同学有名,男同学搬砖块,女同学搬砖块。

列方程为。

3、通过以上解答,可以知道:用一元一次方程解答实际问题,关键在于抓住问题中的,用表示适当的未知数,依据列出方程,求得后,经过,就可得到实际问题的解答。

三、合作探究:1、小莉和同学在“五一”假期去森林公园玩,在溪流边的A码头租了一艘小艇,逆流而上,划行速度约4千米/时。

到B地后沿原路返回,速度增加了50%,回到A码头比去时少花了20分钟。

求A、B两地之间的距离?分析:设A、B两地之间有x千米,则去时用时为小时,返回时用时为小时。

根据“回到A码头比去时少花了20分钟”,可知本题的等量关系是,列方程为。

解:2、学校大扫除,甲处有27人劳动,乙处有19人劳动。

现另调20人去支援,使甲处的人数是乙处人数的2倍,那么应往两处各调多少人?分析:设应往甲处调x人,则调往乙处人。

此时,甲处共有人,乙处共有人。

根据“甲处的人数是乙处人数的2倍”,可知本题的等量关系是,列方程为。

解:四、巩固练习:1、一艘轮船在两个码头之间航行,水流速度3千米/时,顺水航行需2小时,逆水航行需3小时。

求两个码头之间的航程。

6.2一元一次方程⑷⑸⑹

6.2一元一次方程⑷⑸⑹
知数。本题说明可用解方程的方法将公式变形。
例3
已知关于x的方程4x+2m=3x+1和方程5x+2m
=6x-3的解相同,求(2m+2)2013的值.
2013.3.5
华东师大版七年级下册《数学》
(第6课时)
制作:遂宁一中HDL
例6 如图,天平的两个盘内分别盛有51g、45g盐, 问应该从盘A内拿出多少盐放到盘B中,才能使两者所 盛盐的质量相等? (45+x)g (51-x)g 45g 51g xg
去分母得:40x+8-3(14-30x)=0 去括号得:40x+8-42+90x=0 移项得: 40x+90x=-8+42 合并同类项得: 130x=34 系数化成1得:
17 x 65
例2 公式S=2π r(r+h)中,已知S=942,π =3.14, r=10,求h的值。
注意:解题时把S、π、r看成已知数,h看成未
6.2解一元一次方程⑷ 2.解一元一次方程
解一元一次方程一般按①去分母②去括号③移 项④合并同类项⑤系数化为1的顺序进行。根据方
程的特征有时也不一定按此顺序进行,如:括号内
外都有分数时,也可以先去括号,再去分母。
课本:
P14:2、(1)(2)(3) 补充题: 1、 x-1- x 2 4-x- 2
解一元一次方程的应用题也可以按以下步骤进行:
⑴弄清题意,特别是理清已知量和未知量之间 的数量关系,设出未知数和列出有关代数式(写上 单位);
⑵找到已知量和未知量之间的等量关系列出方程; ⑶解所列方程; ⑷检验并作答(写上单位)。
例7 学校团委组织65名新团员为学校建花坛搬 砖.女同学每人搬6块,男同学每人搬8块,每人各 搬了4次,共搬了1800块.问这些新团员中有多少名 男同学和女同学?

专题6.2 解一元一次方程【十大题型】(举一反三)-2023-2024学年七年级数学下册举一反三系列

专题6.2 解一元一次方程【十大题型】(举一反三)-2023-2024学年七年级数学下册举一反三系列

专题6.2 解一元一次方程【十大题型】【华东师大版】【题型1 同解问题】 (1)【题型2 一元一次方程的整数解问题】 (2)【题型3 一元一次方程的解与参数无关】 (2)【题型4 一元一次方程的遮挡问题】 (2)【题型5 根据两个一元一次方程的解之间的关系求参数】 (3)【题型6 错看或错解一元一次方程问题】 (3)【题型7 探究一元一次方程解的情况】 (4)【题型8 一元一次方程的解法在新定义中的运用】 (5)【题型9 根据一元一次方程的解求另一个一元一次方程的解】 (6)【题型10 含绝对值的一元一次方程的解法】 (6)【知识点一元一次方程的解法】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.【题型1 同解问题】【例1】(2023春·四川资阳·七年级四川省安岳中学校考期中)已知关于x的一元一次方程2x+13−5x−16=1.(1)求这个方程的解;(2)若这个方程的解与关于x的方程3(x+m)=−(x−1)的解相同,求m的值.【变式1-1】(2023春·安徽亳州·七年级校考开学考试)当m=时,方程5x+4=4x−3和方程2(x+1)−m=−2(m−2)的解相同.【变式1-2】(2023秋·宁夏银川·七年级校考期末)当m为何值时,方程−x+4+10(x−3)=−8的解,也是关于x的方程5x+3m3−mx−106=1的解.【变式1-3】(2023秋·江苏无锡·七年级校考期中)如果方程3x−42−7=2x+13−1的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.【题型2 一元一次方程的整数解问题】【例2】(2023秋·江西九江·七年级校考期中)已知关于x的方程x−5−ax6=x+46−1的解是正整数,则符合条件的所有整数a的积是()A.8B.−8C.12D.−12【变式2-1】(2023春·广东广州·七年级统考开学考试)已知关于x的方程x−28−ax3=x2−1有负整数解,则所有满足条件的整数a的值之和是.【变式2-2】(2023秋·福建三明·七年级统考期末)已知关于x的方程x−2−ax6=x3−2有非负整数解,则整数a的所有可能的取值的和为()A.−23B.23C.−34D.34【变式2-3】(2023秋·广东广州·七年级统考期末)已知代数式M=(a−b−1)x5−7x2+(a+3b)x−2是关于x的二次多项式.(1)若关于y的方程(3b−3a)y=ky−5的解是y=1,求k的值.(2)若关于y的方程(3b−3a)y=ky−5的解是正整数,求整数k的值.【题型3 一元一次方程的解与参数无关】【例3】(2023秋·湖北十堰·七年级统考期中)已知a,b为定值,且无论k为何值,关于x的方程kx−a3=1−2x+bk2的解总是x=2,则ab=.【变式3-1】(2023秋·江苏泰州·七年级校考阶段练习)已知m,n为定值,且无论k为何值,关于x的方程kx−3m2=2−4x−nk3的解总是x=3,则mn=.【变式3-2】(2023秋·四川成都·七年级成都嘉祥外国语学校校考期末)如果a、b定值,且关于x的方程2kx+a3=2+x+bk6,无论k为何值时,它的解总是x=1,那么2a−b=.【变式3-3】(2023·湖北武汉·七年级统考期末)如果a,b为常数,关于x的方程kx−a2−1=2x−bk4不论k取何值时,它的解总是﹣1,则a b= .【题型4 一元一次方程的遮挡问题】【例4】(2023秋·山西运城·七年级统考期末)小聪解方程3x−12=2x+★时,发现★处一个常数被墨水污染了,答案显示此方程的解是x=−2,则这个常数是()A.2B.−2C.52D.−52【变式4-1】(2023秋·七年级课时练习)马小哈在解一元一次方程“★x -3=2x+9”时,一不小心将墨水泼在作业本上了,其中有一个未知数x 的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“所以原方程的解为x=-2”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是多少?【变式4-2】(2023秋·浙江金华·七年级统考期末)计算:6×(12−■)+2. 圆圆在做作业时,发现题中有一个数字被墨水污染了. (1)如果被污染的数字是43,请计算6×(12−43)+2. (2)如果计算结果等于14,求被污染的数字.【变式4-3】(2023秋·江苏·七年级专题练习)小明同学在解方程32(1−■−x 3)=x −13时,墨水把其中一个数字染成了“■”,他翻阅了答案知道这个方程的解为x =−43,请帮他推算被染了的数字“■”应该是 【题型5 根据两个一元一次方程的解之间的关系求参数】【例5】(2023秋·陕西渭南·七年级校考期中)已知方程92x +6=5+4x 的解比关于x 的方程7x −3a =0的解小1,则a 的值为 .【变式5-1】(2023秋·安徽合肥·七年级合肥市五十中学西校校考期中)已知方程2−3(x +1)=0的解与关于x 的方程k+x 2−3k −2=2x 的解互为相反数,求k 的值.【变式5-2】(2023春·河南南阳·七年级统考期中)当x =3时,多项式6x −3a 的值比4x −12的值大3,那么a 的值为( ) A .2B .3C .5D .6【变式5-3】(2023秋·广东广州·七年级统考期末)(1)已知|x ﹣3|+(y +1)2=0,代数式2y−x+t2的值比y ﹣x +t 多1,求t 的值.(2)m 为何值时,关于x 的一元一次方程4x ﹣2m =3x ﹣1的解是x =2x ﹣3m 的解的2倍. 【题型6 错看或错解一元一次方程问题】【例6】(2023秋·福建·七年级统考阶段练习)小明在解关于x 的方程2−x−43=3a −2x 时,误将“−2x ”看作“+2x ”,得到方程的解为x =1,则此方程正确的解为( ). A .x =−75B .x =−57C .x =−95D .x =−59【变式6-1】(2023春·河南驻马店·七年级统考期中)阅读解题过程,解答后续问题解方程3(x −2)+1=2x −(3x −4) 解:原方程的两边分别去括号,得 3x −6+1=2x −3x −4 ★ 即3x −5=−x −4 ★ 移项,得3x −x =5−4 ★ 即2x =1 ★两边都除以2,得x =12 ★(1)指出以上解答过程哪一步出错,并给出正确解答;(2)结合平时自身实际,请给出一些解一元一次方程的注意事项.【变式6-2】(2023秋·四川广元·七年级校考阶段练习)亮亮在解关于x 的方程ax−12+6=2+x 3时,把6错写成1,解得x=1,并且亮亮的解题过程没有错误,则此方程正确的解为 . 【变式6-3】(2023秋·河南平顶山·七年级统考期末)下面是明明解方程2x−14=−1−3−x 8的过程:解:去分母得:2(2x −1)=−8−(3−x )(第一步), 去括号得:4x −2=−11+x (第二步), 移项得:4x +x =−11−2(第三步), 合并同类项得:5x =−13(第四步), 系数化为1得:x =−135(第五步), 根据解答过程完成下列任务.任务一:★上述解答过程中,第一步的变形依据是_________;★第_________步开始出现错误,这一步错误的原因是_________;任务二:请你写出解方程的正确过程;任务三:请你根据平时解一元一次方程的经验,再给其他同学提一条建议_________. 【题型7 探究一元一次方程解的情况】【例7】(2023秋·七年级课时练习)求关于x 的方程2x ﹣5+a=bx+1, (1)有唯一解的条件; (2)有无数解的条件; (3)无解的条件.【变式7-1】(2023春·上海杨浦·七年级校考期中)已知关于x 的方程2a (x −1)−(5−a )x =3b 有无数多个解,求常数a、b的值.【变式7-2】(2023春·全国·七年级开学考试)已知关于x的方程ax=b,当a≠0,b取任意实数时,方程有唯一解;当a=0,b=0时,方程有无数解;当a=0,b≠0时,方程无解.若关于x的方程a3x=x2−x−66无解,则a的值为()A.1B.−1C.0D.±1【变式7-3】(2023·全国·七年级假期作业)一元一次方程都可以变形为形如ax=b(a,b为常数)的方程,称为一元一次方程的最简形式.关于x的方程ax=b(a,b为常数,且a≠0)解的讨论:当a≠0时,是一元一次方程,有唯一解x=ba;当a=0,且b=0时,它有无数多个解,任意数都是它的解;当a=0,且b≠0时,它无解,因为任何数都不可能使等式成立.讨论关于当x的方程(a﹣4)x=2的解.【题型8 一元一次方程的解法在新定义中的运用】【例8】(2023秋·湖南长沙·七年级校联考期末)已知x0是关于x的方程ax+b=0(a≠0)的解,y0是关于y 的方程cy+d=0(c≠0)的解,若x0,y0是满足|x0−y0|≤1,则称方程ax+b=0(a≠0)与方程cy+d= 0(c≠0)互为“阳光方程”;例如:方程4x+2x−6=0的解是x0=1,方程3y−y=3的解是y0=1.5,因为|x0−y0|=0.5<1,所以方程4x+2x−6=0与方程3y−y=3互为阳光方程.(1)请直接判断方程3x−3+4(x−1)=0与方程−2y−y=3是否互为阳光方程;(2)请判断关于x的方程12022x−m=2x−5与关于y的方程y+7×2022−1=4044y+2022m是否互为阳光方程,并说明理由;(3)若关于x的方程3x−3+4(x−1)=0与关于y的方程3y+k2−y=2k+1互为阳光方程,请求出k的最大值和最小值.【变式8-1】(2023秋·湖南岳阳·七年级统考期末)对于任意实数a、b定义一种新运算“⊗”如下:a⊗b= 2a+b2,例如2⊗3=2×2+32=13(1)求4⊗(−2)的值;(2)若x⊗4=(2x)⊗1,求x.【变式8-2】(2023秋·江苏淮安·七年级统考期末)定义一种新运算“⊕”:a⊕b=2a−ab,如1⊕(−3)= 2×1−1×(−3)=5(1)求(−2)⊕3的值;(2)若(−3)⊕x=(x+1)⊕5,求x的值;【变式8-3】(2023春·吉林长春·七年级统考期中)定义:如果两个一元一次方程的解之和为0,我们就称这两个方程为“友好方程”.例如:2x=2的解为x=1;x+2=1的解为x=−1,所以这两个方程为“友好方程”.(1)若关于x的一元一次方程x+2m=0与3x−2=−x是“友好方程”,则m=.(2)已知两个一元一次方程为“友好方程”,且这两个“友好方程”的解的差为3.若其中一个方程的解为x=k,求k的值.(3)若关于x的一元一次方程12023x−1=0和12023x−5=2x+a是“友好方程”,则关于y的一元一次方程12023(y−1)−5=2y+a−2的解为.【题型9 根据一元一次方程的解求另一个一元一次方程的解】【例9】(2023秋·安徽芜湖·七年级校考期末)已知关于x的一元一次方程2022x+a2023+2023=x+b的解是x=2023,则关于y的一元一次方程y−2024=2022y+a−20222023−b的解为y=()A.2022B.2023C.2024D.2025【变式9-1】(2023春·福建福州·七年级校考开学考试)已知k≠0,关于x的方程kx+b=0的解为x=4,则关于y的方程k(3y+2)+b=0的解为.【变式9-2】(2023秋·福建福州·七年级校考期末)关于x的方程2ax=(a+1)x+6的解是x=1,现给出另一个关于x的方程2a(x−1)=(a+1)(x−1)+6,则它的解是.【变式9-3】(2023秋·江苏盐城·七年级校联考期中)已知以x为未知数的一元一次方程x2019+2020m=2021x的解为x=2,那么以y为未知数的一元一次方程2020−y2019−2020m=2021(2020−y)的解为.【题型10 含绝对值的一元一次方程的解法】【例10】(2023秋·江西宜春·七年级校考期末)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=−1;当x+3<0时,原方程可化为:x+3=−2,解得x=−5.所以原方程的解是x=−1,x=−5.(1)解方程:|3x−2|−4=0;(2)探究:当b为何值时,方程|x−2|=b+1★无解;★只有一个解;★有两个解.【变式10-1】(2023秋·山东德州·七年级统考阶段练习)若关于x的方程4m-3x=1的解满足2︱x-2︱-1=3,则m的值为【变式10-2】(2023秋·四川成都·七年级成都实外校考期中)已知m、n为有理数,方程||x+m|−n|=2.7仅有三个不相等的解,则n=.x−2|+3=a.【变式10-3】(2023春·上海浦东新·六年级上海中学东校校考期中)解关于x的方程:|12。

一元一次方程习题附答案

一元一次方程习题附答案

6.2.4解一元一次方程(三)一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x ﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B 类)解方程:(x﹣1)﹣(x+5)=﹣;(C 类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13 (2)解方程:x ﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k 为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=32.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.1184454专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.点评:17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.解解:依题意,得=+3,答:去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.。

6.2(3)一元一次方程

6.2(3)一元一次方程

这样的方程叫做一元一次方程 2、 解一元一次方程的步骤有哪些?
判断下列那些是一元一次方程?
3 1 (1) x 4 2 ( 2)3 x 2 1 1 2x (3) x 1 7 5 3 2 ( 4)5 x 3x 1 0 (5) 2 x y 1 3 y 2 ( 6) 5 x 2
3(x-2) +1 =6-(2x-1 ) 答案:x=1.5
5(x+2)=2(5x-1); 答案:x=12/5
(x+1)-2(x-1)=1-3x;
2(x-2)-(4x-1)=3(1-x).
答案:x=-1
答案:x=6
3x 3( x 1) ( x 4) 1
方程中有多重括号,你能解这个 方程吗?试一试.

下列变形对吗?如果有错, 如何改正?
3 x 1 4 x 2 (1)解方程: 1 2 5 解:去分母:
5(3x-1)=2(4x+2)-1
下列变形对吗?如果有错, 如何改正?
x 1 x 2 4 x (2)解方程: 3 6 2
解:去分母:
2(x-1)-x+2=3(4-x)
答案:X=0
解方程
学习指导 (第一次看书)
(阅读课本P8, 3分钟 后, 比谁能正确地理解下列问题)
例4你能发现该解法与前边已学过的方程的 简单变形有什么不同? 增加了一步骤是什么? 你认为这一步要注意哪些问题?
当堂训练二
指出下列方程求解过程中的错误,并给予纠 正: x 1 x 2 4 x 3x 1 4 x 2 ①解方程: 2 5 1 ②解方程: 3 6 2 解:5(3x-1)=2(4x+2)-1 解:2(x-1)-x+2=3(4-x) 15x-5=8x+4-1, 2x-2-x+2=12-3x 15x-8x=4-1+5, 2x-x+3x=12+2+2 7x=8 4x=16 x=7/8 x=4.

6.2解一元一次方程序⑴⑵⑶

6.2解一元一次方程序⑴⑵⑶
华东师大版七年级下册《数学》
(第1课时)
制作:遂宁一中HDL
1.方程的简单变形 1.等式的性质与方程的简单变形
x+2=5
x=5-2
3x=2x+2
3x-2x=2
2x=6 2x=6
x=6÷2 x=3
思考:从这些方程的变形中,你发现什么规律?
⑴等式的基本性质: ①等式两边都加上(或都减去)同一个数 或同一个整式,所得的结果仍是等式. 如果a=b,那么a+c=b+c,a-c=b-c
的次数是指含未知的项的最高次数;⑶凡定义了次 数的方程,都是指整式方程。
例1
判断下列哪些是一元一次方程,为什么? ⑵3x-2 ⑸2x+y=1-3y ⑶ 1 x 1 2x 1
7 5 3
3 1 ⑴ x 4 2
⑷5x2-3x+1=0

2 1 x 1 2
解:根据一元一次方程的定义,⑴⑶是一元一次方 程; 因为⑵不是方程,⑷不是一次方程,⑸不是一 元方程,⑹不是整式方程,所以它们都不是一 元一次方程。
②等式两边都乘以(或都除以)同一个数 (除数不为零),所得结果仍是等式.
a b 如果a=b,那么ac=bc, (c≠0) c c
⑵方程的变形规则(方程的同解原理)
①方程两边都加上(或都减去)同一个数 或同一个整式,方程的解不变;
②方程两边都乘以(或都除以)同一个不 等于0的数,方程的解不变.
例1 解下列方程
5
3 移项,得: y y 解法2: 4 7
10 合并同类项,得 4 y 7

10 y4 7
14 系数化成1,得 y 5
例2 若a=2x+1,b=3-x ⑴当x的值是多少时,a=b; ⑵当x的值是多少时,a比b小1。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2: 解下列一元一次方程: (1)-2(x-1)=4 去括号法则是怎样的? (2) 3(x-2)+1=x-(2x-1) 括号前面是“+”号,把括号和它前面的“+”
号去掉,括号里各项都不改变正负号; (3) 2(x+4)-3(5-2x)=12(x+1)+5 括号前面是“-”号,把括号和它前面的“-” 号去掉,括号里各项都改变正负号.
1 (4)13+x= (45+x) 3
例1 判断下列哪些是一元一次方程 :
(1) 2 3 4 x

( 2) 2 x y 1 3 y
不是,未知数有两个。
不是,不是整式方程。 不是,未知数的次数是2。
3 (3) xy 2 (4) m 1 0 4 是 不是,未知数有两个。 1 2 (5) x5 (6) 2 x 3 x 1 0 x
相城区黄桥中学
邢洪涛
复习一
1. 解下列方程: (1)5x-2=8
2 1 (2) x 8 0.2 x 5 4
议一议
观察下列方程,它们有什么共同特征?
(1) -5x= 2
(2) 44x+64=328
提示:观察未知数 的个数和未知数的 次数
(3) 5+2y=4y
概念: 只含有一个未知数,并且含有未知数 的式子都是整式,未知数的次数是l,这 样的方程叫做一元一次方程。
1、概念:只含有一个未知数,并且含有 未知数的式子都是整式,未知数的次数 是l,这样的方程叫做一元一次方程。 2、解一元一次方程的一般步骤: 去括号、移项、合并同类项、 系数化为1。
Байду номын сангаас
补充: 4 5 (3) ( x-1 )=7 x+1 5 4 (4) 5( y 1) (1 2 y ) 2(2 y 3)
(4) 3(y-7)-2[9-4(2-y)]=22
练习1:
①3(x+1)─(3x─2)=4(x─5) ②y─(7─8y)=3(y─2) ③2(0.3x+4)─5(0.2x─7)=9 ④2(y+4)─3(5y+1)=2─y
练习2:
①3[4(5x+1)─8]─2=46 ②x─2[x─3(x─1)]=8 ③15%(y+3)─20%(y─4)=1.6
相关文档
最新文档