有限元大作业3
有限元大作业

攀枝花学院机械工程学院实验报告科目:有限元技术教师:班级:姓名:学号:摘要薄板类零件在生活中应用非常广泛,如车辆工程中的车体地板、高速车辆的顶板及墙板,发动机缸体、齿轮箱箱体,建筑结构的楼板、桥梁桥面等都属于薄板弯曲结构。
本文通过运用有限元技术,结合受力模型,对薄板零件在不同节点,不同单元的情况下进行受力变形分析,如:应力,变形,应变。
关键字:薄板有限元变形分析Sheet parts is widely applied in life, such as vehicle engineering in the bodywork floor, high speed vehicle roof and wall panels, engine cylinder block and the gearbox housing, construction of floor slab and bridge deck are bending plate structure. In this paper, by using the finite element technology, combined with the mechanical model, the sheet parts in different nodes of different unit under the situation of stress deformation analysis, such as stress, deformation and strain.Key words: sheet deformation finite element analysis图示薄板左边固定,右边受均布压力P=100Kn/m作用,板厚度为;试采用如下方案,对其进行有限元分析,并对结果进行比较。
(1)三节点常应变单元;(2个和200个单元)(2)(3)四节点矩形单元;(1个和50个单元)(4)(3)八节点等参单元。
(完整word版)有限元分析大作业报告要点

有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。
该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。
二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。
因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。
(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。
(6)模型施加约束:约束采用的是对底面BC 全约束。
大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。
以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。
有限元习题及答案

有限元习题及答案有限元习题及答案有限元方法是一种常用的数值计算方法,用于求解各种工程和科学问题。
在学习有限元方法的过程中,练习习题是非常重要的,可以帮助学生巩固所学的知识,并提高解决实际问题的能力。
本文将介绍一些有限元习题及其答案,希望对学习有限元方法的同学有所帮助。
习题一:一维热传导问题考虑一个长度为L的一维杆,其两端固定,杆上的温度满足以下热传导方程:∂²T/∂x² = 0,其中T为温度,x为位置。
已知杆的两端温度分别为T1和T2,求解杆上的温度分布。
解答一:根据热传导方程,可以得到温度分布的一般解为T(x) = Ax + B,其中A和B为常数。
根据边界条件,可以得到方程组:T(0) = B = T1T(L) = AL + B = T2解方程组可得A = (T2 - T1) / L,B = T1。
因此,温度分布为T(x) = ((T2 - T1) / L) * x + T1。
习题二:二维弹性问题考虑一个矩形薄板,其长为L,宽为W,材料的弹性模量为E,泊松比为ν。
已知薄板的边界上施加了一定的边界条件,求解薄板上的位移场。
解答二:对于二维弹性问题,可以使用平面应力假设,即假设薄板内部的应力只有两个分量σx和σy,并且与z轴无关。
根据平面应力假设和胡克定律,可以得到位移场的偏微分方程:∂²u/∂x² + ν * (∂²u/∂y²) + (1 - ν) * (∂²v/∂x∂y) = 0∂²v/∂y² + ν * (∂²v/∂x²) + (1 - ν) * (∂²u/∂x∂y) = 0其中u和v分别为位移场在x和y方向上的分量。
边界条件根据具体情况给定。
通过数值方法,如有限元方法,可以求解位移场的近似解。
习题三:三维流体力学问题考虑一个三维流体力学问题,流体在一个封闭容器内流动,容器的形状为一个长方体,已知流体的速度场和压力场的初始条件,求解流体的运动状态。
有限元分析与应用大作业

有限元分析及应用大作业课程名称: 有限元分析及应用班级:姓名:试题2:图示薄板左边固定,右边受均布压力P=100Kn/m作用,板厚度为0.3cm;试采用如下方案,对其进行有限元分析,并对结果进行比较。
1)三节点常应变单元;(2个和200个单元)2)四节点矩形单元;(1个和50个单元)3)八节点等参单元。
(1个和20个单元)图2-1 薄板结构及受力图一、建模由图2-1可知,此薄板长和宽分别为2m和1.5m,厚度仅为0.3cm,本题所研究问题为平面应力问题。
经计算,平板右边受均匀载荷P=33.33MPa,而左边被固定,所以要完全约束个方向的自由度,如图2-2所示。
取弹性模量E=2.1×11Pa,泊松比μ=0.3。
P=33.33MPa图2-2 数学模型二、第一问三节点常应变单元(2个和200个单元)三节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。
采用2个单元的网格划分后的结果如图2-3,200个单元的网格划分图如图2-6所示。
约束的施加方式和载荷分布如图2-2中所示。
约束右边线上节点全部自由度。
计算得到的位移云图分别如图2-4、7所示,应力云图如图2-5、8所示。
图2-3 2个三角形单元的网格划分图图2-4 2个三角形单元的位移云图图2-5 2个三角形单元的应力云图图2-7 200个三角形单元的位移云图三、第二问四节点矩形单元的计算四节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。
采用1个单元的网格划分后的结果如图2-9,50个单元的网格划分图如图2-12所示。
约束的施加方式和载荷分布如图2-2中所示。
约束右边线上节点全部自由度。
计算得到的位移云图分别如图2-10、11所示,应力云图如图2-13、14所示。
图2-9 1个四边形单元的网格划分图图2-11 1个四边形单元的应力云图图2-12 50个四边形单元的网格划分图图2-13 50个四边形单元的位移云图图2-14 50个四边形单元的应力云图四、第三问八节点等参单元的计算四节点单元类型为PLANE82,设置好单元类型后,实常数设置板厚为0.3M。
岩土工程有限元大作业

岩土工程有限元大作业题目:平面问题3结点三角形有限元法的Matlab程序实现专业:建筑与土木工程(岩土方向)姓名:学号:_________2014年12 月31 日1.概述对于二维平面问题,运用有限单元法求解时,单元的类型有3结点三角形单元、4结点矩形单元以及高精度的三角形单元(6结点、10结点)等。
三角形单元对复杂边界有较强的适应能力,因此很容易将一个二维域离散成有限个三角形单元,在边界上以若干段直线近似原来的曲线边界,随着单元增多,这种拟合将越精确。
本文即基于相对比较简单且运用广泛的3结点三角形单元的有限元法编制Matlab 程序,解决一个悬臂梁端点承受竖向集中荷载作用时的位移计算问题,并绘出变形前后的图形作对比。
在分析过程中,将此问题简化为平面应力问题,取单位厚度进行分析。
以下一共分为两部分介绍,第一部分是理论部分,介绍三角形有限元法的基本求解过程;第二部分是程序部分,介绍具体的Matlab 程序实现过程。
2.三角形有限元法的基本求解过程 2.1 假设单元的位移函数如图2.1所示为一端部承受竖向集中荷载作用的悬臂梁,将此问题简化为二维平面问题,梁取单位厚度,固定端简化为两个不动铰支座,已知悬臂梁的长度为8米,高度为1米,材料为钢材,它的弹性模量取2.06e11Pa ,泊松比取0.25,右端处作用的竖向荷载为100kN 。
二维域Ω被离散成如图所示的九个三角形单元,后续编程中的结点号和单元号都以此为基础,任取一三角形单元,设其结点编码为m j i ,,,以逆时针编码为正向(见图2.2)。
该三角形单元在x 、y 方向的位移函数表达式为:m m j j i i u N u N u N u ++= (2.1) m m j j i i v N v N v N v ++=(2.2)其中()m j i i N i ,, =称为单元的插值函数或形函数()y c x b a AN i i i i ++=21(2.3)图2.1 任意区域的三角形单元离散 j (x j , y j )xyi (x i , y i )m (x m , y m )图2.2 3结点三角形单元),,(m j i xx c y y b y x y x a m j im j i j m m j i ⎪⎩⎪⎨⎧+-=-=-= (2.4)上式),,(m j i 表示下标轮换,即i m m j j i →→→,,。
有限元课程大作业

金属坯料挤压过程有限元分析一、前言:金属挤压是将放在挤压模具内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的技术。
冷挤压时由于材料是在冷态下成形,而且变形量一般都很大,挤压过程中作用在模具上的单位压力很大,此时模具有开裂破坏的可能,对压力机也构成威胁,金属坯料在通过模具过程中,坯料与模具之间产生相当大的应力,这就要求模具需要有相当大的强度、硬度、以及耐磨性,因此冷挤压时要进行挤压力的计算。
挤压力的计算是模具设计的重要依据,也是选择挤压设备的依据。
模具角度、接触表面的摩擦系数、坯料变形量都会影响应力变化,在保证加工要求的前提下,应当通过适当方式降低坯料及模具之间的应力。
通过有限元分析,得出应力分布图,分析变形区域、死区,对模具进行优化改进。
二、有限元介绍:ANSYS概述ANSYS软件是融结构、热、流体、电磁、声学于一体的大型通用有限元软件,可广泛地用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究。
该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分及利用ANSYS参数设计语言扩展宏命令功能。
ANSYS软件功能强大,主要特点有:实现多场及多场耦合分析;实现前后处理、求解及多场分析统一数据库的一体化;具有多物理场优化功能;强大的非线性分析功能;多种求解器分别适用于不同的问题及不同的硬件设备;支持异种、异构平台的网络浮动,在异种、异构平台上用户界面统一、数据文件全部兼容;强大的并行计算功能支持分布式并行及共享内存式并行;多种自动网格划分技术;良好的用户开发环境。
ANSYS不仅支持用户直接创建模型,也支持与其他CAD软件进行图形传递,其支持的图形传递有:SAT、Parasolid、STEP。
相应地,可以进行接口的常用CAD 软件有:Unigraphics、Pro/Engineer、I-Deas、Catia、CADDS、SolidEdge、SolidWorks等。
有限元受力分析大作业

1. 定义分析类型
Main Menu >Solution > Analysis Type > New Analysis, 选择Static 2. 定义位移约束
Main Menu >Solution> Define Loads >Apply >Structural>Displacement > On Areas, 在 弹出对话框中选Circle,点击OK后,在弹出的对话框中填入:0
后处理
1. 查看总体变形
Main Menu >General Postproc >Plot Results > Deformed shape
(2)
(2)
四. 加载和求解
1. 定义分析类型
Main Menu >Solution > Analysis Type > New Analysis, 选择Static 2. 定义位移约束
Main Menu >Solution> Define Loads >Apply >Structural>Displacement > On Areas, 在 弹出对话框中选Circle,点击OK后,在弹出的对话框中填入:0
七. 后处理
1. 查看总体变形
Main Menu >General Postproc >Plot Results > Deformed shape
S
作业三:轴承座盈利分析
1、 题目
2、建模
3、ansys前处理
导入
ansys前处理
1、定义单元类型 Main Menu>Proprocessor>Element Type >Add/Edit/Delete 弹出对话框 中后,点“Add” 。双弹出对话框,选“Solid”和“10node 92”,点 “OK”,退回到前一个对话框。
有限元-计算结构力学-大作业

有限元-计算结构力学-大作业本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.MarchSHANGHAI JIAO TONG UNIVERSITY 平面应力问题解的Matlab实现姓名: heiya168 学号: 帆哥班级:指导老师:目录1绪论 (4)2平面问题的四节点四边形单元 (4)2.1单元的构造 (4)2.2等参变换 (5)2.3边界条件的处理——置“1”法 (7)3有限元分析流程 (8)3.1程序原理和流程 (8)3.2使用的函数 (9)3.3文件管理 (9)3.4数据文件格式 (10)4算例——开方孔的矩形板拉伸分析 (11)4.1问题的具体参数与载荷 (11)4.2Matlab程序计算 (11)4.3ANSYS建模计算 (13)4.4误差分析 (15)5总结 (15)参考文献 (16)附录 (17)1绪论有限元方法(finite element method),是求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。
将它用于在科学研究中,可成为探究物质客观规律的先进手段。
将它应用于工程技术中,可成为工程设计和分析的可靠工具。
弹性体在载荷作用下,其基本方程可写成以下的三类方程和两种边界条件。
平衡方程——应力与外载荷的关系;几何方程——应变位移关系;物理方程——应力应变关系;力的边界条件;几何边界条件。
应用最小位能原理,并利用上述关系,最终建立由刚度方程,节点位移和等效节点载荷所构成的求解方程。
带入边界条件求解方程,就可以得出弹性力学问题的一般性解答。
本次大作业基于有限元方法的基本原理,使用Matlab这一平台,针对平面应力问题,采用四节点四边形单元编写了求解单元节点位移的程序。
主要内容包括:1)介绍有限元的基本原理;2)编程基本思路及流程介绍;3)程序原理及说明; 4)具体算例这四个部分。