高二数学数列单元测试题
高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)高中数学《数列》专题练1.数列基本概念已知数列的前n项和S_n和第n项a_n之间的关系为:a_n=S_n-S_{n-1} (n>1),当n=1时,a_1=S_1.通过这个关系式可以求出任意一项的值。
2.等差数列和等比数列等差数列和等比数列是两种常见的数列类型。
对于等差数列,有通项公式a_n=a_1+(n-1)d,其中d为公差。
对于等比数列,有通项公式a_n=a_1*q^{n-1},其中q为公比。
如果a、G、b成等比数列,那么G叫做a与b的等比中项。
如果a、A、b、B成等差数列,那么A、B叫做a、b的等差中项。
3.求和公式对于等差数列,前n项和S_n=n(a_1+a_n)/2.对于等比数列,前n项和S_n=a_1(1-q^n)/(1-q),其中q不等于1.另外,对于等差数列,S_n、S_{2n}-S_n、S_{3n}-S_{2n}构成等差数列;对于等比数列,S_n、S_{2n}/S_n、S_{3n}/S_{2n}构成等比数列。
4.数列的函数看法数列可以看作是一个函数,通常有以下几种形式:a_n=dn+(a_1-d),a_n=An^2+Bn+C,a_n=a_1q^n,a_n=k*n+b。
5.判定方法对于数列的常数项,可以使用定义法证明;对于等差中项,可以证明2a_n=a_{n-1}+a_{n+1};对于等比中项,可以证明2a_n=a_{n-1}*a_{n+1}。
最后,对于数列的通项公式,可以使用数学归纳法证明。
1.数列基本概念和通项公式数列是按照一定规律排列的一列数,通常用{ }表示。
其中,第n项表示为an,公差为d,公比为q。
常用的数列有等差数列和等比数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
等比数列的通项公式为an = a1q^(n-1),其中a1为首项,q为公比。
2.数列求和公式数列求和是指将数列中的所有项加起来的操作。
高中数学选择性必修二 第四章 数列单元检测A尖子生同步培优题典(含答案)

2020-2021年高二数学选择性必修二尖子生同步培优题典第四章数列单元检测A 解析版学校:___________姓名:___________班级:___________考号:___________ 注:本检测满分150分。
其中8道单选题,4道多选题,4道填空题,6道解答题。
一、单选题1,2,,4,…,则是这个数列的()A.第8项B.第9项C.第10项D.第11项【答案】B【解析】【分析】将数列中的每一项都写成n,即可判断.【详解】,2,3,4,... ,由此可归纳该数列的通项公式为nna=,又9=,则其为该数列的第9项.故选:B.【点睛】本题考查了由数列的前几项归纳出其通项公式,属于基础题.2.记等差数列{}n a的前n项和为n S,若52a=,25468a a a a-=,则20S=()A.180B.180-C.162D.162-【答案】B【解析】【分析】先利用等差数列的通项公式,求出等差数列的首项和公差,再根据前n项和公式即可求出20S. 【详解】52a =,24628a a a-=,11114226840a da d a d a d+=⎧∴⎨+--=+⎩,解得11114226840a d a d a d a d +=⎧⎨+--=+⎩,2d ∴=-,110a =,201019228a ,()12020201802a a S +⋅∴==-.故选:B. 【点睛】本题主要考查等差数列的性质和前n 项和公式,考查学生的运算求解能力,属于基础题. 3.在数列{}n a 中,112a =,111n n a a -=-(2n ≥,n ∈+N ),则2020a =( )A .12B .1C .1-D .2【答案】A 【解析】 【分析】通过递推式求出数列前几项可得数列为周期数列,利用数列的周期性可得答案. 【详解】2111121a a =-=-=-,3211112a a =-=+=,431111122a a =-=-=, 可得数列{}n a 是以3为周期的周期数列,202036731112a a a ⨯+∴===. 故选:A. 【点睛】本题考查数列的周期性,关键是通过递推式求出前几项观察出周期,是基础题.4.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,352620,64a a a a +==,则5S =( ) A .B .C .42D .【答案】D 【解析】 【分析】根据2664a a =,利用等比数列的性质得到3564a a =,结合3520a a +=,利用根与系数的关系构造二次方程求解得到35,a a 的值,进而得到等比数列的首项和公比,然后利用求和公式计算即得所求. 【详解】由于在等比数列{}n a 中,由2664a a =可得:352664a a a a ==, 又因为3520a a +=,所以有:35,a a 是方程220640x x -+=的二实根,又0,1n a q >>,所以35a a <, 故解得:354,16a a ==,从而公比3122,1,a q a q ==== 那么55213121S -==-,故选:D . 【点睛】本题考查等比数列的通项公式,等比数列的性质,等比数列的求和,属中档题. 5.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165 D .5110【答案】A 【解析】 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯,又因为723n n S n T n +=+,所以22071514924a ab b +=+.故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题. 6.等比数列{}n a 中( ) A .若12a a <,则45a a < B .若12a a <,则34a a < C .若32S S >,则12a a < D .若32S S >,则12a a >【答案】B 【解析】 【分析】根据等比数列的通项公式及求和公式,等比数列的公比分析即可求出答案. 【详解】等比数列{}n a 中,20q >,∴当12a a <时,可得2212a q a q <,及34a a <,故B 正确;但341a a q =和352a a q =不能判断大小(3q 正负不确定),故A 错误;当32S S >时,则12312+++a a a a a >,可得30a >,即210a q >,可得10a >,由于q 不确定,不能确定12,a a 的大小,故CD 错误. 故选:B. 【点睛】本题考查等比数列通项公式和求和公式的应用,属于基础题.7.函数()2cos 2f x x x =--{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 【答案】B 【解析】 【分析】先将函数化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭再解函数零点得4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可.【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=--=- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈,∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题. 8.已知函数()cos lnxf x x x ππ=+-,若22018201920192019f f f πππ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()1009ln 0,0)a b a b π+>>(,则11a b+的最小值为( )A .2B .4C .6D .8【答案】A 【解析】 【分析】 根据()()2ln f x fx ππ+-=,采用倒序相加的方法可得2018ln S π=,从而得到2a b +=,根据基本不等式求得最小值. 【详解】由题可知:()()()()2cos lncos ln ln 2ln x xf x f x x x x xππππππππ-+-=++-+==- 令22018201920192019S f f f πππ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又20182017201920192019S f f f πππ⎛⎫⎛⎫⎛⎫=+++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭于是有22ln 2ln 2ln 22018ln S ππππ=++⋅⋅⋅+=⨯ 2018ln S π⇒= 因此2a b += 所以()()11111112222222a b a b a b a b b a ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当1a b ==时取等号本题正确选项:A 【点睛】本题考查倒序相加法求和、利用基本不等式求解和的最小值问题.关键是能够通过函数的规律求得a 与b 的和,从而能够构造出基本不等式的形式.二、多选题9.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列 【答案】AC 【解析】 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c 时,{}n a 是等差数列,不可能是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:AC 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.10.数列{}n a 的前n 项和为n S ,若11a =,()*12n n a S n N +=∈,则有( ) A .13n n S -=B .{}n S 为等比数列C .123n n a -=⋅D .21,1,23,2n n n a n -=⎧=⎨⋅≥⎩【分析】根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】由题意,数列{}n a 的前n 项和满足()*12n n a S n N +=∈,当2n ≥时,12n n a S -=,两式相减,可得112()2n n n n n a a S S a +-=-=-, 可得13n n a a +=,即13,(2)n na a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以212a a =, 所以数列的通项公式为21,1232n n n a n -=⎧=⎨⋅≥⎩;当2n ≥时,11123322n n n n a S --+⋅===,又由1n =时,111S a ==,适合上式,所以数列的{}n a 的前n 项和为13n n S -=;又由11333nn n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】本题考查利用,n n a S 关系求数列的通项公式,以及等比数例的证明和判断,属综合基础题. 11.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.12.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 【答案】ACD 【解析】 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,∴a 67=17×36,∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()() 12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1) 故选:ACD. 【点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.三、填空题13.已知数列{}n a 的通项公式是246n a n =-,那么n S 达到最小值时n 为________. 【答案】22或23. 【解析】 【分析】利用数列的单调性求得满足题意的n 即可. 【详解】246n a n =-,∴数列{}n a 是递增数列.令()1246021460n n a n a n +=-≤⎧⎨=+-≥⎩,解得:2223n ≤≤,∴22n =或23n =,则可知n S 达到最小值时n 为22或23. 故答案为:22或23. 【点睛】本题考查等差数列前n 项和最值的求法,属于基础题.14.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________.【答案】405 【解析】 【详解】 【分析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,9989994052S ⨯=⨯+⨯= 15.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,4进行“扩展”,第一次得到数列1,4,4;第二次得到数列1,4,4,16,4;……;第n 次得到数列1,1x ,2x ,…,i x ,4,并记()212log 14n i a x x x =⋅⋅⋅⋅⋅,其中21n t =-,*n ∈N .则{}n a 的通项n a =___________. 【答案】31n + 【解析】 【分析】先由()212log 14n t a x x x =⋅⋅⋅⋅,结合题意得到132n n a a +=-,再设13()n n a t a t ++=+求出1t =-,得到数列{}1n a -是首项为3,公比为3的等比数列,进而可求出结果.【详解】由题意,根据()212log 14n t a x x x =⋅⋅⋅⋅,可得()1211122log 1(1)((4)4)t t n a x x x x x x x +=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3333312214log 324n t x x x a ⎛⎫⋅⋅⋅⋅==-⎪⎝⎭, 设13()n n a t a t ++=+,即132n n a a t +=+,可得1t =-,则数列{}1n a -是首项为2121log 413a -=-=,公比为3的等比数列,故13n n a -=,所以31,n n a n N +=+∈.故答案为:31n +.【点睛】本题主要考查数列的应用,熟记等比数列的性质以及通项公式即可,属于常考题型.16.如图,互不相同的点12,,,n A A A 和12,,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设n n OA a =.若11a =,22a =,则数列{}n a 的通项公式是________.【答案】32n a n =-【解析】【分析】根据三角形相似和所有梯形11n n n n A B B A ++的面积均相等,找到与n a 相关的递推公式,再由递推公式求得通项公式.【详解】由于11//,n n n n A B A B ++ 所以11,n n n n OA B OA B ++梯形11n n n n A B B A ++ 的面积为11n n OA B ++∆的面积減去n n OA B △的面积,2222i i j j OA B i i OA B j jSOA a S OA a == 则可得 222211,n n n n a a a a +--=- 即递推公式为222112,n n n a a a +-=+故2{}n a 为等差数列,且公差d =2221a a -3=,故21(1)332n a n n =+-⨯=-,得32n a n =-故答案为: 32n a n =-【点睛】本题主要考查数列在平面几何中的应用,根据几何关系寻找递推有关系是解决问题的关键,属于中档题.四、解答题17.在①112n n a a +=-,②116n n a a +-=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,若问题中的n S 存在最大值,则求出最大值;若问题中的n S 不存在最大值,请说明理由.问题:设n S 是数列{}n a 的前n 项和,且14a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值.注:如果选择多个条件分别解答,按第一个解答计分.【答案】答案见解析【解析】【分析】若选①,求出数列{}n a 是首项为4,公比为12-的等比数列,求出通项公式和前n 项和,通过讨论n 的奇偶性,求出其最大值即可;若选②,求出数列{}n a 是首项为4,公差为16-的等差数列,求出通项公式和前n 项和,求出其最大值即可; 若选③,求出217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值. 【详解】解:选① 因为112n n a a +=-,14a =,所以{}n a 是首项为4.公比为12-的等比数列, 所1211422n n n a --⎛⎫⎛⎫=⨯-=- ⎪ ⎪⎝⎭⎝⎭.当n 为奇数时,141281113212n n n S ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为81132n ⎛⎫+ ⎪⎝⎭随着n 的增加而减少,所以此时n S 的最大值为14S =. 当n 为偶数时,81132n n S ⎛⎫=- ⎪⎝⎭,且81814323n n S ⎛⎫=-<< ⎪⎝⎭ 综上,n S 存在最大值,且最大值为4.选② 因为116n n a a +-=-,14a =.所以{}n a 是首项为4,公差为16-的等差数列, 所以11254(1)666n a n n ⎛⎫=+--=-+ ⎪⎝⎭. 由125066n -+≥得25n ≤, 所以n S 存在最大值.且最大值为25S (或24S ), 因为25252412545026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为50. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…19n n a a n --=-, 则2121321(79)(1)171622n n n n n n n a a a a a a a a --+---+=-+-+=-+-=, 又14a =,所以217242n n n a -+=. 当16n ≥时,0n a >,故n S 不存在最大值.【点睛】此题考查数列的通项公式和求和公式,考查等差数列和等比数列的性质,属于基础题 18.数列{}n a 的前n 项和()2=1003n S n n n N *-+∈.(1)求数列{}n a 的通项公式;(2)设n n b a =,求数列{}n b 的前n 项和n T .【答案】(1) ()()102110122n n a nn ⎧=⎪=⎨-≥⎪⎩ (2) ()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩【解析】【分析】(1) 当1n =时,1102a =,利用1n n n a S S -=-得到通项公式,验证1a 得到答案.(2)根据{}n a 的正负将和分为两种情况,50n ≤和51n ≥,分别计算得到答案.【详解】(1)当1n =时,11=10013=102a s =-+,当2n ≥时,()()221=10010011=1012n n n a S S n n n n n -=-------. 综上所述()()102110122n n a n n ⎧=⎪=⎨-≥⎪⎩. (2)当50n ≤时,n n b a =,所以123n n T a a a a =+++⋅⋅⋅+39997951012n =++++⋅⋅⋅+-()()991012331002n n n n +-=+=+-, 当51n ≥时,n n b a =-,123505152n n T a a a a a a a =+++⋅⋅⋅+---⋅⋅⋅-()5012312n n T a a a a a -=-+++⋅⋅⋅++()50063100n n =---21005003n n =-+.综上所述()()22100350100500351n n n n T n n n ⎧-++≤⎪=⎨-+≥⎪⎩. 【点睛】本题考查了利用1n n n a S S -=-求通项公式,数列的绝对值和,忽略1n =时的情况是容易犯的错误.19.已知数列{}n a 满足12a =,1122n n n a a ++=+.(1)证明:数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列; (2)设2n n na b =,证明:122311111n n b b b b b b +++⋅⋅⋅+<. 【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由1122n n n a a ++=+变形得:11122n n n na a ++=+,可得证明. (2)由(1)知:2n n n ab n ==,∴()1111111n n b b n n n n +==-++,用裂项相消可求和,从而可证明. 【详解】 (1)由1122n n n a a ++=+变形得:11122n n n na a ++=+ 又12a =,故112a = ∴数列2n n a ⎧⎫⎨⎬⎩⎭是以1为首项1为公差的等差数列. (2)由(1)知:2n n n a b n == ∴()1111111n n b b n n n n +==-++ ∴122311111111112231n n b b b b b b n n +⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 1111n =-<+ ∴122311111n n b b b b b b +++⋅⋅⋅+< 【点睛】本题考查根据数列的递推公式证明数列为等差数列,考查用裂项相消法求和,属于基础题. 20.设{}n a 是公比大于1的等比数列,12314++=a a a ,且21a +是1a ,3a 的等差中项.(1)求数列{}n a 的通项公式;(2)若21log 2n n n b a ⎛⎫= ⎪⎝⎭,求数列{}n b 的前n 项和n T . 【答案】(1)2n n a =;(2)()1122n n T n +=-⋅-.【解析】【分析】(1)设等比数列{}n a 的公比为()1q q >,根据题中条件列出方程组,求出首项和公比,即可得出通项公式;(2)先由(1)得到2nn b n =-⋅,再由错位相减法,即可得出结果.【详解】(1)设等比数列{}n a 的公比为()1q q >.依题意,有()21321a a a +=+,将()13221a a a +=+代入12314++=a a a 得()222114a a ++=,得24a =.联立1232144a a a a ++=⎧⎨=⎩得21111144a a q a q a q ⎧++=⎨=⎩ 两式两边相除消去1a 得22520q q -+=, 解得2q 或12q =(舍去), 所以1422a ==, 所以,111222n n n n a a q --==⨯=,(2)因为21log 22n n n n b a n ⎛⎫==-⋅ ⎪⎝⎭所以,231222322n n T n -=⨯+⨯+⨯++⨯①23412122232(1)22n n n T n n +-=⨯+⨯+⨯++-⨯+⨯② ①-②,得23122222n n n T n +=++++-⨯()111212222212n n n n n n +++-=-⨯=-⋅--.所以,数列{}n b 的前n 项和11222n n n T n ++=-⋅-.【点睛】 本题主要考查求等比数列的通项公式,考查错位相减法求数列的和,涉及等差中项的应用,属于常考题型.21.已知数列{}n a 的前n 项和为23122n S n n =-. (1)求数列{}n a 的通项公式;(2)数列[]lg n n b a =,[]x 表示不超过x 的最大整数,求{}n b 的前1000项和1000T .【答案】(1)32n a n =-;(2)10002631T =.【解析】【分析】(1)利用1n n n a S S -=-可求出;(2)根据数列特点采用分组求和法求解.【详解】(1)当1n =时,111a S ==,当2n ≥时,()()221313111322222n n n a S S n n n n n -⎡⎤=-=-----=-⎢⎥⎣⎦, 将1n =代入上式验证显然适合,所以32n a n =-.(2)因为410a =,34100a =,3341000a =,333410000a =,所以0,131,4332,343333,3341000n n n b n n ≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩, 所以100003130230036672631T =⨯+⨯+⨯+⨯=.【点睛】本题考查n a 和n S 的关系,考查分组求和法,属于基础题.22.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n n n n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.【答案】(Ⅰ)n a n =,12n nb -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯. 【解析】【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211n k k c-=∑和21n k k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由11a =,()5435a a a =-,可得d =1.从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n nb -=. (Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<, 所以221n n n S S S ++<. (Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--===-++, 当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有222221112221212121k k nn n k k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444n n k k n n k k k n n c-==---==+++++∑∑ ① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n n k n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414nn n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994n k n k n c =+=-⨯∑. 因此,2212111465421949n nn n k k k n k k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题.。
【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)试题部分一、选择题:1. 已知数列{an}为等差数列,a1=3,a5=15,则公差d为()A. 3B. 4C. 5D. 62. 数列{an}的通项公式为an = 2n 1,则数列{an}的前5项和为()A. 25B. 30C. 35D. 403. 若数列{an}满足an+1 = 2an,且a1=1,则数列{an}是()A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定4. 用数学归纳法证明1+3+5+…+(2n1)=n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论1+3+5+…+(2n1)=n²5. 已知数列{an}的通项公式为an = n² + n,则数列{an+1 an}的前5项和为()A. 20B. 25C. 30D. 356. 数列{an}为等比数列,a1=2,a3=8,则a5=()A. 16B. 24C. 32D. 647. 已知数列{an}满足an+2 = an+1 + an,a1=1,a2=1,则a5=()A. 3B. 4C. 5D. 68. 若数列{an}的通项公式为an = 3n 2,则数列{an}的前n项和为()A. n(3n1)/2B. n(3n+1)/2C. n(3n2)/2D. n(3n+2)/29. 用数学归纳法证明等式2^n > n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论2^n > n²10. 已知数列{an}的通项公式为an = 2^n,则数列{an+1 / an}的值为()A. 1B. 2C. 3D. 4二、判断题:1. 数列{an}的通项公式为an = n²,则数列{an}是等差数列。
高二数学下册等差数列单元训练题及答案

高二数学下册等差数列单元训练题及答案很多同学总是抱怨数学学不好,其实是因为试题没有做到位,数学需要大量的练习来帮助同学们理解知识点。
以下是店铺为您整理的关于高二数学下册等差数列单元训练题及答案的相关资料,供您阅读。
高二数学下册等差数列单元训练题及答案一、选择题(每小题6分,共42分)1.等差数列{an}前四项和为40,末四项和为72,所有项和为140,则该数列共有( )A.9项B.12项C.10项D.13项【答案】C【解析】∵a1+a2+a3+a4=40,an+an-1+an-2+an-3=72.∴a1+an= =28.又 =140,故n=10.2.给出下列等式:(ⅰ)an+1-an=p(p为常数);(ⅱ)2an+1=an+an+2(n∈N*);(ⅲ)an=kn+b(k,b为常数)则无穷数列{an}为等差数列的充要条件是( )A.(ⅰ)B.(ⅰ)(ⅲ)C.(ⅰ)(ⅱ)D.(ⅰ)(ⅱ)(ⅲ)【答案】D【解析】易知三个都是,另外还有一个常见的是{an}的前n项和Sn=an2+bn,(a,b为常数).3.等差数列{an}中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于( )A.66B.99C.144D.297【答案】B【解析】a1+a4+a7=39 a4=13,a3+a6+a9=27 a6=9,S9= =99.4.等差数列{an}的公差为d,前n项的和为Sn,当首项a1和d变化时,a2+a8+a11是一个定值,则下列各数中也为定值的是( )A.S7B.S8C.S13D.S15【答案】C【解析】因a2+a8+a11=3a7,故a7为定值.又S13= =13a7,∴选C.5.已知数列{an}中,a3=2,a7=1,又数列{ }是等差数列,则a11等于( )A.0B.C.D.-1【答案】B【解析】∵ +(7-3)d,∴d= .∴ +(11-3)d= ,a11= .6.已知数列{an}的通项为an=26-2n,若要使此数列的前n项之和Sn最大,则n的值是( )A.12B.13C.12或13D.14【答案】C【解析】由得12≤n≤13,故n=12或13.7.在等差数列{an}中, <-1,若它的前n项和Sn有最大值,则下列各数中是Sn的最小正数值的是( )A.S1B.S38C.S39D.S40【答案】C【解析】因Sn有最大值,故d<0,又 <0.因a210,a20+a21<0.∴S40=20(a1+a40)=20(a20+a21)<0.S39=39a20>0,S39-S38=a39<0.又S39-S1=a2+a3+…+a39=19(a2+a39)=19(a1+a40)<0,故选C.二、填空题(每小题5分,共15分)8.黑白两种颜色的正六边形地面砖按如下图的规律拼成若干个图案:则第n个图案中有白色地面砖_____________块.【答案】4n+2【解析】每增加一块黑砖,则增加4块白砖,故白砖数构成首项为6,公差为4的等差数列,故an=6+4(n-1)=4n+2.9.设f(x)= ,利用课本中推导等差数列前n项和方法,求f( )+f( )+…+f( )的值为_________________.【答案】5【解析】当x1+x2=1时,f(x1)+f(x2)= =1.设S=f( )+f( )+…+f( ),倒序相加有2S=[f( )+f( )]+[f( )+f( )]+…+[f( )+f( )]=10.即S=5.10.数列1,2+3,4+5+6,7+8+9+10,…,的一个通项公式an=__________________.【答案】【解析】前n项一共有1+2+3+…+n= 个自然数,设Sn=1+2+3+…+n= ,则an= .三、解答题(11—13题每小题10分,14题13分,共43分)11.{an}是等差数列,公差d>0,Sn是{an}的前n项和,已知a2a3=40,S4=26.(1)求数列{an}的通项公式an;(2)令bn= ,求数列{bn}的所有项之和T.【解析】(1)S4= (a1+a4)=2(a2+a3)=26.又∵a2a3=40,d>0,∴a2=5,a3=8,d=3.∴an=a2+(n-2)d=3n-1.(2)bn= =Tn= .12.已知f(x)=x2-2(n+1)x+n2+5n-7,(1)设f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;(2)设f(x)的图象的顶点到x轴的距离构成{bn},求{bn}的前n项和.(1)证明:f(x)=[x-(n+1)2]+3n-8,∴an=3n-8.∵an-1-an=3,∴{an}为等差数列.(2)【解析】bn=|3n-8|,当1≤n≤2时,bn=8-3n,b1=5.Sn= ;当n≥3时,bn=3n-8.Sn=5+2+1+4+…+(3n-8)13.假设你在某公司打工,根据表现,老板给你两个加薪的方案:(Ⅰ)每年年末加1 000元;(Ⅱ)每半年结束时加300元.请你选择.(1)如果在该公司干10年,问两种方案各加薪多少元?(2)对于你而言,你会选择其中的哪一种?【解析】设方案一第n年年末加薪an,因为每年末加薪1 000元,则an=1 000n;设方案二第n个半年加薪bn,因为每半年加薪300元,则bn=300n.(1)在该公司干10年(20个半年),方案(Ⅰ)共加薪S10=a1+a2+…+a10=55 000(元).方案(Ⅱ)共加薪T20=b1+b2+…+b20=20×300+ ×300=63 000元.(2)设在该公司干n年,两种方案共加薪分别为:Sn=a1+a2+…+an=1 000×n+ ×1 000=500n2+500n,T2n=b1+b2+…+b20=2n×300+ ×300=600n2+300n;令T2n≥Sn即600n2+300n>500n2+500n,解得,n≥2,当n=2时等号成立.∴如果干3年以上(包括3年)应选择第二方案;如果只干2年,随便选;如果只干1年,当然选择第一方案.14.设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有an=2 -2.(1)写出数列{an}的三项;(2)求数列{an}的通项公式,并写出推证过程;(3)令bn= ,求数列{bn}的前n项和Tn.【解析】(1)由题意,当n=1时,有a1=2 -2,S1=a1,∴a1=2 -2,解得a1=2.当n=2时,有a2=2 -2,S2=a1+a2,将a1=2代入,整理得(a2-2)2=16,由a2>0,解得a2=6.当n=3时,有a3=2 -2,S3=a1+a2+a3,将a1=2,a2=6代入,整理得(a3-2)2=64,由a3>0,解得a3=10.所以该数列的前三项分别为2,6,10.(2)由an=2 -2(n∈N*),整理得Sn= (an+2)2,则Sn+1= (an+1+2)2,∴an+1=Sn+1-Sn= [(an+1+2)2-(an+2)2].整理,得(an+1+an)(an+1-an-4)=0,由题意知an+1+an≠0,∴an+1-an=4.∴即数列{an}为等差数列,其中首项a1=2,公差d=4,∴an=a1+(n-1)d=2+4(n-1).即通项公式为an=4n-2(n∈N*).(3)bn= ,Tn=b1+b2+…+bn。
高二数学数列综合测试题(解析版)

7.已知 分别是等差数列 与 的前 项和,且 ,则 ()
A. B. C. D.
【答案】B
【详解】因为数列 是等差数列,所以 ,
所以 ,
又因为 分别是等差数列 与 的前 项和,且 ,
所以 ,
故选: .
8.已知数列 满足 ,则满足 的 的最大取值为()
11.一个弹性小球从 高处自由落下,每次着地后又跳回原来高度的 再落下.设它第 次着地时,经过的总路程记为 ,则当 时,下面说法正确的是()
A. B. C. 的最小值为 D. 的最小值为250
【答案】BC
【详解】由题可知,第一次着地时, ;第二次着地时, ;
第三次着地时, ;……
第 次着地后,
则 ,显然 ,又 是关于 的增函数, ,故当 时, 的最小值为 ;
A.39B.45C.48D.51
【答案】D
【详解】设该塔群共有n阶,自上而下每一阶的塔数所构成的数列为 ,依题意可知 , ,…, 成等差数列,且公差为2, ,
则 ,解得 .
故最下面三价的塔数之和为 .故选:D
4.等比数列 的前 项和为 , , ,则 为()
A. B. C. D.28或-21
ห้องสมุดไป่ตู้【答案】A
数列复习训练题
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一个
1.等差数列 中,已知 ,则 ()
A.36B.27C.18D.9
【答案】B
【详解】解:由题得 .故选:B
2.若数列 满足 , , ,则 的值为()
A.-3B.-2C.-1D.2
【答案】C
【详解】由 得 ,故有
(完整版)高二数学数列练习题(含答案)

高二《数列》专题1.与的关系: ,已知求,应分时 ;时,n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =2≥n = 两步,最后考虑是否满足后面的.n a 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d --=2n ≥*1()n na q n N a +=∈通项,d n a a n )1(1-+=(),()n m a a n m d n m =+->,中项如果成等差数列,那么叫做与的等差中,,a A b A a b 项.。
2a bA +=等差中项的设法:如果成等比数列,那么叫做与,,a G b G a 的等比中项.b 等比中项的设法:,,aqa aq 前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=若*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+,则2m p q =+若,则q p n m +=+2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An Bd d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为一个常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (3)通项公式:为常数)()(,n a kn b k b =+*N ∈n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)中项:证明21nn a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0(,nna cq c q =3.数列通项公式求法。
潍坊一中学案高二数学列单元测试题(一)

高二数学必修5数 列单元测试题(一)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27B .28C .29D .302.(2014·丹东高二检测)已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫11+a n 是等差数列,则a 11等于()A .0 B.12 C.23 D .-13.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ) A .15 B .30 C .31 D .644.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .1925.(2014·东营高二检测)等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( )A .90B .100C .145D .1906.若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-157.已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 012等于( )A.12 B .2 C .-1 D .18.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10等于( )A .1 033B .1 034C .2 057D .2 0589.已知数列{a n }中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n等于( )A.2n n +1 B.2n (n +1) C.n (n +1)2 D.n2(n +1)10.已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧n (n 为奇数),2n2(n 为偶数),S n 为数列{a n }的前n 项和,则S 20=( )A .2 246B .2 148C .2 146D .2 248 二、填空题(本大题共4小题,每小题5分,共20分)11.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *), 则a 5=________.12.首项为-24的等差数列从第10项起开始为正数,则公差d 的取值范围是________. 13.等差数列{a n }中,a 1>0,S 3=S 10,则当S n 取最大值时n 的值是________.14.某房地产开发商在销售一幢23层的商品楼之前按下列方法确定房价:由于首层与顶层均为复式结构,因此首层价格为a 1元/m 2,顶层由于景观好价格为a 2元/m 2,第2层价格为a 元/m 2,从第3层开始每层在前1层价格上加价a100元/m 2,则该商品房各层的平均价格为________.三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)公差d ≠0的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,且S 8=32,求S 10的大小.16.(本小题满分12分)(2013·陕西高考)设S n 表示数列{a n }的前n 项和.(1)若{a n}是等差数列,推导S n的计算公式;(2)若a1=1,q≠0,且对所有正整数n,有S n=1-q n 1-q,判断{a n}是否为等比数列,并证明你的结论.17.(本小题满分12分)(2013·四川高考)在等比数列{a n}中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{a n}的首项、公比及前n项和.18.(本小题满分14分)设数列{a n}的前n项和为S n,若对于任意的正整数n都有S n=2a n-3n.(1)设b n=a n+3,求证:数列{b n}是等比数列,并求出{a n}的通项公式;(2)求数列{na n}的前n项和.高二数学必修5数列单元测试题(一)参考答案一、选择题1.【解析】按照规律,第六个三角形数为15+6=21,第七个三角形数为21+7=28.【答案】B 2.【解析】 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124,∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.【答案】 B3.【解析】 由a 7+a 9=16,得a 8=8,∴d =8-18-4=74,∴a 12=1+8×74=15.【答案】 A4.【解析】 ∵a 5=a 2q 3,∴q 3=a 5a 2=2439=27,∴q =3,∴a 1=3,∴S 4=3(1-34)1-3=120. 5.【解析】 设公差为d ,∴(1+d )2=1×(1+4d ),∵d ≠0,∴d =2,从而S 10=100.6.【解析】 记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A.7.【解析】 由a 1=12,a n +1=11-a n 得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,因此a 2 012=a 3×670+2=a 2=2.【答案】 B8.【解析】 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1,因此ab 1+ab 2+…+ab 10=(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10=1-2101-2+10=1 033.【答案】 A9.【解析】 由题意,a n -a n +1+1=0.∴a n +1-a n =1,∴{a n }为等差数列,且a 1=1,d =1,∴a n =1+(n -1)×1=n ,∴S n =n (n +1)2,∴1S n=2n (n +1)=2(1n -1n +1),∴1S 1+1S 2+…+1S n=2(1-12+12-13+…+1n -1n +1)=2nn +1.【答案】A10.【解析】 S 20=(1+3+5+…+19)+(2+22+…+210)=2 146.【答案】 C 二、填空题11.【解析】由已知a n +1a n =2,∴{a n }为首项a 1=1,公比q =2的等比数列,∴a 5=a 1q 4=1×24=16.12.【解析】 设a 1=-24,公差为d ,∴a 10=-24+9d >0且a 9=-24+8d ≤0,∴83<d ≤3. 13.【解析】 由S 3=S 10可知,a 4+a 5+a 6+a 7+a 8+a 9+a 10=0,∴a 7=0.又a 1>0,∴a 6>0,∴S n 取最大值时,n 的值为6或7.【答案】 6或714.【解析】 设第2层到第22层的价格构成数列{b n },则{b n }是等差数列,b 1=a ,公差d =a 100,共21项.所以其和为S 21=21a +21×202·a 100=23.1a .故平均价格为123(a 1+a 2+23.1a )元/m 2. 三、解答题15.【解】 根据题意得⎩⎨⎧ (a 1+3d )2=(a 1+2d )(a 1+6d ),8a 1+28d =32,解得⎩⎨⎧a 1=-3,d =2,所以S 10=S 8+a 9+a 10=32+2a 1+17d =60. 16.【解】 (1)方法一:设{a n }的公差为d ,则 S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ]. 又S n =a n +(a n -d )+…+[a n -(n -1)d ], ∴2S n =n (a 1+a n ),∴S n =n (a 1+a n )2. 方法二:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ]. 又S n =a n +a n -1+…+a 1=[a 1+(n -1)d ]+[a 1+(n -2)d ]+…+a 1,∴2S n =[2a 1+(n -1)d ]+[2a 1+(n -1)d ]+…+[2a 1+(n -1)d ]=2na 1+n (n -1)d , ∴S n =na 1+n (n -1)2d .(2){a n }是等比数列.证明如下: ∵S n =1-q n1-q,∴a n +1=S n +1-S n =1-q n +11-q -1-q n 1-q =q n (1-q )1-q =q n.∵a 1=1,q ≠0,∴当n ≥1时,有a n +1a n =q nq n -1=q .因此,{a n }是首项为1且公比为q (q ≠0)的等比数列. 17.【解】 设该数列的公比为q . 由已知,得⎩⎨⎧a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以⎩⎨⎧ a 1(q -1)=2,q 2-4q +3=0,解得⎩⎨⎧a 1=1,q =3.(q =1舍去)故首项a 1=1,公比q =3. 所以数列的前n 项和S n =3n -12.18.(本小题满分14分)设数列{a n }的前n 项和为S n ,若对于任意的正整数n 都有S n =2a n -3n . (1)设b n =a n +3,求证:数列{b n }是等比数列,并求出{a n }的通项公式; (2)求数列{na n }的前n 项和.【解】 (1)∵S n =2a n -3n 对于任意的正整数都成立, ∴S n +1=2a n +1-3(n +1),两式相减,得S n +1-S n =2a n +1-3(n +1)-2a n +3n . ∴a n +1=2a n +1-2a n -3,即a n +1=2a n +3,∴a n +1+3=2(a n +3),即b n +1b n =a n +1+3a n +3=2对一切正整数都成立.∴数列{b n }是等比数列.由已知得S 1=2a 1-3,即a 1=2a 1-3,∴a 1=3, ∴首项b 1=a 1+3=6,公比q =2,∴b n =6·2n -1. ∴a n =6·2n -1-3=3·2n -3. (2)∵na n =3×n ·2n -3n ,∴S n =3(1·2+2·22+3·23+…+n ·2n )-3(1+2+3+…+n ), 2S n =3(1·22+2·23+3·24+…+n ·2n +1)-6(1+2+3+…+n ), -S n =3(2+22+23+…+2n )-3n ·2n +1+3(1+2+3+…+n ) =3·2(2n -1)2-1-6n ·2n +3n (n +1)2,∴S n =(6n -6)·2n +6-3n (n +1)2.。
高二数学数列试题

高二数学数列试题1.已知等比数列的前项为,,,则= .【答案】31【解析】【考点】等比数列通项公式求和公式2.设数列是等差数列,是的前项和,且,则下列结论错误的是A.B.C.均为的最小值D.【答案】D【解析】由,得,则.【考点】等差数列.3.数列满足,若,则()A.B.C.D.【答案】B【解析】由已知得:,,,,所以数列为周期为4的周期数列.,所以.【考点】1.周期数列;2.数列的递推公式;4.已知等差数列的前n项和为,且=()A.18B.36C.54D.72【答案】D【解析】,由等差数列的性质可得,所以.故D正确.【考点】1等差数列的性质;2等差数列的前项和.5.设数列中,,,则通项=_____.【答案】【解析】∵,∴,,,,,∴,∴.【考点】累加法求通项公式.【方法点睛】通过分析发现已知条件与等差数列的公差形式差不多,故想到用累加法求解,利用,先写出的表达式,再令这些表达式相加,消去一些项,得出的值,等号右边利用等差数列或等比数列的前n项和公式求和,再求的值.6.(本题满分16分)设数列的前项的和,已知.(1)求的值;(2)证明:数列是等差数列,并求出数列的通项公式;(3)证明:对一切正整数,有.【答案】(1)4;(2);(3)详见解析【解析】(1)令n=1,代入即可求的值;(2)根据递推数列,结合等差数列的定义即可证明数列是等差数列,找到数列的首项和公差,从而得到通项公式,整理得的通项公式;(3)求出的通项公式,利用放缩法以及裂项法,即可证明不等式成立试题解析:(1)解:依题意:当时,解得:… 3分(2)证明:两式相减得:整理得:又对任意都有故数列是以1为首项1为公差的等差数列,所以(3)证明:由(2)得:所以得证.【考点】1.数列的求和;2.等差关系的确定;3.放缩法证明不等式7.等比数列中,,则()A.4B.8C.16D.32【答案】C【解析】由等比数列性质可知【考点】等比数列性质8.数列,满足,,则数列的前10项的和为A.B.C.D.【答案】D【解析】,所以数列的前项的和为,故选D【考点】裂项相消法求和9.在2和8之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积为()A.64B.±64C.16D.±16【答案】A【解析】设中间三数为,由等比数列性质可知【考点】等比数列性质10.已知数列的前项和,,则()A.B.C.D.【答案】B【解析】因为,所以即,且,所以,即,所以,即,运用累乘法可得,,故应选.【考点】1、由数列的递推公式求数列通项公式.11.在数列中,已知,,且数列是等比数列,则.【答案】【解析】数列中第二项,第三项,所以公比为3,【考点】数列求通项公式12.已知为数列的前n项和,且,.(1)求数列的通项公式;(2)设,求数列的前n项和.【答案】(1);(2).【解析】(1)已知条件是数列的项与和的关系求通项公式,常有两种做法:一、消和留项,从而得到数列的递推公式,然后求通项即可;二、当方法一比较困难时,可以消项留和,从而求出的递推公式,进而求出,然后问题等价于已知数列的前n项和求数列通项公式.(2)由(1)可得,,用裂项相消的方法即可求数列的前n项和.试题解析:(1)当时,,可得或(舍),由,两式相减得,∵,∴,数列是以3为首项,2为公差的等差数列,∴.(2)∵,∴.【考点】求数列的通项公式;求数列的前n项和.13.设数列{an }的前n项和为Sn.已知a1=1,Sn+1=4a n+2.(1)设bn =an+1-2a n,证明数列{b n}是等比数列;(2)求数列{an}的通项公式.【答案】(1)证明过程详见解析;(2)an=(3n-1)·2n-2.【解析】(1)运用,并结合Sn+1=4a n+2,得到数列{a n}的递推公式,a n+2=4a n+1-4a n.然后由b n=a n+1-2a n,即可证明;(2)由(1)得,a n+1-2a n=3×2n-1,于是-=,从而构造新数列求出通项公式.试题解析:(1)由已知,得a1+a2=4a1+2,解得a2=3a1+2=5,故b1=a2-2a1=3.又an+2=S n+2-S n+1=4a n+1+2-(4a n+2)=4a n+1-4a n,于是an+2-2a n+1=2(a n+1-2a n),即b n+1=2b n.因此数列{bn}是首项为3,公比为2的等比数列.(2)由(1)知等比数列{bn }中b1=3,公比q=2,所以an+1-2a n=3×2n-1,于是-=,因此数列{}是首项为,公差为的等差数列,=+(n-1)×=n-,所以an=(3n-1)·2n-2.【考点】①证明数列是等比数列;②构造新数列求数列通项公式.14.设为等比数列{}的前n项和,,则=()A.10B.-5C.9D.-8【答案】A【解析】【考点】等比数列通项公式求和公式15.已知数列满足,,,,成等差数列,则数列的通项公式为.【答案】【解析】:∵数列满足,(n∈N*,p为常数),.∵,,成等差数列,∴,∴,解得p=2,∴,∴当n≥2时,.∴【考点】1.等比数列的通项公式及其前n项和公式;2.累加求和16.已知数列的首项,前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)设函数,是函数的导函数,令,求数列的通项公式,并研究其单调性.【答案】(Ⅰ);(Ⅱ),是单调递增数列.【解析】(Ⅰ)根据求得,两式相减求得,判断出是一个等比数列,进而根据首项和公比求得数列的通项公式;(Ⅱ)化简得.用错位相减法得出通项公式,然后利用导数确定其单调性.试题解析:(I)由()得(),两式相减得,可得(),又由已知,所以,即是一个首项为,公比的等比数列,所以().(II)因为,所以,令,则,所以,作差得,所以,即,而所以,作差得,所以是单调递增数列.【考点】1、数列的递推公式;2、等差数列和等比数列定义及求和;3、数列的求和.【方法点晴】根据题目中的条件,出现时经常会先写出的关系式,两式相减,利用或进行转化,得到关于数列项的递推关系式,判断构造适当的等差或等比数列,进而求出数列的通项公式.当一个等差数列和一个等比数列对应项相乘得到新数列,进行求和时应想到用错位相减法,由乘数列公比得到,相减得到,利用等比数列求和公式运算之后不要忘了除以.17.设为等比数列的前n项和,,则()A.11B.-8C.5D.-11【答案】D【解析】设等比数列的公比为,首项为,由题意可得解得,故,故选 D.【考点】1、等比数列的通项;2、等比数列的前项和公式.18.(2015秋•如东县期末)已知数列{an },{bn}满足a1=,an+bn=1,bn+1=(n∈N*),则b2015= .【答案】.【解析】由已知条件推导出bn+1=,b1=,从而得到数列{}是以﹣2为首项,﹣1为公差的等差数列,由此能求出b2015.解:∵an +bn=1,且bn+1=,∴bn+1=,∵a1=,且a1+b1=1,∴b1=,∵bn+1=,∴﹣=﹣1,又∵b1=,∴=﹣2.∴数列{}是以﹣2为首项,﹣1为公差的等差数列,∴=﹣n﹣1,∴bn =.则b2015=.故答案为:.【考点】数列递推式.19.已知正项等比数列,且,,则=A.B.C.D.2【答案】C【解析】【考点】等比数列性质20.已知数列{an }的前n项和Sn=n2·an(n≥2),而a1=1,通过计算a2,a3,a4猜想an等于()A.B.C.D.【答案】B【解析】由题意得,因为,所以当时,;所以当时,;所以当时,;所以,可猜想,故选B.【考点】归纳推理.方法点晴:本题主要考查了数列的递推计算及归纳推理的应用,属于中档试题,着重考查了推理与运算能力,对于归纳推理的一般步骤是:(1)通过观察个别情况法相事物具有某些相同的性质;(2)从已知的相同性中推出一个明确的表达的一般性的命题(猜想),本题的解答中,利用数列的递推关系,求解,进而推出一般性的结论.21.在等差数列{an }中,Sn为其前n项和,已知a6=S6=﹣3;数列{bn}满足:bn+1=2bn,b2+b4=20.(1)求数列{an }和{bn}的通项公式;(2)设,求数列{cn }前n项和Tn.【答案】(1)3﹣n;(2)【解析】(1)设等差数列{an }的公差为d,从而可得,从而求an,再由等比数列的通项公式求bn;(2)化简,从而可得数列{cn}是首项为4,公比为的等比数列,从而求前n项和.解:(1)设等差数列{an}的公差为d,则,解得,;∴an =2﹣(n﹣1)=3﹣n;∵bn+1=2bn,∴数列{bn }是公比为2的等比数列,∵b2+b4=2b1+8b1=20,∴b1=2,∴;(2)∵,∴,∴数列{cn}是首项为4,公比为的等比数列,∴.【考点】数列的求和.22.已知等比数列满足,,则()A.2B.1C.D.【答案】C【解析】【考点】等比数列通项公式23.数列{an } 满足a1=1,an+1=2an+3(n∈N*),则a4= .【答案】29【解析】解:∵an+1=2an+3,∴an+1+3=2(an+3),∴数列{an +3}是等比数列,公比为2,首项为4,∴an +3=4×2n﹣1,即an=2n+1﹣3,∴﹣3=29.故答案为:29.【点评】本题考查了递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.24.设等比数列中,前项和为,已知,则()A.B.C.D.【答案】A【解析】因为是等比数列,所以成等比数列,则,即,解得,即,故选A.【考点】等比数列的性质及其应用.25.数列{an }的前n项和为Sn,若an=,则S100等于()A.B.C.2D.【答案】B【解析】解:∵an==2(﹣),∴S100=2(1﹣+…+)=2(1﹣)=,故选:B【点评】本题主要考查数列求和的计算,利用裂项法是解决本题的关键.26.等差数列中,已知,,则使得的最小正整数为()A.7B.8C.9D.10【答案】B【解析】因为等差数列中,已知,,所以,由等差数列的性质可得,再由题意可得,此等差数列为递增数列,所以使得的最小正整数为,故选B.【考点】等差数列的性质.27.已知数列满足,则()A.0B.C.D.【答案】B【解析】由题意得,所以,故此数列的周期为,所以.【考点】数列的递推公式.【方法点晴】本题主要考查了数列的递推关系式的应用,其中解答中根据数列的首项和数列的递推关系式,可计算得出的值,着重考查了学生的分析问题和解答问题的能力,以及学生的应变能力和不完全归纳法,可能大部分学生想直接求解数列的通项公式,然后求解,但此法不通,很难入手,属于易错题型.28.在公差为d的等差数列{an }中有:an=am+(n-m)d (m、n N+),类比到公比为q的等比数列{b}中有:n【答案】【解析】由题意可得,符合类比的要求;【考点】1.等差,等比数列的通项公式的熟练变形;2.类比变形;29.设数列,都是等差数列,若,则_____________.【答案】【解析】因为数列,都是等差数列,所以数列仍是等差数列,所以.【考点】等差数列的性质.30.设等差数列的前项和,且满足,对任意正整数,都有,则的值为()A.B.C.D.【答案】D【解析】由等差数列的求和公式及性质,可得,所以,同理可得,所以,所以,对任意正整数,都有,则,故选D.【考点】等差数列的求和公式.31.已知数列的前项和,且满足.(1)求证:是一个等差数列;(2)求的通项公式.【答案】(1)证明见解析;(2).【解析】(1)根据题设条件,化简,即可利用等差数列的定义,证得数列是一个等差数列;(2)根据数列和的关系,即可求解数列的通项公式.试题解析:提示:(1)........................6分(2),不适合上式.............12分【考点】数列的概念;数列的通项公式.32.设数列前项和为,如果那么_____________.【答案】【解析】由,即,所以当时,,两式相减,可得,即,所以,又因为,所以.【考点】数列通项公式的应用.【方法点晴】本题主要考查了数列通项公式的应用,其中解答中涉及数列的递推关系式的应用、数列的累积法等知识点的综合考查,着重考查学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于中档试题,本题的解答中,利用数列的递推关系式,得到,进而得到是解答的关键.33.数列满足并且.则数列的第100项为()A.B.C.D.【答案】B【解析】为等差数列,首项为,第二项为【考点】数列求通项公式34.在数列{an }中,若a1=1,an+1=2a n+3(n≥1),则该数列的通项a n=_______.【答案】【解析】递推公式an+1=2a n+3转化为为等比数列,首项为4,公比为2【考点】求数列通项公式35.已知数列满足,(),数列前项和为,则.【答案】【解析】当时,,,故应填.【考点】数列求和.36.己知等差数列的公差,且成等比数列,若,为数列的前项和,则的最小值为()A.B.C.D.【答案】C【解析】因为成等比数列且,可得,即,解得,所以,所以,利用函数在区间上单调递减,在单调递增,所以当时,有最小值,故选C.【考点】等差数列的通项公式与前项和.【方法点晴】本题主要考查了等差数列的通项公式与前项和,其中解答中涉及到等比中项公式的应用,数列的单调性、基本不等式和函数的单调性等知识点的综合考查,试题综合性强,有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,同时掌握函数的性质是解答一个难点.37.已知各项均为正数的等比数列中,,,则()A.B.C.D.【答案】A【解析】根据等比中项,有.【考点】等比数列.38.已知数列的首项,且满足.(1)设,证明数列是等差数列;(2)求数列的前项和.【答案】(1)详见解析;(2)【解析】(1)根据等差数列的定义进行证明即可;(2)利用(1)中求得的数据可以推知.利用错位相减法来求.试题解析:解:(1)………………4分∴数列是以为首项,3为公差的等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列测试一、选择题1、设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为( )A.128B.80C.64D.562、记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、7 3、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A .2 B .4 C .215 D .217 4、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .275、在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++ 6、若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )(A )12 (B )13 (C )14 (D )15 7、已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++=( )(A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n --21) 8、非常数数列}{n a 是等差数列,且}{n a 的第5、10、20项成等比数列,则此等比数列的公比为 ( ) A .51 B .5 C .2 D .219、已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .2310、在单位正方体ABCD-A 1B 1C 1D 1中,黑、白两只蚂蚁均从点A 出发,沿棱向前爬行,每爬完一条棱称为“爬完一段”,白蚂蚁的爬行路线是AA 1⇒A 1D 1⇒D 1C 1⇒…;黑蚂蚁的爬行路线是AB ⇒BB 1⇒B 1C 1⇒…,它们都遵循以下的爬行规则:所爬行的第i+2段与第i 段所在的直线必为异面直线(其中i 为自然数),设黑、白蚂蚁都爬完2008段后各自停止在正方体的某个顶点处,则此时两者的距离为 ( )A 1B 2C 3D 0 二、填空题 11.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 12.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________。
13.设n S 是等差数列{}n a 的前n 项和,128a =-, 99S =-,则16S = 14.已知函数()2x f x =,等差数列{}x a 的公差为2.若246810()4f a a a a a ++++=,则212310log [()()()()]f a f a f a f a ⋅⋅⋅⋅= .15、将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为 三、解答题16、已知数列{}n x 的首项13x =,通项()2*,,n n x p np n N p q =+∈为常数,且145,x x x 成等差数列。
求:(Ⅰ)p ,q 的值; (Ⅱ) 数列{}n x 前n 项和n S 的公式。
17.已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =….(Ⅰ)证明:数列1{1}na -是等比数列;(Ⅱ)数列{}nna 的前n 项和n S .18.数列{a n }是首项为23,公差为整数的等差数列,且第六项为正,第七项为负.(1)求数列的公差;(2)求前n 项和S n 的最大值;(3)当S n >0时,求n 的最大值.19.设等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S , 且数列{}n a 各项均正。
(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。
20、从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14;①设n年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n 、b n 的表达式;② 至少经过几年旅游业的总收入才能超过总投入21.已知等差数列{}n a 满足818163a a 34a a 31a a >-=-=+且,(1)求数列{}n a 的通项公式; (2)、把数列{}n a 的第1项、第4项、第7项、……、第3n -2项、……分别作为数列{}n b 的第1项、第2项、第3项、……、第n 项、……,求数列{}2n b 的所有项之和;第二章 数列测试题 (2)一、选择题1、下列命题中正确的( ) (A)若a ,b ,c 是等差数列,则log 2a ,log 2b ,log 2c 是等比数列 (B)若a ,b ,c 是等比数列,则log 2a ,log 2b ,log 2c 是等差数列 (C)若a ,b ,c 是等差数列,则2a ,2b ,2c 是等比数列 (D)若a ,b ,c 是等比数列,则2a ,2b ,2c 是等差数列 2、若a,b,c 成等比数列,m 是a,b 的等差中项,n 是b,c 的等差中项,则=+ncm a ( ) (A)4 (B)3 (C)2 (D)13、等比数列{a n }中,已知对任意自然数n ,a 1+a 2+a 3+…+a n =2n -1,则a 12+a 22+a 32+…+a n 2等于( ) (A)2)12(-n (B))12(31-n (C)14-n (D) )14(31-n4、已知数列{a n }是等差数列,首项a 1<0,a 2005+a 2006<0,a 2005·a 2006<0,则使前n 项之和S n <0成立的最大自然数n 是( )A 4008 B 4009 C 4010 D 4011 5、已知数列{a n }满足a 1=4, a n+1 +a n =4n+6(n ∈N*),则a 20 =( )A 40B 42C 44D 466、在等比数列{a n }中,a 1=2,前n 项之和为S n ,若数列{a n +1}也是等比数列,则S n =( ) A 2n+1-2 B 3n C 2n D 3n -17、已知数列{a n }满足:a 1=1, a n+1 =2a n +3(n ∈N*),则a 10 =( )A 、210-3B 、 211-3C 、212-3D 、213-38、已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( ) A .9 B .8 C. 7 D .69、各项均为正数的等比数列{}n a 的前n 项和为S n ,若S n =2,S 30=14,则S 40等于( )A .80B .30C .26D .1610、设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( ) A.2 B.4 C.6 D.8二、填空题 11、已知等比数列{a n }中,a 1+a 2=9,a 1a 2a 3=27,则{a n }的前n 项和 S n = __________ 12、 数列{a n }满足:a 1=31,且 n a n =2a n-1 +n-1 a n-1 (n ∈N*,n ≥2),则数列{a n }的通项公式是a n =______ 13、已知数列{a n }满足:a 1=2, a n+1 =2(1+1n )2·a n (n ∈N*),则数列{a n }的通项公式a n =____14、已知数列{a n }满足:a 1=1, a n+1 - a n =4n-2(n ∈N*),则使a n ≥163的正整数n 的最小值是____15、已知数列{a n }的通项公式a n =log 2(n+1n+2) (n ∈N*),其前n 项之和为S n ,则使S n <-5成立的正整数n 的最小值是_____三、解答题:★16.等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .★17、设关于x 的一元二次方程n a x 2-1n a +x+1=0 (n ∈N*)有两根α和β,且满足6α-2αβ+6β=3. (1)试用n a 表示a 1n +; (2)求证:数列{n a -23}是等比数列.(3)当 1a =76时,求数列{n a }的通项公式.★18.设数列{}n a 满足*01,1,,n n a a a ca c c N +==+-∈其中,a c 为实数,且0c ≠ (Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设11,22a c ==,*(1),n nb n a n N =-∈,求数列{}n b 的前n 项和n S ; ★19.已知{}n a 是一个等差数列,且21a =,55a =-.(Ⅰ)求{}n a 的通项n a ; (Ⅱ)求{}n a 前n 项和S n 的最大值.★20题、沿海地区甲公司响应国家开发西部的号召,对西部地区乙企业进行扶持性技术改造,乙企业的经营状况是,每月收入45万元,但因设备老化,从下个月开始需支付设备维修费,第一个月为3万元,以后逐月递增2万元。
甲公司决定投资400万元扶持改造乙企业;据测算,改造后乙企业第一个月收入为16万元,在以后的4个月中,每月收入都比上个月增长50%,而后各月收入都稳定在第五个月的水平上,若设备改造时间可忽略不计,那么从下个月开始至少经过多少个月,改造后的乙企业的累计总收益多于仍按现状生产所带来的总收益? ★21、 已知正数数列{n a }满足:1a =1,n∈*N 时,有1n naa-=111n naa -+-(1)、求证:数列{1na}为等差数列;并求{n a }的通项公式;(2)、试问3a ·6a 是否为数列{n a }中的项,如果是,是第几项,如果不是,说明理由;(3)、设n c =n a ·1n a +(n∈*N ),若{n c }的前n项之和为n S ,求n S附(备选例题):★1.在数列}{n a 中,11a =,122n n n a a +=+. (Ⅰ)设12nn n a b -=.证明:数列}{n b 是等差数列; (Ⅱ)求数列}{n a 的前n 项和n S★2、 已知数列))}1({log *2N n a n ∈-为等差数列,且.9,331==a a (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)证明.111112312<-++-+-+nn a a a a a a★3、甲乙两物体分别从相距70米的两处相向运动,甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米,①甲、乙开始运动几分钟后相遇?②如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米 ,乙继续每分钟走5米,那么开始运动几分钟之后第二次相遇?★4、 某企业去年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预测今年起每年比上一年纯利润减少20万元。