三角形中位线定理的运用
专题 三角形中位线定理的运用(原卷版)

八年级下册数学《第十八章 平行四边形》专题 三角形中位线定理的运用【例题1】(2022秋•长沙期中)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F ,G 分别是AD ,AE 的中点,且FG =2cm ,则BC 的长度是( )A .4cmB .6cmC .8cmD .10cm【变式1-1】(2022秋•海淀区期中)如图,BD 是△ABC 的中线,E ,F 分别是BD ,BC 的中点,连接EF .若AD =4,则EF 的长为( )A .32B .2C .52D .4【变式1-2】(2022秋•莲池区校级期末)如图,在△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D ,BD =√6,若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A .√2B .√62C .√63D .√3【变式1-3】(2022春•巨野县校级月考)如图,在△ABC 中,D 是AB 上一点,AE 平分∠CAD ,AE ⊥CD 于点E ,点F 是BC 的中点,若AB =10,AC =6,则EF 的长为( )A .4B .3C .2D .1【变式1-4】(2022秋•南关区校级期末)如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点,点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .2.3C .4D .7【变式1-5】如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.【变式1-6】(2022春•海淀区校级期中)如图,在Rt△ABC中,∠BAC=90°,点D和点E分别是AB,AC的中点,点F和点G分别在BA和CA的延长线上,若BC=10,GF=6,EF=4,则GD的长为.【变式1-7】(2022春•本溪期末)如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC 的中点,点M,N分别是AC,BD的中点,顺次连接EM,MF,FN,NE,若AB=CD=2,则四边形ENFM的周长是.【变式1-8】(2022春•雁塔区校级期末)如图,点D,E分别是△ABC的边AB,AC的中点,连接BE,过点C 作CF ∥BE ,交DE 的延长线于点F ,若EF =3,求DE 的长.【变式1-9】如图,在△ABC 中,AB =12cm ,AC =8cm ,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.【例题2】(2022秋•安岳县期末)如图,在△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,若∠CFE =55°,则∠ADE 的度数为( )A .65°B .60°C .55°D .50°【变式2-1】(2021秋•鼓楼区校级期末)如图,点M ,N 分别是△ABC 的边AB ,AC 的中点,若∠A =60°,∠B=75°,则∠ANM=.【变式2-2】(2022•永安市模拟)如图,DE是△ABC的中位线,∠ABC的平分线交DE于点F,若∠DFB =32°,∠A=75°,则∠AED=.【变式2-3】(2022春•顺德区校级期中)如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,求∠ADC的度数.【变式2-4】(2022•九江二模)如图,在四边形ABCD中,点E,F,G分别是AD,BC,AC的中点,AB =CD,∠EGF=144°,则∠GEF的度数为.【变式2-5】(2022秋•新泰市期末)如图,四边形ABCD中,AD=BC,E,F,G分别是AB,DC,AC 的中点.若∠ACB=64°,∠DAC=22°,则∠EFG的度数为.【变式2-6】(2022春•鼓楼区期中)如图所示,在△ABC中,∠A=40°,D,E分别在AB,AC上,BD =CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求∠APQ的度数.【例题3】(2021秋•杜尔伯特县期末)如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点.求证:BD=2EF.【变式3-1】(2021春•秦都区期末)如图,在△ABC中,AB=AC,点D、E分别是边AB、AC上的点,连接BE、DE,∠ADE=∠AED,点F、G、H分别为BE、DE、BC的中点.求证:FG=FH.【变式3-2】(2021秋•互助县期中)如图,已知AB=AC,BD=CD,DB⊥AB,DC⊥AC,且E、F、G、H分别为AB、AC、CD、BD的中点,求证:EH=FG.【变式3-3】已知:如图,E为▱ABCD中DC边的延长线上的一点,且CE=DC,连接AE分别交BC、BD 于点F、G,连接AC交BD于O,连接OF.求证:AB=2OF.【变式3-4】(2021春•崇川区校级月考)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:(1)DE∥FG;(2)DG和EF互相平分.【变式3-5】(2022春•富平县期末)如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H,取BC边的中点M,连接EM、FM.求证:(1)△MEF是等腰三角形;(2)OG=OH.【变式3-6】(2022春•瑶海区期末)已知:如图,在△ABC中,点D、E分别是AB、AC的中点(1)若DE=2,则BC=;若∠ACB=70°,则∠AED=°;(2)连接CD和BE交于点O,求证:CO=2DO.【变式3-7】(2022春•虎丘区校级期中)如图,线段AM是∠CAB的角平分线,取BC中点N,连接AN,过点C作AM的垂线段CE垂足为E.(1)求证:EN∥AB.(2)若AC=13,AB=37,求EN的长度.【例题4】(2021春•莆田期末)如图,在四边形ABCD 中,AD =BC ,E 、F 分别是边DC 、AB 的中点,FE 的延长线分别AD 、BC 的延长线交于点H 、G ,求证:∠AHF =∠BGF .【变式4-1】(2022春•西峰区校级月考)如图,四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,N 、M 分别是AB 、CD 的中点,求证:∠PMN =∠PNM .【变式4-2】(2021春•歙县期中)如图,CD 是△ABC 的角平分线,AE ⊥CD 于E ,F 是AC 的中点,(1)求证:EF ∥BC ;(2)猜想:∠B 、∠DAE 、∠EAC 三个角之间的关系,并加以证明.【变式4-3】如图,△ABC 中,D 、E 分别为AB 、AC 上的点,且BD =CE ,M 、N 分别是BE 、CD的中点.过MN的直线交AB于P,交AC于Q,求证:∠QP A=∠PQA.【变式4-4】一个对角线相等的四边形ABCD,E、F分别为AB,CD的中点,EF分别交对角线BD,AC 于M,N,求证:∠OMN=∠ONM.【变式4-5】(2022春•船营区校级月考)如图是华师版九年级上册数学教材第80页的第3题.如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM(1)在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F,如图②,请先完成图①的证明,再继续证明∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.【例题5】(2022秋•任城区期末)如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点,若AB=10,AC=6,则EF的长为()A.2B.3C.4D.5【变式5-1】(2022春•綦江区校级月考)如图,在四边形ABCD中,AC⊥BD,BD=16,AC=30,E,F 分别为AB,CD的中点,则EF=()A.15B..16C.17D.8【变式5-2】(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12CF.【变式5-3】如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【变式5-4】(2021•罗湖区校级模拟)如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN=.【变式5-5】(2022春•香坊区校级期中)如图所示,在四边形ABCD中,点E、F分别是AD、BC的中点,连接EF,AB=20,CD=12,∠B+∠C=120°,则EF的长为.【变式5-6】(2022秋•张店区校级期末)已知:如图,在△ABC中,点D在AB上,BD=AC,E、F、G 分别是BC、AD、CD的中点,EF、CA的延长线相交于点H.求证:(1)∠CGE=∠ACD+∠CAD;(2)AH=AF.【变式5-7】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=12(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF的数量关系.【变式5-8】(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.求证:FG=12(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.【变式5-9】如图,在四边形ABCD中,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不必证明)(温馨提示:在图(1)中,连接BD,取BD的中点H,连接HE.HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线的性质,可证明∠BME=∠CNE)(1)如图(2),在四边形ADBC中,AB与CD相交于点O,AB=CD,E.F分别是BC.AD的中点,连接EF,分别交CD.BA于点M.N,判断△OMN的形状,请直接写出结论.(2)如图(3)中,在△ABC中,AC>AB,D点在AC上,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD形状并证明.。
中位线及其应用

中位线及其应用知识定位中位线在初中几何或者竞赛中占据非常大的地位,它的有关知识是今后我们学习综合题目或者三角形综合的重要基础。
中位线的证明性质以及应用,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中中位线相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、三角形中位线定义(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
三角形的中位线与三角形的中线区分:三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。
(2)三角形中位线定理:三角形的中位线平行于第三边且等于第三边的一半。
如图,在ABC ∆中,点D 、E 分别为边AB 、AC 的中点,则DE 为ABC ∆的中位线。
几何语言描述:因为D 、E 分别为边AB 、AC 的中点,所以DE//BC,且DE=12BC提示 a :“平行且等于第三边的一半”,具体应用时要根据题目的要求灵活进行选择,并 不一定要把两个结论都写出来。
b :一个三角形有三条中位线。
c :经过三角形一边的中点且与另一边平行的直线,必平分第三边,这是一种重要 的作辅助线的方法。
2、三角形中位线的性质(1)三角形中位线平行于第三边,并且等于第三边的一半。
梯形中位线平行于两底,并且等于两底和的一半。
(2)中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。
(3)运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。
(4)中位线性质定理,常与它的逆定理结合起来用。
它的逆定理就是平行线截比例线段定理及推论,①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等②经过三角形一边中点而平行于另一边的直线,必平分第三边③经过梯形一腰中点而平行于两底的直线,必平分另一腰补充:有关线段中点的其他定理还有:①直角三角形斜边中线等于斜边的一半②等腰三角形底边中线和底上的高,顶角平分线互相重合③对角线互相平分的四边形是平行四边形④线段中垂线上的点到线段两端的距离相等因此如何发挥中点作用必须全面考虑。
三角形的中位线定理及其应用

第二个三角形,再连接第二个三角形三边的中点构成第三个三
角形,依此类推,第2019个三角形的周长为(
).A
B
C
1(数
量关系)
2
三、顺势而发 再提问题
A
见证奇迹
如图,连接三
角形的三条中 D
E
的时刻到 了!!
位线,会得到
哪些结论?
B
F
C
1.四个小三角形全等.
2.每一个小三角形的面积是大三角形面积的 .
3.存在三个平行四边形.
4.△DEF的周长为△ABC的周长的 .
四、运用定理 把定乾坤
如图,A,B两点被池塘隔开,在 AB外选一点C,连接AC和BC,怎样 测出A、B两点的实际距离?根据 是什么?
你收获ቤተ መጻሕፍቲ ባይዱ哪些知识?
三角形
转化
平行四边
中位线
定义 性质
数量关系 位置关系
六、使用所获 达成目标
1.如图,D、E、F分别为△ABC三边上的中点.
线段AD叫做△ABC的
,线段DE叫做△ABC
的
,图中有
个平行四边形.
2.三角形各边长为5、9、12,则连接各边中点所
构成的三角形的周长是
.
3.如图,已知△ABC的周长为1,连接△ABC三边的中点构成
一、温故求新 合情发现
定义:连结三角形两边中点的线 段叫做三角形的中位线。
D
E
你还能画出几条三角形的中位线?
F
思考: 1.你还能画出三角形的几条中线? 2.三角形中位线与三角形的中线有什么区别和联系?
一、温故求新 合情发现
A 概念对比 A
D
E
D 中线DC
中位线DE
三角形中位线定理和证明方法

三角形中位线定理和证明方法
三角形中位线定理是三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。
三角形中位线定理及证明
三角形中位线定理:三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。
证明:已知△ABC中,D,E分别是AB,AC两边中点。
求证DE平行于BC且等于BC/2
过C作AB的平行线交DE的延长线于G点。
∵CG∥AD
∴∠A=∠ACG
∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)
∴△ADE≌△CGE (A.S.A)
∴AD=CG(全等三角形对应边相等)
∵D为AB中点
∴AD=BD
∴BD=CG
又∵BD∥CG
∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)
∴DG∥BC且DG=BC
∴DE=DG/2=BC/2
∴三角形的中位线定理成立
逆定理
逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
三角形的中位线定理及其应用

效果分析
从整个课堂教学来看,这节课始终围绕教学目标展开,层次比较清楚,环节紧凑,并注意引导学生通过观察、分析、动手实践、自主探索、合作交流等活动,突出体现了学生对知识的获取和能力的培养。
1、通过前置作业“将一个三角形分成面积相等的四部分”,根据学生的分法引出三角形的中位线的定义,从而顺势进入本节课探究的内容。
我想通过一些问题的有效设问,不断激起学生的认知冲突,使新课知识的探索自然而然的发生,使学生从“感兴趣”自然进入数学知识的探究,达到培养思维能力的效果。
2、在认识了三角形中位线的概念之后,教师不是直接提出三角形中位线定理后再证明,而是先让学生猜测,再通过动画演示,让学生从动态中去观察、探索、归纳知识,形成自己的经验、猜想,产生对结论的感知,让学生学会学习,学会探索问题的方法,培养学生的能力。
3、在学习了三角形的中位线之后,让学生和以前学过的三角形的中线作比较,从而弄清楚知识间的联系和区别。
三角形中位线定理的应用

三角形中位线定理的应用三角形中位线定理在初中教材体系中是一个很重要的定理,学好这部分内容将有助于梯形中位线定理乃至整个平面几何知识的学习.它具有两个方面的特性:(1)平行于第三边,这是位置关系;(2)等于第三边的一半,这是数量关系.就第一个特性而言,中位线定理与平行线等分线段定理中的推论(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系.我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用.一、证明问题1、证明角相等关系例1、如图、四边ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,EF ⊥MN 交AB 于E ,交CD 于F ,求证:∠AEF =∠DFE分析:欲证:∠AEF =∠DFE .由MN ⊥EF 想到延长BA ,CD 与MN 的延长线交于P 、Q 只需证明∠EPN =∠Q ,如何利用中点的条件? 想到三角形的中位线,连线BD ,取BD 的中点G ,则有12GM AB∥,12GN CD ∥,由于AB =CD ,进而有GM =GN ,∠GMN =∠GNM 然后再转化∠EPN =∠Q ,从而证出结论.证明:延长BA ,CD 分别与NM 的延长线交于P 、Q 连结BD ,取BD 的中点G ,连结GM 、GN .∵G 、M 分别为△ABD 的边BD 、AD 的中点∴12GM AB ∥.同理可证:12GN AB∥,又∵AB =CD ,∴GM =GN ,∴∠GMN =∠GNM ,∵GM //AB ,GN =CD ,∴∠GMN =∠EPN ,∠GNM =∠Q ,∴∠EPN =∠Q ,又 EF ⊥MN ,∴∠AEF =∠DFE (等角的余角相等)说明:添辅助线是证明几何题的难点.若要添多条辅助线,更为困难,掌握一般添辅助线的规律是必要的,更为重要的是分析中自由添加辅助线,添辅助线是分析问题过程的一个步骤,这是几何的证明的较高层次,要在实践中仔细体会,不断摸索,不断总结.2、证明线段的倍分以及相等关系例2.如图,已知平行四边形ABCD 中,BD 为对角线,点E 、F 分别是AB 、CD 的中点,连线EF ,交BD 于M 点.求证:(1)BM =14BD (2)ME =MF 分析:欲证问题(1)由E 、F 分别为AB 、BC 中点想到连结AC ,由平行线等分线段定理可证得BM =MO .又因为平行四边形的对角线互相平分,可得BO =OD ,即BM =41BD .欲证问题(2),由问题(1)中的辅助线,即连结AC ,由三角形中位线定理可得EM =12AO ,MF =12OC ,又由平行四边形对角线互相平分即可得到问题(2)的结论.证明:(1)连结AC ,交BD 于O 点,∵E 、F 分别为AB 、BC 中点,∴EF ∥AC ,∴BM =MO =12BO (平行线等分线段定理) 又∵四边形ABCD 是平行四边形∴BO =OD =12BD ,AO =OC =12AC , ∴BM =1124BO BD ,即BM =14BD(2)∵M 是BO 的中点,E 、F 分别是AB 、BC 中的中点.∴12ME AD =,12MF OC =,又∵AO =OC ,∴ME =MF 小结:问题(1)看起来似乎与三角形中位线定理无关,其实这是从侧面的运用了三角形中位线的位置关系,即三角形的中位线平行于底边,而问题(2)直接运用了三角形中位线的数量关系.3、证明线段平行关系例3.如图,自△ABC 的顶点A ,向∠B 和∠C 的平分线作垂线,重足分别为D 、E .求证:DE ∥BC 分析:欲证ED //BC 我们可想到有关平行的判定,但要找到有关角的关系很难,这时只要通过延长AD 、AE ,交BC 与CB 的延长线于G 与H ,通过证明△ABD 与△GBD 全等易证D 是AG 中点,同理E 为AH 的中点,故,ED 是△AEG 的中位线,当然有DE ∥BC .证明:延长AD 、AE 交BC 、CB 的延长线于G 、H ,∵BD 平分∠ABC ,∴∠1=∠2,又∵BD ⊥AD ,∴∠ADB =∠BDG =900. 在△ABD 与△GBD 中12BD BDBDG BDA⎧⎪⎨⎪⎩=== ∠∠∠∠,∴△ABD ≌△GBD (A S A ) ∴AD =DG ,同理可证,AE =GE ,∴D ,E 分别为AG ,AH 的中点, ∴ED ∥BC小结:由此题我们可以知道证明直线或线段平行除了平行判定等,还可以用中位线定理来证明直线或线段平行.二、比较大小1、比较线段大小 例4.如图,M 、N 是四边形ABCD 的边 BC 、AD 的中点,且AB 与CD 不平行.求证:MN <12(AB +CD ). 分析:欲证MN <12(AB +CD ),我们从表面上看这个问题比较复杂,但由M 、N 分别为BC 、AD 中点我们可以联想到如何构造三角形中位线来证明问题,通过连结BD ,并取BD 中点P ,连结NP 、MP 这时分别为△DAB 、△DCB 的中位线,这时三条线段NP 、MP 、MN 都在一个三角形里,问题就迎刃而解了.证明:连结BD 并取BD 中点P ,连结NP ,MP . ∵N 为AD 中点,P 为BD 中点.∴NP 为△DAB 的中位线,∴NP =12AB ,同理可得MP =12CD .∵AB 与CD 不平行,∴P 点不在MN 上.在△PMN 中,由于两边之和大于第三边,∴MN <PM +PN =12(AB +CD )小结:此类题型通过转化,把有关的线段或与之有联系的线段集中在一个三角形中,再应用三角形的有关知识,如:三角形中位线及两边之和大于第三边,两边之差小于第三边等知识,即可得出证明.2、比较角的大小例5、如图:AD 是△ABC 的中线,如果AB >AC ,那么∠BAD <∠CAD . 分析:因为D 为BC 中点联想到,过点D 作中位线DE ,因为DE ∥AB 即△ABC 得到∠1=∠3,由AB >AC , 有12AB >12AC ,所以就有∠3<∠2,即∠BAD <∠CAD证明:过点D 作DE ∥AB 交AC 于E ,∴DE ∥AB 且 DE =12AB ,E 为AC 中点.∴∠1=∠3,∵AB >AC ,∴12AB >12AC ,即在△AED 中,DE >AE ,∴∠3<∠2,∴∠1<∠2,即∠BAD <∠CAD小结:本题证角不相等,因为要证的两个角不在同一个三角形中,如果这两个角在同一个三角形中能应用:在同一个三角形中,大边对大角原理这时就考虑到如何将这两个角放在一个三角形中,通过观察只要过D 作DE ∥AB 就可解决求证问题.三、求值问题例6. 如图,正方形ABCD 两对角线相交于点E ,∠CAB 的平分线交BE 于G ,交BC 于F ,若GE =24 求FC 的长.分析:求FC 的长,因为E 为对角线交点,就是AC 中点所以作辅助线PE ∥BC 就有PE ∥FC 且有PE =21FC 所以只要能求出PE 的长即可,而PE 的长可由∠3=∠4求出,因为∠3为△APE 的外角所以有∠3=∠2+∠5同理有∠4=∠1+∠7因为AF 为∠BAC 的平分线所以∠1=∠2又因为所以∠5=∠6,而∠6=∠7所以有∠3=∠4即PE =GE =12FC ,这样问题就解决了. 解:过点E ,作EP ∥BC ,交AF 于点P ,则P 为AF 中点,∵∠3=∠2+∠5=∠2+∠6,∠4=∠1+∠7,又∵AF 平分∠BAC ,∴∠1=∠2,又∵∠6=∠7,∴∠3=∠4,∴EP =EG ,∵PE 是△AFC 的中位线,∴PE =12FC =EG ,即FC =2EG =2PE =2×24=48小结:求值问题,主要是如何添加辅助线,将比较难的问题转为容易的问题.总之,三角形中位线定理及其应用,在初中数学中占有很重要的地位,如何正确添加辅助线构造三角形中位线对每个学生来说是一个重点也是一个难点.要求学生要善于觉察图形中的有关定理的基本图形,涉及到中点问题时要及时联想到有关定理.一条或一组合理地利用了题目条件的辅助线常见有一箭双雕甚至一箭多雕的效益,准确而理想的图形能有效地帮助我们迅速地捕捉到题意预定的目标.。
三角形中位线定理的运用例谈(Word版-含解析、点评和练习设计)

2017-2018下学期八数专题复习 二:三角形中位线定理的运用例谈 第 1页(共 8页) 第 2页 (共 8页)2017—2018下学期八年级数学专题复习 二:三角形中位线定理的运用例谈赵化中学 郑宗平三角形的中位线定理在平面几何中比较特殊,它既反映三角形的中位线与三角形边的位置关系,又有与三角形边的数量关系的规律性结论;在一些所谓的几何难题中常见它的身影,而三角形的中位线往往能起牵线搭桥甚至是关键性的作用;下面我精选一部分“含"三角形的中位线的几何解答题,让我们共同来探究、解析、训练.知识要点:三角形的中位线平行于三角形第三边,并且等于第三边的一半.1。
三角形三条中位线围成的三角形与原三角形在某些数量上的关系⑴.周长关系如图点D E F 、、分别是⊿ABC 的三边BC CA AB 、、的中点,请探究⊿DEF 的周长 ⊿ABC 的周长的关系?分析: 点D E F 、、分别是⊿ABC 的三边BC CA AB 、、,,,111EF BC DE AB DF AC 222=== ∴()12EF DE DF BC AC AB ++=++所以三角形的三条中位线围成的三角形的周长是原三角形的周长的一半。
追踪练习:以上面的图为例,若⊿DEF 的周长为23cm ,则⊿ABC 的周长为 . ⑵。
面积关系如图点D E F 、、分别是⊿ABC 的三边BC CA AB 、、的中点,请探究⊿DEF 的面积与⊿ABC 的面积关系? 略析:根据三角形中位线定理可以得出,,,,111EF BC DF AC DE AB EF BC DF AC DE AB 222===;,再利用线段中点的定义、平行线性质、平行四边形的性质等可以进一步推出DEF 、AFE 、FBD 、DEC是全等的,故它们的面积是相等的,则S ⊿ABC =4S ⊿DEF .所以三角形的三条中位线围成的三角形的面积是原三角形的面积的14. 说明:今后我们学习了相似三角形的性质后,这个结论的推导就简单多了。
三角形中位线定理的妙用

三角形中位线定理的妙用三角形中位线定理是三角形相关章节中一个十分重要的定理,其特点是在同一个题设下,有两个结论:一个是表明位置的平行关系,另一个是表明数量的倍分关系。
《数学课程标准》明确要求“探索并掌握三角形的中位线定理。
”下面本文就三角形中位线定理的运用我谈一点自己的体会。
一、当题目中只有两边中点时,连接这两点或作第三边,构造三角形的中位线例1:(如图1)在四边形ABCD中,点E为AB边上的一点,⊿ADE和⊿BCE都是等边三角形,点M、N、P、Q分别是边AB、BC、CD、AD的中点.求证:四边形MNPQ是菱形.证明:连接AC、BD.易证: ⊿AEC≌⊿DEB.∴AC=BD.可证MN=PQ= AC,MQ=NP= BD.∴MN=NP=PQ=QM.故四边形MNPQ是菱形.点评:直接利用三角形的中位线定理证明.练习1:如图2,⊿ABC的中线BE和CF相交于点O,点M、N分别是OB、OC 的中点.试判断四边形MNEF的形状.二、当已知条件中只有一边中点时,可取另一边的中点,构造三角形的中位线例2:(如图3)在⊿ABC中,点D、E分别在边AB、AC上,BD=CE,点G、H分别是BE、CD的中点,直线GH交AB于M,交AC于N.求证:AM=AN.证明:取BC的中点P,连接PG、PH,则PG、PH分别是⊿BCE和⊿BCD的中位线.∴PGCE, PHBD.∴∠PGN=∠ANM, ∠PHM=∠AMN.又∵BD=CE.∴PH=PG.∴∠PGN =∠PHM.∴∠ANM =∠AMN.故AM=AN.点评:BC在这里起了桥梁的作用,构造了两条中位线.练习2:如图4,在四边形ABCD中,AC与BD相交于点O,AC=BD,点E、F、G 分别是AB、CD、BC的中点,EF交BD于M,交AC于N.求证:OM=ON.三、当已知条件中只有一边中点时,可作另一边并取其中点,构造三角形的中位线例3:(如图5)在四边形ABCD中,AB=CD,点M、N分别是BC、AD的中点,延长BA、CD分别交MN的延长线于G、H.若∠BGM=30°.试求∠H的度数.解:连接AC,并取AC的中点O,再连接OM、ON.则OMAB , ONCD.∴∠BGM= ∠OMH,∠H= ∠ONM.∵AB=CD.∴OM=ON.∴∠ONM=∠OMN.∴∠BGM =∠H.又∵∠BGM=30°.∴∠H=30°.点评:其突破口就在构造三角形的中位线时先要连接AC,构造出两个三角形.在连接AC之后,其难易程度就和例2一样了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学案例:《三角形中位线定理教学设计》
⒈创设问题情境,诱导学生发现结论
⑴怎样测算操场中被一障碍物隔开的两点A、B的距离?小明测量的方法是:在AB外选一点C,连结AC、BC,取AC、BC的中点M、N。
连结MN,量出MN=20m,这样能算出AB的长吗?AB与MN有何关系?经观察,你猜测
AB与MN的关系是:①②。
⑵MN这条线段既特殊又重要,我们把它叫做△ABC的
中位线。
即连结三角形两边点的线段叫三角
形的。
⑶一个三角形有条中位线,画出图4的三角形的所有中位线,观察、测量发现:
( )∥( ),( )=( );( )∥( ),( )= ( );( )∥( ),( )=
( )。
用语言叙述上述结论:三角形的中位
线并且 .
⑷再画出图2的△ABC的三条中线,它与中位线有何区别?
说明:⑴以上内容让学生按印发的学习提纲在课前完成。
⑵三角形中位线定义的引入、定理的结论课本是直接给出的,这不符合过程性原则.我们①以“应用性问题”导入,揭示了数学知识在生产、生活中的广泛应用,强化学习动机,变“要我学”为“我要学”;②让学生通过实验操作、观察比较、估计猜测,自己发现结论,
这可培养学生对数学的内在兴趣,让学生认识到数学不是少数天才创造的,而是经过努力一般人都可以发现的,数学来源于现实世界,而又是解决实际问题的有力工具,符合从“感性到理性”的认识规律。
⒉创设思维情境,启导学生发现证明结论的思路和方法
⑴检查课前自学情况。
教师提问有关问题,学生回答,并用多媒体展示答案。
⑵教师指出:同学们观察发现的这些结论是否正确,还需严格证明。
教师板书,学生在提纲上写已知、求证。
⑶启导全班学生思考、讨论证法,教师巡视与学生一起研究,收集信息,了解情况。
①本题与以前学过的哪些知识、方法有关?是什么关系?学生进行联想,回答。
△ADE与△ABC有何关系?若过D作平行于BC的直线,发现什么(用多媒体演示)?②怎样证一条线段等于另一条的一半?学生回答:截(把长的平分)与补(把短的加倍)。
经过探讨,学生不难发现以下三种证法:(过程略)
证法㈠:利用相似三角形证法㈡: 证法㈢:
说明:定理的证明,不拿现成的方法给学生,而是创设思维情境,启导学生“联想”到学过的有关知识和方法,使新旧知识得到顺利同化,并引导学生展开讨
论,实现思维交锋,智力杂交,这大大激发了学生的求知兴趣,让他们体验到成功的喜就应让学生独立完成,加大学生的参与度,对提高学生的独立表达能力大有好处。
⒋精讲总结,理性归纳
⑴教师引导学生分析定理的特点:题设:两个“中点”;结论:“平行”,“一半”。
⑵再指出:凡是与“中点”、“平行”、“线段倍分”有关的问题可考虑使用此定理。
说明:帮助学生揭示定理的本质特征,为灵活运用定理作准备。
⒌精心设计练习,进行变式训练
悦,数学思维能力在这一过程中得到了有效的发展。
⒊释疑解惑,引导学生独立完成证明
⑴要求A组同学选做一种证法,B组同学任选两种证法,C组同学三种证法都做,尖子生能发现新的证法或问题;⑵两人板演;⑶教师巡视,注意帮助学困生,并收集有关信息。
说明:传统教学的证明过程都是由教师完成,这不符合了主体性原则。
既然学生已经知道怎样解,⑴引导学生观察图8,问:可发现哪些新的结论?让学生抢答,注意简单的结论先让A组或B组同学回答,不明显的结论让C组同学补充,给各类学生提供表现才能的机会,并及时给予表扬与鼓励。
结论有:3个平行四边形;4个小三角形全等;小三角形的周长为原三角形的一半,面积为原三角形
的四分之一。
这些结论很重要,若学生没全部找出,可稍加提
示。
⑵这个问题能否进行推广?若把△ABC改为四边形ABCD,
又发现什么结论(见图9)。
让学生抢答,原则同上。
结论有:EFGH为平行四边行;EG与FH互相平分;EFGH的面积为ABCD的一半等。
⑶学生思考如何证明四边形EFGH为平行四边形?(另两个结论是否进行证明根据实际情况而定)
教师启导:①由条件“4边的中点”,可联想到什么知识?是否有三角形的中
位线?
②EF是哪个三角形的中位线?FG、GH、HF呢?学生马上意识到要连“对角线”。
⑷抢答:让三个学生先后口述证明(证法不同)过程,教师板书或用多媒体演示。
⑸教师指出:三角形中位线定理的两个结论可选用一个或两个都用。
⑹变式训练:①若四边形ABCD是平行四边形、矩形、菱形、正方形、等腰梯形,则四边形EFGH分别
是、、、、 ;
②为使四边形EFGH为平行四边形、矩形、菱形、正方形,则原四边形ABCD 必须满足什么条件?教师用《几何画板》在计算机上拖动一个顶点让四边形进行变化,学生观察发现结论,教师问其理由;
③引导学生总结规律:四边形EFGH的形状是由什么决定的?(AC与BD,而与四边形ABCD的形状并没有直接联系)。
说明:①把课本练习3与例1两个孤立的问题结合在一起,体现了数学知识之间的联系,用联系、运动、变化的观点去研究各问题之间的转化,展示给学生一个动态的知识“生长”过程,促进学生新认知结构的形成与发展;②把它们改编成开放性问题,让学生有更广阔的思维空间,提供一个有利于群体交流的活动环境,让师生思维双向暴露,符合活动性原则;③再次体验研究数学的思想方法。
⒍课堂小结(以问题形式进行)
⑴教师引导:三角形中位线定理能否进行拓广?
⑵若把“中点”改为“三等分点”,如图10,D、
F与E、G分别是△ABC边AB、AC的三等分点即
AD=DF=FB,AE=EG=GC,则DE、FG、BC之间有何关系?
⑶若把三角形改为四边形,是否也有中位线?哪些四边形有中位线?有什么性质?
⑷请同学看提纲的作业补充思考题⑵(如图11),让学生思考,教师作启导:
①教师:M为BC的中点可联想到哪些知识?
学生:三角形中位线、直角三角形斜边上的中线等;
②教师:有没有符合三角形中位线定理的条件?学生:没有,欠一个中点;
③教师:怎么办?学生:再取一个中点;
④教师:另一中点可取在哪一边上?学生:AB或AC上。
说明:采用两个思考题进行小结,打破传统小结方法。
这是因为:⑴三角形中位线定理不难记,难的是如何创造性地应用;⑵把定理进行引伸,让学生余味未尽,带着问题回家,并为下节课研究“梯形中位线”做好铺垫,一举两得。