初中三年几何知识点大全
初中数学几何知识点整理

初中数学几何知识点整理
一、平面几何基本概念
1.点、线、面、角的定义和性质
2.相交线、平行线、垂直线的关系
3.线段的长度、角的度量和角的分类
4.三角形的分类和性质
5.四边形的分类和性质
6.正多边形和圆的性质
二、平面图形的性质和计算
1.三角形内角和定理
2.三角形外角和定理
3.三角形的相似性质
4.三角形的全等性质
5.直角三角形的勾股定理
6.三角形的中线、高线、角平分线等的性质
7.四边形的对角线、角平分线等的性质
8.圆的圆心角、弧、弦等的性质
9.弧长、扇形面积、圆周角等的计算
三、空间几何基本概念
1.空间的基本概念和几何图形的投影
2.空间几何体的表达和展开图
3.空间的点、线、面、体的关系
4.空间角、棱、面、顶点等的定义和性质
5.空间直角坐标系和向量的性质和运算
6.空间几何体的视图、投影和尺寸关系
四、平面图形的位置关系和计算
1.直线和平面的位置关系
2.点和直线的距离、点和平面的距离
3.直线和平面的夹角和包含关系
4.直线与直线、直线与平面的位置关系
5.各种图形之间的位置关系和投影关系
6.平面图形的面积、周长和体积的计算
五、解题方法与应用
1.图形分析法
2.推理证明法
3.运动解法
4.化归为已知
5.整体几何法
6.利用几何工具求解
7.几何建模
以上是初中数学几何知识点的整理,对于学生来说,掌握这些知识有助于提高解决几何问题的能力,同时也为将来进一步学习更高级数学打下坚实的基础。
希望同学们认真学习,勤加练习,掌握好这些知识点,提高自己的数学水平。
初中几何知识点大总结

初中几何知识点大总结一、点、线、面及其性质1、点:点是几何最基本的概念,不占据空间,通常用大写字母来表示,如A、B、C等。
2、线:线是由许多点连成的,长度可无限延伸的几何对象。
线也常用大写字母来表示,如AB、CD等。
3、线段:线段是线的一部分,在两个端点之间。
线段通常用小写字母表示,如ab、cd等。
4、射线:是一个端点和延伸方向上的所有点的集合,通常也用小写字母表示,如⃗ab、⃗cd等。
5、平面:平面是一个没有边界的二维图形,通常用大写字母来表示,如平面P、平面Q 等。
6、直线、曲线、线段、射线和平面的性质:直线是最短的路径,曲线是不断变向的路径,线段有两个端点,射线有一个端点,平面是无边界的表面。
二、图形的性质1、图形的基本概念:图形是由点、线、面组成的,在平面上所形成的形状称为二维图形,常见的有三角形、四边形、五边形、六边形等。
2、点与线段的位置关系:点可在直线上、直线的延长线上内、外或直线以外,分为三种不同的位置关系。
3、平行线、垂直线、相交线:平行线是不相交的两条直线,垂直线是相交成直角的两条直线,相交线是相交但不平行的两条直线。
4、角:两条直线或射线,在交点处将这两条线分成两部分,所形成的部分称为角,常用小写字母表示,如∠A、∠B。
三、三角形1、三角形的基本概念:三角形是一个有三条边和三个角的图形。
2、三角形的分类:根据三角形的边和角的特征,三角形可分为等边三角形、等腰三角形、直角三角形、钝角三角形和锐角三角形等。
3、三角形的角的性质:三角形内角和为180度,对顶角相等,底角和底边等于它的两个角对边。
四、四边形1、四边形的基本概念:四边形是由四条线段围成的一个几何形状。
2、四边形的分类:四边形根据边和角的特征可分为平行四边形、菱形、长方形、正方形和梯形等。
3、四边形的性质:相对边相等,对角相等,对边平行,邻边相加等于对角。
五、平行线和三角形的性质1、平行线和角的性质:平行的两条直线所形成的对应角相等,错位角相等,内错位角之和为180度。
初中平面几何知识点汇总

初中平面几何知识点汇总在初中数学的学习中,平面几何是一个重要的组成部分。
它不仅能够培养我们的逻辑思维能力,还为我们今后学习更高级的数学知识打下坚实的基础。
接下来,让我们一起对初中平面几何的知识点进行一个全面的汇总。
一、线段与角线段是平面几何中最基本的元素之一。
两点之间的距离就是连接这两点的线段的长度。
线段的中点将线段分成了两段相等的部分。
角是由两条有公共端点的射线组成的图形。
角的度量单位是度、分、秒。
直角是 90 度,平角是 180 度,周角是 360 度。
如果两个角的和是90 度,那么这两个角互为余角;如果两个角的和是 180 度,那么这两个角互为补角。
二、相交线与平行线相交线中最重要的概念是对顶角和邻补角。
对顶角相等,邻补角互补。
平行线的判定方法有很多。
比如,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
平行线的性质包括:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
三、三角形三角形是平面几何中最常见的图形之一。
三角形的内角和是180 度。
三角形的三边关系是:任意两边之和大于第三边,任意两边之差小于第三边。
三角形按角可以分为锐角三角形、直角三角形和钝角三角形;按边可以分为等边三角形、等腰三角形和不等边三角形。
等腰三角形的两腰相等,两底角相等;等边三角形的三条边都相等,三个角都相等,都是 60 度。
直角三角形中,斜边的平方等于两直角边的平方和,这就是勾股定理。
如果直角三角形的一条直角边等于斜边的一半,那么这条直角边所对的锐角等于 30 度。
三角形的中位线平行于第三边,且等于第三边的一半。
四、全等三角形全等三角形的对应边相等,对应角相等。
判定两个三角形全等的方法有:“边边边”(SSS)、“边角边”(SAS)、“角边角”(ASA)、“角角边”(AAS)和“斜边、直角边”(HL)(仅适用于直角三角形)。
五、相似三角形相似三角形的对应边成比例,对应角相等。
初中几何常见知识点总结

初中几何常见知识点总结几何是研究空间形状、大小、位置关系以及与变换有关的一门数学学科。
在初中阶段的几何学习中,主要包括平面几何和立体几何两个部分。
平面几何是关于图形的研究,包括点、线、角、多边形、圆等内容;而立体几何则是关于空间图形的研究,包括立体图形的种类、表面积、体积等内容。
在初中几何学习中,学生将通过学习理论知识和实际问题的解决来加深对几何知识的理解。
下面我们来总结一下初中几何中常见的知识点。
一、平面几何1. 点、线、面、角的性质点是没有大小的,只有位置的几何图形;线是由一系列点连在一起形成的,是没有厚度的;面是由一系列线构成的,是一个拓展到两个维度的图形;角是由两条射线或线段共同端点组成的图形。
2. 多边形的性质多边形是由若干条线段首尾相连而构成的简单封闭图形,常见的有三角形、四边形、五边形等。
3. 圆的性质圆是由平面上距一定点距离不大于一定值的点的全体组成的图形。
圆的重要性质包括圆心、半径、直径、圆周等,学生需要掌握它们的定义及相互关系。
4. 相似三角形和全等三角形相似三角形是指两个三角形的对应角相等,对应边成比例;全等三角形是指两个三角形的对应边相等,对应角相等。
学生需要应用相似三角形和全等三角形的性质解决实际问题。
5. 直角三角形和勾股定理直角三角形是一种特殊的三角形,其中有一个角为直角(90度)。
勾股定理则是指在直角三角形中,直角边上的正方形的面积等于斜边上的正方形的两个边的面积和。
6. 平行线和垂直线平行线是指在同一个平面内,永不相交的直线;垂直线是指两条直线相交成直角的。
学生需要学会判定平行线和垂直线的性质,并利用它们解决实际问题。
二、立体几何1. 立体图形的种类常见的立体图形包括长方体、正方体、棱柱、棱锥、圆柱、圆锥等。
2. 立体图形的表面积和体积学生需要掌握各种立体图形的表面积和体积的计算方法,能够应用这些知识解决实际问题。
3. 空间中的位置关系包括直线与平面的位置关系、两个平面的位置关系、平面与立体图形的位置关系等内容。
初中几何知识点专题总结

初中几何知识点专题总结几何是数学的一个重要分支,它研究图形、尺寸、形状、位置关系等内容。
在初中阶段,学生将学习到较为基础的几何知识,包括图形的性质、平面图形的特征、几何变换等内容。
本文将对初中几何知识点做一个总结,希望能够帮助学生们更好地理解和掌握这些知识。
一、平面图形的性质1. 三角形三角形是最基础的平面图形之一,它的性质十分重要。
三角形的内角和为180度,即α+β+γ=180°,这是三角形最基础的性质之一。
此外,三角形还有高、中线、垂直平分线等重要概念,学生需要掌握它们的性质和应用。
2. 四边形四边形是指四个边相连的图形,包括平行四边形、矩形、正方形、菱形等。
四边形的对边相等,临角相加等于180°等性质十分重要,学生需要熟练掌握并应用于实际问题中。
3. 多边形多边形是指三条以上的边相连的图形,包括正多边形、不规则多边形等。
多边形的对角线数量、内角和、外角和等性质也是学生需要掌握的知识点。
二、平面图形的特征1. 对称性对称性是指图形具有对称轴,经对称轴对称后可以重合的性质。
学生需要学会判断图形是否具有对称性,并能够找出对称轴。
2. 全等与相似全等是指两个图形所有对应边和对应角均相等的性质,相似是指两个图形的形状相同但大小不同的性质。
学生需要学会判断两个图形是否全等或相似,以及运用全等和相似的性质解决问题。
3. 圆的性质圆是一个特殊的平面图形,它具有很多特殊的性质,例如圆的直径、半径、圆心角、圆周角等。
学生需要了解这些性质,并能够运用它们解决实际问题。
三、几何变换1. 旋转旋转是指图形绕着一个点进行转动,图形的位置、大小和形状保持不变。
学生需要学会判断图形经旋转后的位置和性质,并能够根据旋转后的图形解决问题。
2. 平移平移是指图形沿着一条直线进行移动,保持图形的大小和形状不变。
学生需要学会判断图形经平移后的位置和性质,并能够根据平移后的图形解决问题。
3. 翻折翻折是指图形绕着一条直线进行翻转,图形的对称性保持不变。
初中数学几何知识点总结

初中数学几何知识点总结几何是数学中的一个重要分支,主要研究平面和空间图形的性质、变换以及测量等内容。
初中阶段的几何学主要包括平面几何和空间几何两部分内容。
下面是对初中数学几何知识点的总结:一、平面几何1.点、线、面的基本概念:点没有长度、宽度、厚度,只有位置;线由一列无穷多点组成,并延伸到无穷远;面是无穷多条线的集合,有无穷多个点。
2.各种直线的性质:平行线的性质、相交线的性质、垂直线的性质等。
3.角和角的分类:角由两条射线共同起始于一个点形成,根据角的大小可分为锐角、直角、钝角和平角。
4.角的度量和角的运算:度量角的单位是度,一个圆周角为360度;角的运算包括角的相加、相减、相等等。
5.直角三角形和三角函数:直角三角形有特殊的性质,如勾股定理和正弦、余弦、正切等三角函数的定义和性质。
6.多边形:多边形是由多条线和多个顶点组成,常见的有三角形、正方形、长方形、梯形等。
7.圆:圆是由平面上的一点和到该点距离为定值的所有点构成的曲线,圆的性质包括圆心、半径、弧、圆周角等。
8.相似和全等:相似是指两个图形的形状相同但尺寸不同,全等是指两个图形的形状和尺寸完全相同。
9.平移、旋转、翻转和对称:平移是指不改变形状和大小地将图形沿着一个方向移动一定距离;旋转是指围绕一个点或轴旋转图形;翻转是指以条线为轴将图形对折;对称是指将图形分成两部分,两部分相互镜像。
二、空间几何1.立体图形的表面积和体积:常见的立体图形有长方体、正方体、圆柱体、圆锥体、球体等,计算它们的表面积和体积是空间几何的重要内容。
2.空间中的直线和平面关系:直线与平面可能相交、平行或垂直,根据它们的相交情况可以推导出许多直线和平面间的性质。
3.空间向量:向量是空间几何中重要的工具,可以用来描述平行线、向量共线、向量共面、向量运算等问题。
4.空间中的角:空间中的角类似于平面中的角,只是多了一个维度,需要注意角的三个重要方向:正方向、负方向和零角。
初三中考数学几何知识点归纳
初三中考数学几何知识点归纳目录初三中考数学几何知识点归纳学好数学的几条建议数学八种思维方法初三中考数学几何知识点归纳1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1:关于某条直线对称的两个图形是全等形43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即ab=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a b=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1:四边都相等的四边形是菱形68.菱形判定定理2:对角线互相垂直的平行四边形是菱形69.正方形性质定理1:正方形的四个角都是直角,四条边都相等70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(ab)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b d … n≠0),那么(a c … m)/(b d … n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3:三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2:相似三角形周长的比等于相似比98.性质定理3:相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆学好数学的几条建议1、要有学习数学的兴趣。
初中几何常用定理汇总
初中几何常用定理汇总初中数学的几何部分,有很多定理需要记忆理解,但平时我们对知识点的学习都是分散的,不利于记忆!这里整理了初中三年较重要的一些几何定理↓↓↓这些基本定理对我们解几何题目而言是关键中的关键,一定要牢记哟!一、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短二、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补三、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°四、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等五、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合六、等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)七、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
初中数学几何知识点
初中数学几何知识点
直线、射线和线段
- 直线:没有起点和终点,无限延伸。
- 射线:有一个起点,无限延伸。
- 线段:有一个起点和一个终点,有限延伸。
角度
- 角度是由两条射线或线段所夹的部分。
- 角度通常用度数表示,符号为°。
平行线和垂直线
- 平行线:在同一个平面上,永不相交的线。
- 垂直线:相交时,相交角度为90°,称为垂直线。
三角形
- 三角形是由三条线段组成的图形。
- 根据三条边的长短,可以分为等边三角形、等腰三角形和普通三角形。
四边形
- 四边形是由四条线段组成的图形。
- 根据边的性质,可以分为平行四边形、矩形、正方形、菱形等。
圆
- 圆是由一条曲线组成的图形,其上所有的点到圆心的距离都相等。
- 圆的重要属性包括直径、半径和圆周长。
直角三角形
- 直角三角形是一个角为90°的三角形。
- 根据斜边、直角边和其他边的长短关系,可以使用勾股定理和三角函数进行求解。
相似三角形
- 相似三角形是指对应角相等而对应边成比例的三角形。
- 相似三角形的性质包括比例关系、角度相等和边长比值相等等。
平行四边形的性质
- 平行四边形的对边平行且相等。
- 平行四边形的对角线相等且互相平分。
面积和周长
- 面积是指某个图形所占的二维空间大小。
- 周长是指某个图形边界上的长度总和。
以上是初中数学几何的一些基本知识点,希望对你有所帮助!。
初中几何知识点汇总
初中几何知识点汇总几何学是数学的一个重要分支,主要研究空间和形状的性质、变换和计量。
在初中数学中,几何学是一个重要的内容模块,它主要涉及到平面上的图形、空间中的图形、几何变换等知识点。
下面将对初中几何学的主要知识点进行汇总和总结。
一、平面几何平面几何指的是在平面上研究点、线、面等几何图形的性质和关系。
在初中阶段,我们将接触到的平面几何知识点主要包括以下内容:1.1 点、线、面的基本概念:点是几何图形的基本单位,它没有长度、宽度和高度;线是由无数点连成的路径,没有宽度;面是由无数连在一起的线构成的,有宽度和高度。
1.2 直线、射线和线段:直线是由无数点组成的,没有始点和终点,可以无限延伸;射线有一个始点,有无限延伸的方向;线段有一个始点和一个终点。
1.3 角的概念和分类:角是由两条线段的端点构成的,分为锐角、直角、钝角和平角。
锐角小于90°,直角等于90°,钝角大于90°,平角等于180°。
1.4 三角形的分类和性质:根据边长和角的关系,三角形可以分为等边三角形、等腰三角形和普通三角形。
等边三角形的三边相等,等腰三角形的两边相等,普通三角形的三边都不相等。
1.5 相交线与平行线的性质:相交线是指两个线交叉的情况;平行线是指在同一个平面上永不相交的线。
1.6 四边形的分类和性质:四边形是由四条边和四个顶点组成的图形,常见的四边形有正方形、长方形、菱形、平行四边形和梯形。
二、立体几何立体几何包括了在三维空间中研究物体的形状、体积、表面积和投影等知识点。
在初中阶段,我们将学习到以下关于立体几何的知识点:2.1 点、线、面和体的关系:点没有体积和表面积,线是由无数点组成的路径,面是由无数连在一起的线构成的,体是由无数个面构成的。
2.2 立体图形的名称和性质:常见的立体图形有立方体、正方体、长方体、球体、圆柱体和圆锥体。
这些图形有各自的特点和性质,如立方体的六个面都是正方形,球体的表面积和体积公式分别是4πr²和4/3πr³。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中三年几何知识点大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109定理 不在同一直线上的三个点确定一条直线 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121①直线L和⊙O相交 d﹤r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d﹥r 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点