人教版八年级上册数学 期中测试题D8(含答案)

合集下载

人教版数学八年级上册期中考试题附答案

人教版数学八年级上册期中考试题附答案

人教版数学八年级上册期中考试试卷一、精心选择(每小题3分,共24分)1.在下列各电视台的台标图案中,是轴对称图形的是()A .B .C .D .2.下列说法正确的是()A .三角形三条高的交点都在三角形内B .三角形的角平分线是射线C .三角形三边的垂直平分线不一定交于一点D .三角形三条中线的交点在三角形内。

3.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么y x +的值是()A .1-B .7-C .7D .1第5题图第6题图第7题图4.正多边形的每个内角都等于135°,则该多边形是()A .正八边形B .正九边形C .正十边形D .正十一边形5.在正方形网格中,∠AOB 的位置与图所示,到∠AOB 两边距离相等的点应是()A .M 点B .N 点C .P 点D .Q 点第8题图第9题图第11题图6.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是()A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°7.如图,在△ABC 中,AD 为∠BAC 的平分线,D E⊥AB 于E ,D F⊥AC 于F ,△ABC 的面积是228cm ,AB=20cm ,AC=8cm ,则DE 的长是()A .4cm B .3cm C .2cm D .1cm8.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,BC=CD=8,过点B 作EB ⊥AB ,交CD 于点E 。

若DE=6,则AD 的长为()A .6B .8C .9D .10二、细心填空(每小题3分,共24分)9.如图,已知△ABC ≌△ADE ,若AB=7cm ,AC=3cm ,则BE 的长为。

10.若等腰三角形有两边长分别为4cm 和7cm ,则它的周长是cm 。

11.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,若△ABC 的周长为22,BC=6,则△BCD 的周长为。

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试题含答案

人教版数学八年级上册期中考试数学试题一、选择题: (每题3分,共30分)请将正确答案填写在下列方框内) 1.下面有4个汽车标致图案,其中不是轴对称图形的是( )A .B .C .D .2.如图:△ABD ≌△ACE ,若AB=6,AE=4,则CD 的长度为( ) A . 10 B . 6 C . 4 D . 2第2题 第3题3.如图,ABC △与A B C '''△关于直线对称,则B ∠的度数为( ) A .30 B .50 C .90 D .1004.已知等腰三角形的一边等于3,一边等于7,那么它的周长等于( ) A .13 B .17 C .13或17 D .10或17 5. 下列四个图形中,线段BE 是△ABC 的高的是( )AC B A 'C 'B '3050A.B. C. D.6.在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点7.在ΔABC和ΔFED中,∠A=∠F,∠B=∠E,要使这两三角形全等,还需要的条件是()A.AB=DEB.BC=EFC.AB=FED.∠C=∠D 8.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()A. 2对 B.3 对 C.4对D.5对AD CBEF第10题图B9.如图:AD是△ABC的中线,DE DF.下列说法:①CE=BF;②△ABD 和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个10.如图,已知AB=AC=BD,则∠1与∠2的大小关系是()A. ∠1=2∠2B. ∠1+3∠2=180°C. 2∠1+∠2=180°D. 3∠1-∠2=180°二.填空题(3x8=24分)11.已知过一个多边形的某一顶点共可作2015条对角线,则这个多边形的边数是12.如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为20cm,AE=5cm,则△ABC的周长是cm.13.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.14.已知等腰三角形的一个角的度数是50°,那么它的顶角的度数是______ ____.第18题EDFA第16题D E A15.点A (-2,a )和点B (b,-5)关于x 轴对称,则a+b=___________。

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、单选题1.以下列各组线段为三角形的边,能组成三角形的是()A .1cm ,2cm ,4cmB .3cm ,3cm ,6cmC .7cm ,7cm ,12cmD .3cm ,6cm ,10cm2.点(3,2)M 关于y 轴对称的点的坐标为()A .(3,2)-B .(3,2)--C .(3,2)-D .(2,3)-3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A .SSSB .SASC .AASD .ASA4.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A .五边形B .六边形C .七边形D .八边形5.如果等腰三角形的两边长分别为2和5,则它的周长为()A .9B .7C .12D .9或126.下列运算中正确的是()A .55102a a a +=B .326326a a a ⋅=C .623a a a ÷=D .222(2)4ab a b -=7.如图,∠BAC=110°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是()A .20°B .60°C .50°D .40°8.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是()A.12B.10C.8D.69.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5B.4C.3D.2∥交ED的延长线于点10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF ACF,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题11.等腰三角形的一个角是70°,则它的底角是_____.12.(45)2015×1.252014×(﹣1)2016=_______.13.如图,点D在BC上,AB=AD,∠C=∠E,∠BAD=∠CAE,若∠1+∠2=105°,则∠ABC 的度数是_____.14.计算:﹣3x(2x2+4x﹣3)=_______.15.若29a ka ++是一个完全平方式,则k 的值是________.16.计算:()03.14π-=_____________________.17.在△ABC 中,点P 是边AB,边BC 的垂直平分线的交点,∠A=50°.则∠PBC=______.18.如图,已知点A 、C 、F 、E 在同一直线上,△ABC 是等边三角形,且CD=CE ,EF=EG ,则∠F=_____度.三、解答题19.计算题:(1)(5x+2y )(3x-2y )(2)(4x-3y+2)(4x+3y+2)(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3(4)19992-2000×199820.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .21.如图,在长度为1个单位长度的小正方形组成的网格图中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为________;(3)在直线l上找一点P,使PB+PC的长最短.22.如图,已知:△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,求∠BAC 的度数.23.如图,△ABC中,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.求证:BE=CF.24.如图,△ABC是等边三角形,BD是中线,过点D作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.20.如图,AD⊥BC于D,AD=BD,AC=BE.(1)请说明∠1=∠C;(2)猜想并说明DE和DC有何特殊关系.26.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图①,求∠DCE的度数;(3)如图②,③,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由,并求出∠DCE的度数.参考答案1.C【解析】【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,逐项判断即可.【详解】解:A :1cm 2cm 4cm +<,故不能构成三角形;B :3cm 3cm 6cm +=,故不能构成三角形;C :7cm 7cm 12cm +>,故能构成三角形;D :3cm 6cm 10cm +<,故不能构成三角形.故选:C .【点睛】本题主要考查了三角形三边的关系,熟练掌握相关概念是解题关键.2.A【解析】【分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数进一步求解即可.【详解】∵y 轴对称的点的纵坐标相等,横坐标互为相反数,∴点(3,2)M 关于y 轴对称的点的坐标为(3,2)-,故选:A.【点睛】本题主要考查了关于y 轴对称的点的坐标的性质,熟练掌握相关概念是解题关键.3.D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边可以作出,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n ,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.5.C【解析】【分析】分类讨论2是腰与底,根据三角形三边关系验证即可.【详解】解:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选C .【点睛】本题考查等腰三角形的性质、三角形的三边关系,掌握等腰三角形的性质、三角形的三边关系.6.D【解析】【分析】直接利用合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则运算即可求出答案.【详解】解:(A )5552a a a +=,故A 错误;(B )532326a a a =g ,故B 错误;(C )624a a a ÷=,故C 错误;(D )222(2)4ab a b -=,故D 正确;故选:D .【点睛】本题考查了合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则的应用,熟练运用运算法则是解决本题的关键.7.D【解析】【分析】由∠BAC 的大小可得∠B 与∠C 的和,再由线段垂直平分线,可得∠BAP =∠B ,∠QAC =∠C ,进而可得∠PAQ 的大小.【详解】∵∠BAC =110°,∴∠B+∠C =70°,又MP ,NQ 为AB ,AC 的垂直平分线,∴BP=AP ,AQ=CQ ,∴∠BAP =∠B ,∠QAC =∠C ,∴∠BAP+∠CAQ =70°,∴∠PAQ =∠BAC ﹣∠BAP ﹣∠CAQ =110°﹣70°=40°.故选D .8.C【分析】由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,在Rt △BED 中,∠B=30°,故此BD=2ED ,从而得到BC=3BC ,于是可求得DE=8.【详解】解:由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,∵∠BED+∠DEA=180°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=24.∴DE=8.故答案为8.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.9.A【分析】过点D 作DG ⊥AC,由题意得出∠DEC=30°,即可得出DG=5,再证明AD 为角平分线,则DF=DG=5.【详解】过点D 作DG ⊥AC.∵15DAE ADE ∠=∠=︒,AE=10∴∠DEC=30°,DE=AE=10.∴DG=5.∵DE ∥AB,∴∠BAD=∠ADED AE AD E∠=∠∴BAD ∠=∠DAE ,即AD 为∠BAC 的角平分线.,DF AB DG AC⊥⊥ ∴DF=DG=5.故选A【点睛】本题考查角平分线的性质与判定,含30度角的直角三角形的性质,解题的关键在于利用角平分线定理作出辅助线.10.A【解析】【详解】解:∵BF AC ∥,∴∠C=∠CBF ,∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC ,∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②,③正确,在△CDE 与△DBF 中,C CBF CD BD EDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE ≌△DBF ,∴DE=DF ,CE=BF ,故①正确;∵AE=2BF ,∴AC=3BF ,故④正确.故选A .11.55°或70°.【解析】【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为:55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.12.45【解析】【分析】根据逆用同底数幂的乘法运算和积的乘方运算计算即可【详解】(45)2015×1.252014×(﹣1)2016201420144451554⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭20144451554⎛⎫=⨯⨯⨯ ⎪⎝⎭45=故答案为:45【点睛】本题考查了同底数幂的乘法运算和积的乘方运算,正确的计算是解题的关键.13.75°.【解析】【分析】根据平角的定义求出∠ADE=75°,由AAS 证明△ABC ≌△ADE ,根据对应角相等得出即可.【详解】解:∵∠1+∠2=105°,∴∠ADE=75°,∵∠BAD=∠CAE ,∴∠BAC=∠DAE ,在△ABC 和△ADE 中,∵BAC DAE C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (AAS ),∴∠ABC=∠ADE=75°;故答案为75°.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形判定定理是解题的关键.14.326129x x x --+【解析】【分析】直接利用单项式乘以多项式的计算法则求解即可.【详解】解:()23232436129x x x x x x -+-=--+,故答案为:326129x x x --+.【点睛】本题主要考查了单项式乘以多项式,解题的关键在于能够熟练掌握单项式乘以多项式的计算法则.15.6±【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:29a ka ++是一个完全平方式,即22233a a ±⨯+是一个完全平方式,6k ∴=±故答案为:6±【点睛】本题考查了完全平方式,两数的平方和,再加上或减去他们乘积的2倍,就构成一个完全平方式,熟练掌握完全平方公式的特点是解题关键.16.1【解析】【分析】根据0指数幂的意义解答即可.【详解】解:因为 3.140π-≠,所以()03.141π-=.故答案为:1.【点睛】本题考查了0指数幂的意义,属于应知应会题型,熟知任何非零数的0次幂等于1是解题的关键.17.40︒【分析】连接,,AP BP CP ,根据三角形的内角和定理可得130ABC ACB ∠+∠=︒,根据垂直平分线的性质,等腰三角形的性质计算即可求得PBC ∠的度数.【详解】如图,连接,,AP BP CP ,180130ABC ACB BAC ∠+∠=︒-∠=︒ 点P 是边AB,边BC 的垂直平分线的交点,,PA PB PB PC∴==PA PC∴=,PAB PBA PAC PCA∴∠=∠∠=∠50PBA PCA PAB PAC BAC ∴∠+∠=∠+∠=∠=︒1305080PBC PCB ∴∠+∠=︒-︒=︒PB PC= 40PBC PCB ∴∠=∠=︒故答案为:40︒【点睛】本题考查了垂直平分线的性质、三角形的内角和定理,等边对等角,掌握垂直平分线的性质是解题的关键.18.15【解析】【详解】设∠F=x°,根据等腰三角形和外角的性质可得:∠DEC=2x°,∠ACB=4x°,根据等边三角形的性质可得:4x=60°,则x=15°,即∠F=15°.故答案为:15【点睛】考点:等腰三角形的性质19.(1)221544xxy y --;(2)22161649xx y ++-;(3)232324xy y xy --(4)1【解析】【分析】(1)根据多项式乘以多项式进行计算即可;(2)根据平方差公式、完全平方公式进行计算即可;(3)根据多项式除以单项式的运算法则进行计算即可;(4)根据平方差公式进行简便运算【详解】(1)(5x+2y )(3x-2y )22151064x xy xy y =-+-221544x xy y =--(2)(4x-3y+2)(4x+3y+2)()()423423x y x y =+-++()()22423x y =+-22161649x x y =++-(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3232324x y y xy =--(4)19992-2000×1998()()219991999119991=-+-()22199919991=--22199919991=-+1=【点睛】本题考查了多项式乘以多项式,多项式除以单项式,乘法公式,正确的计算是解题的关键.20.见解析【解析】【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.21.(1)见详解;(2)3;(3)PB+PC【解析】【分析】(1)先分别作出△ABC 的对称点,然后依次连接即为所求;(2)在网格中利用割补法进行求解△ABC 的面积即可;(3)要使PB+PC 的长为最短,只需连接BC′,因为根据轴对称的性质及两点之间线段最短可得,然后利用勾股定理可求最短距离.【详解】解:(1)分别作B 、C 关于直线l的对称点,如图所示:(2)由网格图可得:111242221143222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= ;故答案为3;(3)由(1)可得:点C 与点C '关于直线l 对称,连接PC 、BC ',如图所示:∴CP PC '=,∵BP PC BP PC BC ''+=+≥,∴要使BP+PC 为最短,则需B 、P 、C '三点共线即可,即为BC '的长,∴222313BC '=+=,即PB+PC 13【点睛】本题主要考查轴对称图形的性质、勾股定理及三角不等关系,熟练掌握轴对称图形的性质、勾股定理及三角不等关系是解题的关键.22.∠BAC=108°.【解析】【分析】由AB=AC ,DC=CA ,得到AB=AC=CD ,且AD=BD ,利用等边对等角得到∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,由外角性质得到∠ADC=∠DAC=∠B+∠BAD=2x°,在三角形ABC 中,利用三角形的内角和定理列出关于x 的方程,求出方程的解得到x 的值,确定出∠DAC 与∠ADC 的度数,由∠BAD+∠DAC 即可求出∠BAC 的度数.【详解】解:∵AB=AC=DC ,AD=BD ,∴∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,则∠ADC=∠DAC=∠B+∠BAD=2x°,∵∠B+∠C+∠BAC=180°,即x+x+2x+x=180,解得x=36,∴∠B=∠C=∠BAC=36°,∴∠DAC=∠ADC=72°,∴∠BAC=∠BAD+∠DAC=72°+36°=108°.【点睛】此题考查了等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,掌握等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,利用了方程的思想,等边对等角是解题关键.23.见解析【解析】【分析】先由角平分线的性质就可以得出DB DF =,再证明BDE FDC ∆≅∆就可以求出结论.【详解】证明:90B ∠=︒ ,BD AB ∴⊥.AD 为BAC ∠的平分线,且DF AC ⊥,DB DF ∴=.在Rt BDE 和Rt FDC 中,DE DC DB DF =⎧⎨=⎩,()Rt BDE Rt FDC HL ∴ ≌,BE CF ∴=.【点睛】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解题的关键是证明三角形全等.24.6【解析】【分析】根据等边三角形的性质和中线的性质解答即可.【详解】∵△ABC 是等边三角形,BD 是中线,∴∠A=∠ACB=60°,AC=BC ,AD=CD=12AC ,∵DE⊥AB于E,∴∠ADE=90°-∠A=30°,∴CD=AD=2AE=2,∴∠CDF=∠ADE=30°,∴∠F=∠ACB-∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴BF=BC+CF=2AD+AD=6.25.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.26.(1)∠BAD=∠CAE;(2)∠DCE=120°;(3)∠DCE的大小不变,∠DCE=60°.【分析】(1)由等边三角形的性质得出∠BAC=∠DAE=60°,然后利用等式性质即可得出结论;(2)由△ABC和△ADE是等边三角形可以得出AB=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠BAD=∠CAE,再证明△ABD≌△ACE,得出∠ABD=∠ACE=60°,然后利用∠ACD+∠ACE即可得出结论;(3)分两种情况,点D在BC延长线上,与点D在CB延长线上;点D在BC延长线上,根据等边三角形的性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角的和∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =60°,利用∠DCE =∠ACD -∠ACE ;与点D 在CB 延长线上,根据等边三角形性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角差得出∠ABD=180°-∠ABC =120°,∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =120°,利用∠DCE =∠ACE -∠ACB 即可得解.【详解】解:(1)△ABC 与△ADE 都是等边三角形,∴∠BAC=∠DAE=60°,∴∠BAD+∠DAC=∠DAC+∠CAE ,∴∠BAD =∠CAE ;(2)连结CE ,∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠BAC-∠CAD =∠DAE-∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD+∠ACE =60°+60°=120°;(3)∠DCE 的大小不变,∠DCE=60°,分两种情况,点D 在BC 延长线上与点D 在CB 延长线上;点D 在BC 延长线上,如图(2)∵△ABC 是等边三角形,△ADE 是等边三角形,21∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD=180°-∠ACB =120°,∠BAC+∠CAD =∠DAE+∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°;点D 在CB 延长线上;如图(3)∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ABD=180°-∠ABC =120°,∠BAC-∠BAE =∠DAE-∠BAE ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =120°,∴∠DCE =∠ACE -∠ACB =120°-60°=60°.综合得,∠DCE 的大小不变,∠DCE=60°.。

人教版八年级数学上册期中测试题(含答案)

人教版八年级数学上册期中测试题(含答案)

人教版八年级上册数学期中复习试卷一.选择题1.下列图形为轴对称图形的为()A.B.C.D.2.以下列各组线段长为边能组成三角形的是()A.1,2,4B.2,4,6C.4,6,8D.5,6,123.△ABC中BC边上的高作法正确的是()A.B.C.D.4.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角和其中一角的对边对应相等D.两角和它们的夹边对应相等5.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确6.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS7.一个多边形的内角和等于它的外角和的3倍,这个多边形是()A.四边形B.六边形C.八边形D.十边形8.在平面直角坐标系中,点A(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(﹣1,2)C.(2,1)D.(﹣1,﹣2)9.如图所示,BE⊥AC,CF⊥AB,垂足分别是E.F,若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对10.如图,将纸片△ABC沿DE折叠使点A落在点A′处,若∠1=80°,∠2=24°,则∠A为()A.24°B.28°C.32°D.36°11.如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一条直线上,AD与BE 相交于点G,BE与AC相交于点F,AD与CE相交于点H,则下列结论:①△ACD≌△BCE;②∠AGB=60°;③BF=AH;④△CFH是等边三角形;⑤连CG,则∠BGC=∠DGC.其中正确的个数是()A.2B.3C.4D.512.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°二.填空题13.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是.14.如图,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充条件(填写一个即可).15.如果点P(2,b)和点Q(a,﹣3)关于x轴对称,则a+b=.16.一个n边形的内角和为1080°,则n=.17.如图,在△ABC中,AB=AC=4,∠A=30°,那么S△ABC=.18.如图,将长方形ABCD的一角沿AE折叠,使点D落在点D′处,若∠CED′=50°,则∠DEA=.19.如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8m,∠A=30°,则DE=m.三.解答题20.尺规作图:作线段AB的垂直平分线MN,并证明该作图所得到的MN就是线段AB的垂直平分线.21.如图,在△ABC中,∠A=35°,∠ABD=35°,∠ACB=80°,且CE平分∠ACB,求∠BEC的度数.22.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q.(1)求证:BE=AD;(2)求证:∠PBQ=30°.23.已知△ABC三个顶点坐标分别为A(2,3),B(1,﹣3),C(4,0).(1)在平面直角坐标系中画出△ABC.(2)画出△ABC关于直线y轴对称的△A′B′C′.(3)分别写出点A′、B′、C′的坐标.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D是AB的中点,点E在AC上,AE=6cm,点P在BC上以1cm/s速度由B点向C点运动,点Q在AC上由A点向E点运动,两点同时出发,当其中一点到达终点时,两点同时停止运动.(1)在运动过程中,若点Q速度为2cm/s,则△QPC能否形成以∠C为顶角的等腰三角形?若可以,请求出运动时间t,若不可以,请说明理由;(2)当点Q速度为多少时,能够使△BPD与△QCP全等?26.已知:如图△ABC中,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°(1)求证:△DEF为等腰直角三角形;(2)求证:S四边形AEDF=S△BDE+S△CDF;(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF还仍然是等腰直角三角形吗?请画图说明理由.参考答案一.选择题1.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意.故选:D.2.解:A、1+2<4,不能组成三角形;B、2+4=6,不能组成三角形;C、4+6>8,能组成三角形D、5+6<12,不能够组成三角形;故选:C.3.解:为△ABC中BC边上的高的是D选项.故选:D.4.解:A、三条边对应相等的三角形是全等三角形,符合SSS,故A不符合题意;B、两边和一角对应相等的三角形不一定是全等三角形,故B符合题意;C、两角和其中一角的对边对应相等是全等三角形,符合AAS,故C不符合题意;D、两角和它们的夹边对应相等是全等三角形,符合ASA,故D不符合题意.故选:B.5.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.6.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.7.解:设多边形的边数为n,则(n﹣2)•180°=360°×3,n﹣2=6,n=8.故选:C.8.解:点A(1,﹣2)关于x轴对称的点的坐标为:(1,2).故选:A.9.解:①△BCF≌△CBE∵BE⊥AC,CF⊥AB∴∠CFB=∠BEC=90°∵BE=CF,BC=BC∴△BCF≌△CBE(HL);②△ABE≌△ACF∵BE⊥AC,CF⊥AB∴∠AFC=∠AEB=90°∵BE=CF,∠A=∠A,∴△ABE≌△ACF(HL);③BOF≌△COE设BE与CF相交于点O,∵BE⊥AC,CF⊥AB∴∠OFB=∠OEC∵BF=CE,∠BOF=∠COE∴△BOF≌△COE(AAS).故选:C.10.解:如图,设AB与DA'交于点F,∵∠1=∠DF A+∠A,∠DF A=∠A'+∠2,由折叠可得,∠A=∠A',∴∠1=∠A+∠A'+∠2=2∠A+∠2,又∵∠1=80°,∠2=24°,∴80°=2∠A+24°,∴∠A=28°.故选:B.11.解:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);故①正确;∵△BCE≌△ACD,∴∠CBF=∠CAH.∵∠BFC=∠AFG,∴∠AGB=∠ACB=60°,故②正确;在△BCF和△ACH中,,∴△BCF≌△ACH(ASA),∴CF=CH,BF=AH;故③正确;∵CF=CH,∠ACH=60°,∴△CFH是等边三角形;故④正确;连接CG,∵∠AGB=∠ACB=60°,∠CBG=∠CAG,∴点A,B,C,G四点共圆,∴∠BGC=∠BAC=60°,∵∠CGD=∠ABC=60°,∴∠BGC=∠DGC,故⑤正确.故选:D.12.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠F A4A3=()3×75°,∴第n个三角形中以A n为顶点的底角度数是()n﹣1×75°.故选:C.二.填空题13.解:这样做的依据是三角形的稳定性,故答案为:三角形的稳定性.14.解:添加AF=DC,∵BE=CF,∴BE+EF=CF+EF,即BF=EC,在△ABF和△DEC中,∴△ABF≌△DEC(SSS),故答案为:AF=DC.15.解:∵点P(2,b)和点Q(a,﹣3)关于x轴对称,∴a=2,b=3,∴a+b的值是5.故答案为:5.16.解:过B作BD⊥AC于D,∵BD⊥AC,∴∠ADB=90°,∵∠A=30°,∴BD=AB=×4=2,∴S△ABC=AC×BD=×4×2=4,故答案为:4.17.解:∵∠CED′=50°,∴∠DED′=180﹣50=130°,即∠DEA+∠D′EA=130°,又∵∠DEA=∠D′EA,∴∠DEA=65°.故答案是:65°.18.解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,BC=AB=4,∴DE=2.故答案是2.19.解:(n﹣2)•180°=1080°,解得n=8.三.解答题20.解:如图,直线MN即为所求;作法:(1)分别以A、B为圆心,大于AB的同样长为半径作弧,两弧分别交于点M、N;(2)作直线MN.直线MN即为所求作的线段AB的垂直平分线;已知:如图,连接AM、BM、AN、BN,AM=AN=BM=BN.求证:MN⊥AB,MN平分AB.证明:由作法得MA=MB,∴M点在AB的垂直平分线上,同理得到N点在AB的垂直平分线上,∴MN平分AB.21.解:∵∠A=35°,∠ABD=35°,∴∠BDC=∠A+∠ABD=70°,∵CE平分∠ACB,∠ACB=80°,∴∠DCE=∠ACB=40°,∴∠BEC=∠BDC+∠DCE=70°+40°=110°.22.证明:(1)∵△ABC为等边三角形,∴AB=CA,∠BAE=∠C=60°,在△AEB与△CDA中,,∴△AEB≌△CDA(SAS),∴BE=AD;(2)由(1)知,△AEB≌△CDA,则∠ABE=∠CAD,∴∠BAD+∠ABP=∠BAD+∠CAD=∠BAC=60°,∴∠BPQ=∠BAD+∠ABP=60°,∵BQ⊥AD于点Q,∴∠PBQ=30°.23.解:(1)如图,△ABC即为所求.(2)如图,△A′B′C′即为所求.(3)A′(﹣2,3),B′(1,﹣3),C′(﹣4,0).24.证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).25.解:(1)设ts时△QPC是以∠C为顶角的等腰三角形,则PB=tcm,PC=(8﹣t)cm,CQ=(10﹣2t)cm,∵△QPC是以∠C为顶角的等腰三角形,∴PC=CQ,即8﹣t=10﹣2t,解得:t=2s,∵其中一点到达终点时,两点同时停止运动,8÷1=8s,6÷2=3s,∴点P、Q的运动时间为3s,t=2s符合题意,∴t=2s时,△QPC能形成以∠C为顶角的等腰三角形;(2)∵AB=AC,∴∠B=∠C,设点P、Q的运动时间为t,则BP=tcm,PC=(8﹣t)cm,∵AB=10cm,BC=8cm,点D为AB的中点,∴BD=×10=5cm,①BD、PC是对应边时,∵△BPD与△CQP全等,∴BD=PC,BP=CQ,∴5=8﹣t,解得t=3,∴BP=CQ=3cm,∴AQ=10﹣3=7cm,∵点Q在AC上由A点向E点运动,AE=6cm,∴AQ不可能等于7cm,即不存在BD、PC是对应边时,△BPD与△CQP全等,②BD与CQ是对应边时,∵△BPD与△CPQ全等,∴BD=CQ=5cm,BP=PC,AQ=10﹣5=5cm,∴t=8﹣t,解得t=4,∴点Q速度为5÷4=cm/s.即当点Q速度为cm/s时,能够使△BPD与△QCP全等.26.(1)证明:如图,连接AD,∵∠A=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD,∠1=45°,∴∠1=∠B=45°,∵∠EDF=90°,∴∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形;(2)解:同理可证,△ADE≌△CDF,所以,S四边形AEDF=S△ADF+S△ADE=S△BDE+S△CDF,即S四边形AEDF=S△BDE+S△CDF;(3)解:仍然成立.如图,连接AD,∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD,∠1=45°,∵∠DAF=180°﹣∠1=180°﹣45°=135°,∠DBE=180°﹣∠ABC=180°﹣45°=135°,∴∠DAF=∠DBE,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF为等腰直角三角形.。

人教版八年级数学(上)期中试卷及答案

人教版八年级数学(上)期中试卷及答案

AC D 第8题图 第1题图第9题图 人教版八年级数学(上)期中试卷及答案(考试用时:120分钟 ; 满分: 120分)一.选择题(共12小题.每小题3分.共36分. 在每小题给出的四个选项中只有一项是符合要求的.请将正确答案的序号填入对应题目后的括号内)1.下列图形分别是桂林.湖南.甘肃.佛山电视台的台徽.其中为轴对称图形的是( ).2. 对于任意三角形的高.下列说法不正确的是( )A .锐角三角形有三条高B .直角三角形只有一条高C .任意三角形都有三条高D .钝角三角形有两条高在三角形的外部3. 一个三角形的两边长为3和8.第三边长为奇数.则第三边长为( ) A. 5或7 B. 7或9 C. 7 D. 94. 等腰三角形的一个角是80°.则它的底角是( )A. 50°B. 80°C. 50°或80°D. 20°或80°5. 点M (3.2)关于y 轴对称的点的坐标为 ( )。

A.(—3.2) B.(-3.-2) C. (3.-2) D. (2.-3)6. 如图.∠B=∠D=90°.CB=CD.∠1=30°.则∠2=( )。

A .30° B. 40° C. 50° D. 60°7. 现有四根木棒.长度分别为4cm.6cm.8cm.10cm.从中任取 三根木棒.能组成三角形的个数为( )A .1个B .2个C .3个D .4个 8. 如图.△ABC 中.AB=AC.D 为BC 的中点.以下结论: (1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线。

其中正确的有( )。

A .1个 B. 2个 C. 3个 D. 4个9. 如图.△ABC 中.AC =AD =BD.∠DAC =80º. 则∠B 的度数是( ) A .40º B .35º C .25º D .20º10. 如果一个多边形的每个内角都相等.且内角和为1800°.那么该多边形的一个外角是 ( )A B C D第16题图第12题图第11题图第17题图第15题图 第14题图A .30ºB .36ºC .60ºD .72º 11.如图所示.某同学把一块三角形的玻璃不小心打碎成了三块. 现在要到玻璃店去配一块完全一样的玻璃.( )去.A .①B .②C .③D .①和②12.用正三角形.正四边形和正六四边形按如图所示的规律拼图案.即从第二个图案开始.每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为( ) (用含n 的代数式表示).A .2n +1 B. 3n +2 C. 4n +2 D. 4n -2二.填空题(本大题共6小题.每小题3分,共18分.请把答案填写在相应题目后的横线上)13. 若A (x.3)关于y 轴的对称点是B (-2.y ).则x =____ ,y =______ , 点A 关于x 轴的对称点的坐标是___________ 。

人教版数学八年级上册期中考试试卷及答案

人教版数学八年级上册期中考试试卷及答案

人教版数学八年级上册期中考试试题时间:120分钟分值:100分班级姓名分数103306789101 234>5{$1.在下列各电视台的台标图案中,是轴对称图形的是( )A.B.C.D.2.以下列各组线段为边,能组成三角形的是( )A.2cm,3cm,5cm B.3cm,3cm,6cm C.5cm,8cm,2cm D.4cm,5cm,6cm 3.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )>A.SSS B.SAS C.AAS D.ASA第3题图第4题图第5题图4.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()*A.40°B.50°C.45°D.60°5.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=( ) A.30 B.35°C.40°D.50°6.一个三角形三个内角之比为1:3 :5,则最小的角的度数为( )A.20°B.30°C.40°D.60°7.下列图形中有稳定性的是( )A.正方形B.长方形C.直角三角形D.平行四边形8.正n边形的内角和等于1080°,则n的值为( ).A.7 B.8 C.9 D.109.在△ABC与△A′B′C′中,已知∠A=∠A′,AC=A′C′,下列说法错误的是()A .若添加条件AB=A ′B ′,则△ABC 与△A ′B ′C ′全等B .若添加条件∠C=∠C ′,则△ABC 与△A ′B ′C ′全等C .若添加条件∠B=∠B ′,则△ABC 与△A ′B ′C ′全等D .若添加条件BC=B ′C ′,则△ABC 与△A ′B ′C ′全等.10.如图,∠A=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )A .90°B .75°C .70°D .60°二、填空题:本大题共8小题,每小题2分,共16分。

人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列四个实数中,最小的是( )A. −√ 3B. −2C. 2D. 32.下列各数中,无理数是( )A. √ 9B. √−83C. π2D. 533.与数轴上的点一一对应的是( )A. 有理数B. 无理数C. 整数D. 实数4.估计√ 7+1的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.√ 16的算术平方根是( )A. 4B. 2C. ±4D. ±26.下列运算正确的是( )A. x 3÷x 2=xB. x 3⋅x 2=x 6C. x 3−x 2=xD. x 3+x 2=x 5 7.若(y +3)(y −2)=y 2+my +n ,则m 、n 的值分别为( )A. 5;6B. 5;−6C. 1;6D. 1;−68.已知a =255,b =344,c =433则a 、b 、c 的大小关系是( )A. b >c >aB. a >b >cC. c >a >bD. a <b <c第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)9.计算:−√ 36= ______ ,√−273= ______ ,√ 16= ______ .10.已知|a +2|+√ b −6=0,则a +b = ______ .11.√ 2−1的相反数是______ ,|√ 2−√ 3|= ______ ,√(−8)33= ______ .12.已知2n =a ,3n =b 则6n = ______ .13.已知x 2−y 2=8,且x +y =4,则x −y =______.14.已知x 2−(m −1)x +16是一个完全平方式,则m 的值等于______.三、解答题(本大题共10小题,共78.0分。

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册期中考试综合测试卷(时间:120 分钟,满分:120 分)一、选择题(本大题共10 小题,每小题3 分,共30 分.每小题给出的四个选项中,只有一项符合题目要求)1.某同学手里拿着长为3 和2 的两根木棍,想要找一根长为整数的木棍,用它们围成一个三角形,则他所找的这根木棍的长可以是( ).A.1,3,5B.1,2,3C.2,3,4D.3,4,52.下列四个图形:其中是轴对称图形,且对称轴的条数为2 的图形的个数是( ).A.1B.2C.3D.43.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,DE∥BC.若∠A=62°,∠AED=54°,则∠B 的大小为( ).A.54°B.62°C.64°D.74°4.在四边形ABCD 中,∠A=∠B=∠C,点E 在边AB 上,∠AED=60°,则一定有( ).A.∠ADE=20°B.∠ADE=30°C.∠ADE=1 ADCD.∠ADE=1ADC∠∠2 35.如图,AC 是线段BD 的垂直平分线,则图中全等三角形的对数是( ).A.1B.2C.3D.46.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于y 轴对称,则a+b 的值为( ).A.33B.-33C.-7D.77.如图,在△ABC 中,∠BAC=90°,∠C=30°,AD⊥BC 于点D,BE 是∠ABC 的平分线,且交AD 于点P, 交AC 于点E.如果AP=2,那么AC 的长为( ).A.8B.6C.4D.28.如图,已知AE=CF,∠AFD=∠CEB,添加下列一个条件后,仍无法判定△ADF≌△CBE 的是( ).A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC9.如图,A,B,C 三点在同一条直线上,∠A=52°,BD 是AE 的垂直平分线,垂足为点D,则∠EBC 的度数为( ).A.52°B.76°C.104°D.128°10.如图,过边长为1 的等边三角形ABC 的边AB 上的一点P 作PE⊥AC 于点E,Q 为BC 的延长线上一点.当PA=CQ 时,连接PQ 交AC 边于点D,则DE 的长为( ).A.13 B.12C.23D.不能确定二、填空题(本大题共6 小题,每小题4 分,共24 分)11.如图,在△ABC 中,AB=AC,∠A=36°,BD,CE 分别为∠ABC,∠ACB 的平分线,且相交于点O,则图中等腰三角形共有个.12.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC= 度.13.如图,在Rt△ABC 中,∠BAC=90°,∠B=30°,BC=8,AD⊥BC 于点D,则DC= .14.如图,在4×4 的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7= .15.已知等腰三角形的两边长a,b 满足|a-b-2|+ 2�-3�-1=0,则此等腰三角形的周长为.16.如图,在△ABC 中,∠B=90°,AC=DC,∠D=15°,AB=18 cm,则CD 的长为cm.三、解答题(本大题共8 小题,共66 分)17.(6 分)如图,已知△ABC.(1)画出BC 边上的高AD 和中线AE;(2)若∠B=30°,∠ACB=130°,求∠BAD 和∠CAD 的度数.18.(6 分)△ABC 在平面直角坐标系中如图所示,其中点A,B,C 的坐标分别为(-2,1),(-4,5),(-5,2).(1)作△ABC 关于直线l:x=-1 对称的△A1B1C1,其中点A,B,C 的对应点分别为A1,B1,C1;(2)写出点A1,B1,C1 的坐标.19.(6 分)如图,点C,F,E,B 在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE.写出CD 与AB 之间的关系, 并证明你的结论.20.(8 分)两个大小不同的等腰直角三角尺按如图①所示放置,图②是由它抽象出的几何图形,点B,C,E 在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.21.(8 分)如图,在△ABC 中,AB=AC,点D,E 分别在AC,AB 上,BD=BC,AD=DE=BE,求∠A 的度数.22.(8 分)如图,已知D,E,F 分别是△ABC 三边上的点,BF=CE,且△DBF 和△DCE 的面积相等.求证:AD 平分∠BAC.23.(12 分)如图①,②,③,点E,D 分别是等边三角形ABC,正方形ABCM,正五边形ABCMN 中以点C 为顶点的相邻两边上的点,且BE=CD,DB 交AE 于点P.(1)图①中,∠APD 的度数为;(2)图②中,∠APD 的度数为,图③中,∠APD 的度数为;(3)根据前面的探索,你能否将本题推广到一般的正n 边形的情况?若能,写出推广问题和结论;若不能, 请说明理由.24.(12 分)如图,已知△DCE 的顶点C 在∠AOB 的平分线OP 上,CD 交OA 于点F,CE 交OB 于点G.(1)如图①,若CD⊥OA,CE⊥OB,则图中有哪些相等的线段?请直接写出你的结论: .(2)如图②,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF 与线段CG 的数量关系,并加以证明.答案与解析一、选择题1.C 设他所找的这根木棍的长为x,由题意得3-2<x<3+2,∴1<x<5.∵x 为整数,∴x=2,3,4,故选C.2.C3.C4.D 如图,在△AED 中,∵∠AED=60°,∴∠A=180°-∠AED-∠ADE=120°-∠ADE.在四边形 DEBC 中,∵∠DEB=180°-∠AED=180°-60°=120°,∴∠B=∠C=(360°-∠DEB-∠EDC )÷2=120 -1EDC. ° ∠2∵∠A=∠B=∠C ,∴120°-∠ADE=120 -1 EDC. ° 2∠∴∠ADE=1 EDC. ∠2 ∵∠ADC=∠ADE+∠EDC=1 EDC+∠EDC=3EDC ,∴∠ADE=1 ∠ ∠ 2 2ADC.故选D .∠ 35.C 全等三角形有 3 对,分别为 Rt △ABO ≌Rt △ADO ,Rt △CDO ≌Rt △CBO ,△ADC ≌△ABC.6.A 点(x ,y )关于 y 轴对称的点是(-x ,y ),故 b=20,a=13,则 a+b=33,故选A .7.B8.B ∵AE=CF ,∴AE+EF=CF+EF ,即 AF=CE.∠� = ∠�,选项A,在△ADF 和△CBE 中, A = C ,∠A � = ∠C �,∴△ADF ≌△CBE (ASA);选项B,根据 AD=CB ,AF=CE ,∠AFD=∠CEB 不能推出△ADF ≌△CBE;A = C,选项C,在△ADF 和△CBE 中, ∠A�= ∠C�,A = C,∴△ADF≌△CBE(SAS);选项D,∵AD∥BC,∴∠A=∠C,易知△ADF≌△CBE(ASA).故选B.9.C ∵BD 是AE 的垂直平分线,∴AB=BE.∴∠E=∠A=52°,∴∠EBC=∠E+∠A=104°.故选C.10.B 如图,过点P 作PM∥BC,交AC 于点M.易知△APM 是等边三角形.∵PE⊥AM,∴AE=EM.∵PM∥CQ,∴∠PMD=∠QCD,∠MPD=∠Q.又PM=PA=CQ,∴△PMD≌△QCD.∴CD=DM,∴DE=ME+DM=1(AM+MC)=1AC=1,故选B.2 2 2二、填空题11.8 设CE 与BD 的交点为点O.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=180°-36°=72°.2∵BD 是∠ABC 的平分线,∴∠ABD=∠DBC=1 ABC=36°=∠A,∠2∴AD=BD.同理,∠A=∠ACE=∠BCE=36°,AE=CE.∴∠DBC=∠BCE=36°,∴OB=OC.∵∠DBC=36°,∠ACB=72°,∴∠BDC=180°-72°-36°=72°,∴BD=BC,同理CE=BC.∵∠BOC=180°-36°-36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°.∴CD=CO,BO=BE.∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC 都是等腰三角形,共8 个.12.24 13.214.315°由题图可知∠4=1×90°=45°,∠1 和∠7 所在的三角形全等,2∴∠1+∠7=90°.同理,∠2+∠6=90°,∠3+∠5=90°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°.15.11 或13 由题意可得a-b-2=0,2a-3b-1=0,解得a=5,b=3,即三角形的三边长为5,5,3 或3,3,5. 所以此等腰三角形的周长为11 或13.16.36 在△ACD 中,∵AC=DC,∠D=15°,∴∠D=∠DAC=15°.∵∠ACB 是△ACD 的一个外角,∴∠ACB=∠D+∠DAC=15°+15°=30°.在Rt△ABC 中,∠ACB=30°,∴AC=2AB=2×18=36(cm),即CD=36 cm.三、解答题17.解(1)如图.(2)∠BAD=90°-30°=60°(直角三角形的两个锐角互余),∠ACD=180°-130°=50°(邻补角的定义),∠CAD=90°-50°=40°(直角三角形的两个锐角互余).18.解(1)如图.(2)A1(0,1),B1(2,5),C1(3,2).19.证明CD 与AB 之间的关系为CD=AB,且CD∥AB.∵CE=BF,∴CF=BE.A = C,在△CDF 和△BAE 中, ∠A�= ∠C�,A = C,∴△CDF≌△BAE.∴CD=AB,∠C=∠B,∴CD∥AB.20.(1)解题图②中△ABE≌△ACD.证明如下:∵△ABC 与△AED 均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.∴△ABE≌△ACD.(2)证明由(1)知△ABE≌△ACD,∠ACD=∠ABE=45°.又∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.21.解∵AD=DE,∴∠A=∠2.∵DE=BE,∴∠3=∠4.又∠2=∠3+∠4,∴∠4=1 2=1 A.∠∠2 2∵BD=BC,∴∠1=∠C.又∠1=∠4+∠A=1 A+∠A=3 A,∠∠2 2∴∠C=3 A.∠2∵AB=AC,∴∠ABC=∠C=3 A.∠2在△ABC 中,∵∠A+∠ABC+∠C=180°,∴∠A+3 A+3 A=180°,即4∠A=180°,∠∠2 2∴∠A=45°.22.证明如图,作DM⊥AB 于点M,DN⊥AC 于点N.∵△DBF 和△DCE 的面积相等,1BF ·DM=1CE ·DN. 2 2 ∵BF=CE ,∴DM=DN.又 DM ⊥AB ,DN ⊥AC ,∴AD 平分∠BAC.23.解 (1)60° (2)90° 108°(3) 能.如图,点 E ,D 分别是正 n 边形 ABCM …中以点 C 为顶点的相邻两边上的点,且 BE=CD ,BD与 AE 交于点 P ,则∠APD的度数为(�-2)×180°.� 24.解 (1)CF=CG ,OF=OG.(2)CF=CG.证明如下:如图,过点 C 作 CM ⊥OA 于点 M ,CN ⊥OB 于点 N ,则∠CMF=∠CNG=90°.①又 OC 平分∠AOB ,∴CM=CN ,②∠AOC=∠BOC.又∠AOB=120°,∴∠AOC=∠BOC=60°,∴∠MCN=360°-∠AOB-∠CMF-∠CNO=60°. ∴∠DCE=∠AOC=60°.∴∠MCN=∠FCG.∴∠MCN-∠FCN=∠FCG-∠FCN,即∠1=∠2.③由①②③得△CMF≌△CNG,∴CF=CG.。

07【人教版】八年级上册期中数学试卷(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!八年级第一学期期中考试数学试卷一、选择题(共30分)1. 下列交通标志是轴对称图形的是()A .B .C .D .2.下列计算正确的是 ( )A.224x x x += B.()222x y x y -=- C.()326x y x y = D.()532x x x =∙-3. 下列各式中,能用平方差公式计算的是( )A .(﹣a +b )(a ﹣b )B .(a ﹣b )(a ﹣b )C .(a +b )(﹣a ﹣b )D .(a ﹣b )(﹣a ﹣b )4.下列变形正确的是( )A .a +b ﹣c =a ﹣(b ﹣c )B .a +b +c =a ﹣(b +c )C .a ﹣b +c ﹣d =a ﹣(b ﹣c +d )D .a ﹣b +c ﹣d =(a ﹣b )﹣(c ﹣d )5.如果把分式中的x 和y 都扩大2倍,那么分式的值()A .不变B .扩大2倍C .扩大4倍D .缩小2倍6.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( )A .3B .﹣3C .0D .17.等腰三角形一边长等于5,一边长等于9,则它的周长是()A .14B .23C .19D .19或238. 若3x =10,3y =5,则32x ﹣y =( ).A .20B .45C .50D .5009.如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D . 时,分式有意义.CEF都是等腰三角形;②分。

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.已知△ABC 中,AB =6,BC =4,那么边AC 的长可能是下列哪个值()A .11B .5C .2D .12.下面四个图形中,线段BE 是⊿ABC 的高的图是()A .B .C .D .3.如图,已知ABC EFG ∆≅∆,则∠α等于()A .72°B .60°C .58°D .50°4.下列图形具有稳定性的是()A .梯形B .长方形C .直角三角形D .平行四边形5.下列图形中,是轴对称图形的是()A .B .C .D .6.下列命题正确的是()A .三角形的一个外角大于任何一个内角B .三角形的三条高都在三角形内部C .三角形的一条中线将三角形分成两个三角形面积相等D .两边和其中一边的对角相等的三角形全等7.如图,若ABE ACF V V ≌,且AB =8,AE =3,则EC 的长为()A .2B .3C .5D .2.58.如图,ABC DEF ≅ ,DF 和AC ,EF 和BC 为对应边,若A 123∠=︒,F 39∠= ,则DEF ∠等于()A .18°B .20°C .39°D .123°9.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .410.如图,点C 为线段AB 上一点,△ACM 和△CBN 是等边三角形.下列结论:①AN=BM;②CE=CF;③△CEF 是等边三角形;④∠ECF=60°∘.其中正确的是()A .①B .①②C .①②③D .①②③④11.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .二、填空题12.一个三角形的三个内角的度数的比是1:2:3,这个三角形是________三角形;13.一木工师傅现有两根木条,木条的长分别为40cm 和30cm ,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm ,则x 的取值范围是_______.14.如图,Rt ABC ∆和Rt EDF ∆中,//BC DF ,在不添加任何辅助线的情况下,请你添加一个条件______,使Rt ABC ∆和Rt EDF ∆全等.15.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的4个外角,若1234310∠+∠+∠+∠=︒,则B Ð的度数为_________.16.如图,在△ABC 中,已知点D 、E 、F 分别是边BC 、AD 、CE 上的中点,且S △ABC =4,则S △BFF =_____.17.如图,等腰三角形ABC 的底边BC 长为4,面积是18,腰AC 的垂直平分线EF 分别交AC ,周长的最小AB边于E,F点.若点D为BC边的中点,点G为线段EF上一动点,则CDG值为______.三、解答题+++-----.18.已知a,b,c为三角形三边的长,化简:a b c b c a c a b19.如图,两个三角形成轴对称,画出对称轴.20.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∆ABC关于直线l成轴对称的△AB'C';(2)以AC为边作与∆ABC全等的三角形,则可作出个三角形与∆ABC全等;(3)在直线l上找一点P,使PB+PC的长最短.21.如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:AB∥DE.22.已知:如图,已知点B 、E 、F 、C 在同一直线上,AB =CD ,AE ⊥BC ,DF ⊥BC ,E ,F 是垂足,CE =BF ,求证:AB //CD .23.如图,在△ABC 中,AC =BC ,直线l 经过顶点C ,过A ,B 两点分别作l 的垂线AE ,BF ,E ,F 为垂足.AE =CF ,求证:∠ACB =90°.24.如图,△ABC 中,AB =AC ,∠BAC +∠BDC=180°.(1)求证:AD 为∠BDC 的平分线;(2)若∠DAE=12∠BAC ,且点E 在BD 上,直接写出BE 、DE 、DC 三条线段之间的等量关系_______.25.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.(问题解决)(1)如图1,若点D在边BC上,求证:CE+CF=CD;(类比探究)(2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.参考答案1.B【详解】试题分析:由三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选B.考点:三角形三边关系.2.A【解析】分析:根据三角形的高的定义,过顶点向对边作垂线,顶点与垂足之间的线段为三角形的高,观察各选项直接选择答案即可.解答:解:根据三角形高线的定义,只有A 选项符合.故选A .3.A【分析】根据全等三角形的性质求解即可.【详解】∵ABC EFG ∆≅∆,∴∠ACB =∠EGF ,故72ACB α∠=∠=︒.故答案为:72︒.【点睛】本题考查了全等三角形的性质,对应边相等,对应角相等,对应线段相等,特别要注意“对应”两字.4.C【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得答案.【详解】直角三角形具有稳定性,梯形、长方形、平行四边形都不具有稳定性.故选:C【点睛】本题考查三角形的性质之一,即三角形具有稳定性,掌握三角形的这一性质是快速解题的关键.5.D【分析】根据轴对称图形的定义判断即可【详解】A 、不是轴对称图形,不合题意;B 、不是轴对称图形,不合题意;C 、不是轴对称图形,不合题意;D 、是轴对称图形,符合题意;故选:D .【点睛】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.6.C【分析】根据三角形的外角定理即可判断①;根据三角形的高的定义即可判断②;根据三角形中线的性质即可判断③;根据全等三角形的判定方法即可判断④,进而可得答案.【详解】解:A 、三角形的一个外角大于和它不相邻的任何一个内角,故本选项命题错误,不符合题意;B 、钝角三角形有两条高在三角形的外部,故本选项命题错误,不符合题意;C 、三角形的一条中线将三角形分成两个三角形面积相等,故本选项命题正确,符合题意;D 、两边和其中一边的对角相等的两个三角形不一定全等,故本选项命题错误,不符合题意.故选:C .【点睛】本题考查了真假命题、三角形的外角性质、中线的性质、高的定义和全等三角形的判定等知识,属于基础题型,熟练掌握基本知识是解题的关键.7.C【分析】由ABE ACF V V ≌可得,AB AC =从而利用线段的和差可得答案.【详解】解:,8ABE ACF AB = ≌,8,AB AC ∴==3,AE = 83 5.CE AC AE ∴=-=-=故选C .【点睛】本题考查的是三角形全等的性质,线段的和差,掌握以上知识是解题的关键.8.A【分析】根据全等三角形的性质求出∠D ,再用三角形的内角和定理即可求解.【详解】解:∵ABC DEF ≅ ,∴∠D=∠A=123°,又F 39∠= ,∴DEF ∠=180°-∠D-∠F=180°-123°-39°=18°,故答案为:A .【点睛】本题考查全等三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质是解答的关键.9.C【分析】根据三角形面积公式由点D 为BC 的中点得到S △ABD =S △ADC =12S △ABC =6,同理得到S △EBD =S △EDC =12S △ABD =3,则S △BEC =6,然后再由点F 为EC 的中点得到S △BEF =12S △BEC =3.【详解】解:∵点D 为BC 的中点,∴S △ABD =S △ADC =12S △ABC =6,∵点E 为AD 的中点,∴S △EBD =S △EDC =12S △ABD =3,∴S △EBC =S △EBD +S △EDC =6,∵点F 为EC 的中点,∴S △BEF =12S △BEC =3,即阴影部分的面积为3cm 2.故选:C .【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.10.D【分析】由等边三角形可得其对应线段相等,对应角相等,进而可由SAS 得到△CAN ≌△CMB ,再由△CAN ≌△CMB 可得∠CAN=∠CMB ,进而得出∠MCF=∠ACE ,由ASA 得出△CAE ≌△CMF ,即CE=CF ,又ECF=60°,所以△CEF 为等边三角形结论得以验证.【详解】解:(1)∵△ACM ,△CBN 是等边三角形,∴AC=MC ,BC=NC ,∠ACM=60°=∠NCB=60°,∴∠ACM+∠MCN=∠NCB+∠MCN,即∠ACN=∠MCB在△CAN 和△MCB 中,AC MC ACN MCB NC BC =⎧⎪∠=∠⎨⎪=⎩,∴△CAN ≌△CMB (SAS ),∴AN=BM ,①正确;∵△CAN ≌△CMB ,∴∠CAN=∠CMB ,又∵∠ECF=180°-∠ACM-∠NCB=180°-60°-60°=60°,∴∠ECF=∠ACE ,在△CAE 和△CMF 中,CAE CMF CA CM ACE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CAE ≌△CMF (ASA ),∴CE=CF ,∴△CEF 为等腰三角形,又∵∠ECF=60°,∴△CEF 为等边三角形,所以②③④正确,故选:D .【点睛】本题考查了全等三角形的性质和判定及等边三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等,对应角相等.11.B【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC、2、只有选项B的各边为1B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.12.直角【分析】依据三角形的内角和为180°,直接利用按比例分配求得最大的角,根据三角形的分类即可判断.【详解】解:3 18090123︒︒⨯=++因为三角形中有一个角是90°,所以该三角形是直角三角形;故答案为直角.【点睛】此题主要考查三角形的内角和定理以及三角形的分类方法.13.10cm<x<70cm【解析】试题分析:三角形的第三边长大于两边之差,小于两边之和,则x的取值范围为:10cm x70cm<<.14.AB ED=,答案不唯一【分析】本题是一道开放型的题目,答案不唯一,可以是AB=ED或BC=DF或AC=EF或AE=CF等,只要符合全等三角形的判定定理即可.【详解】∵Rt ABC∆和Rt EDF∆中,∴90BAC DEF ∠=∠=︒,∵//BC DF ,∴DFE BCA ∠=∠,∴添加AB ED =,在Rt ABC ∆和Rt EDF ∆中DFE BCA DEF BAC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt Rt AAS ABC EDF ∆∆≌,故答案为:AB ED =答案不唯一.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理的内容是解此题的关键,注意:两直角三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL 等.15.130°【分析】根据多边形外角是360︒可求得B Ð的外角,即可得到结果.【详解】由题可得B Ð的外角=()1234360-=360-310=50︒︒︒∠+∠+∠+∠︒,∴=180-50=130B ∠︒︒︒.故答案为130︒.【点睛】本题主要考查了多边形的外角定理,准确理解外角和及邻补角的性质是解题的关键.16.1【分析】根据三角形中线的性质可得S △ABE =S △DBE =S △DCE =S △AEC =14S △ABC ,进而可根据()()12BEC DBE DCE ABD ADC S S S S S =+=+ 求出BEC S ,再利用三角形中线的性质解答即可.【详解】解:∵D 、E 分别为BC 、AD 的中点,∴S △ABE =S △DBE =S △DCE =S △AEC =14S △ABC ,∴()()11222BEC DBE DCE ABD ADC ABC S S S S S S ==+=+= ,∵F 是边CE 的中点,∴211122BEF BEC S S ==⨯= .故答案为:1.【点睛】本题考查了三角形中线的性质,属于常考题型,熟练掌握三角形的中线性质是解题的关键.17.11【分析】连接AD ,AG ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,GA=GC ,推出GC+DG=GA+DG≥AD ,故AD 的长为BG+GD 的最小值,由此即可得出结论.【详解】解:连接AD ,AG .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC•AD=12×4×AD=18,解得AD=9,∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,GA=GC ,∴GC+DG=GA+DG≥AD ,∴AD 的长为CG+GD 的最小值,∴△CDM 的周长最短=(CG+GD )+CD=AD+12BC=9+12×4=9+2=11.故答案为:11.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.a+c-b【分析】根据三角形的三边关系得出a+b>c,a+c>b,再去绝对值符号,合并同类项即可.【详解】解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,+-+-+--+∴原式=(a b)c b(c a)c(a b)=a+b-c-b+c+a+c-a-b=a+c-b【点睛】本题考查的是三角形的三边关系以及整式的加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.19.见解析.【分析】连接一对对应点AB,作AB的垂直平分线即可得出答案【详解】解:连接一对对应点AB,作AB的垂直平分线即可得出答案.【点睛】此题主要考查了利用轴对称设计图案,解决此类问题的关键是熟练掌握其性质,根据要求找出对应点再画图形.20.(1)见解析;(2)3;(3)见解析【分析】(1)分别作各点关于直线l 的对称点,再顺次连接即可;(2)根据勾股定理找出图形即可;(3)连接B′C 交直线l 于点P ,则P 点即为所求.【详解】(1)如图,△AB 'C '即为所求;(2)如图,△AB 1C ,△AB 2C ,△AB 3C 即为所求,故填:3;(3)如图,P 点即为所求.【点睛】本题考查的是作图−轴对称变换,熟知轴对称的性质是解答此题的关键.21.见详解.【分析】利用“HL”定理可证明ABC EDF ≅ ,由全等可得B D ∠=∠易证AB ∥DE .【详解】解: AC ⊥BD ,EF ⊥BD90,90ACB EFD ︒︒∴∠=∠= CD =BFCD CF BF CF∴+=+BC DF∴=在Rt ABC 和Rt EDF 中{BC DF AB DE==Rt ABC Rt EDF∴≅ B D∴∠=∠AB DE∴ 【点睛】本题考查了直角三角形的判定,熟练掌握直角三角形特殊的判定方法“HL”定理是解题的关键.22.见解析【分析】由AE ⊥BC ,DF ⊥BC ,得出∠AEB=∠DFC=90°,再由CE=BF ,AB=DC 得Rt △AEB ≌Rt △DFC ,即可得∠B=∠C ,即可得出结论.【详解】∵AE ⊥BC ,DF ⊥BC ,∴∠AEB=∠DFC=90°.∵BF=CE ,∴BF-EF=CE-EF ,即BE=CF ,在Rt △AEB 和Rt △DFC 中,BE CF AB DC =⎧⎨=⎩,∴Rt △AEB ≌Rt △DFC (HL ),∴∠B=∠C ,∴AB ∥CD .【点睛】本题主要考查了全等三角形的判定及性质,平行线的判定等知识;熟练掌握全等三角形的判定及性质是解决问题的关键.23.见解析【分析】根据题意易得Rt △ACE ≌Rt △CBF ,则有∠EAC =∠BCF ,然后根据等角的余角相等及领补角可求证.【详解】证明:如图,在Rt △ACE 和Rt △CBF 中,AC BC AE CF =⎧⎨=⎩,∴Rt △ACE ≌Rt △CBF (HL ),∴∠EAC =∠BCF ,∵∠EAC+∠ACE =90°,∴∠ACE+∠BCF =90°,∴∠ACB =180°﹣90°=90°.【点睛】本题主要考查直角三角形全等的判定与性质,熟练掌握三角形全等的判定条件及性质是解题的关键.24.(1)见解析;(2)DE=B E+DC.【分析】(1)过A 作AG ⊥BD 于G ,AF ⊥DC 于F ,先证明∠BAG=∠CAF ,然后证明△BAG ≌△CAF 得到AG=AF ,最后由角平分线的判定定理即可得到结论;(2)过A 作∠CAH=∠BAE ,证明△EAD ≌△HAD ,得到AE=AH ,再证明△EAB ≌△HAC 中,即可得出BE 、DE 、DC 三条线段之间的等量关系.【详解】证明:(1)如图1,过A 作AG ⊥BD 于G ,AF ⊥DC 于F ,∵AG ⊥BD ,AF ⊥DC ,∴∠AGD=∠F=90°,∴∠GAF+∠BDC=180°,∵∠BAC+∠BDC=180°,∴∠GAF=∠BAC ,∴∠GAF-∠GAC=∠BAC-∠GAC ,∴∠BAG=∠CAF ,在△BAG 和△CAF 中90AGB F BAG CAF AB AC⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△BAG ≌△CAF (AAS ),∴AG=AF ,∴∠BDA=∠CDA ,(2)BE 、DE 、DC 三条线段之间的等量关系是DE=B E+DC ,理由如下:如图2,过A 作∠CAH=∠BAE 交DC 的延长线于H,∵∠DAE=12∠BAC ,∴∠DAE=∠BAE+∠CAD ,∵∠CAH=∠BAE ,∴∠DAE=∠CAH+∠CAD=∠DAH ,在△EAD 和△HAD 中EAD HADAD AD ADE ADH∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EAD ≌△HAD (ASA ),∴DE=DH ,AE=AH ,在△EAB 和△HAC 中BAE CAH AE AH ⎪∠=∠⎨⎪=⎩,∴△EAB ≌△HAC (SAS ),∴BE=CH ,∴DE=DH=DC+CH=DC+BE ,∴DE=DC+BE.故答案是:DE=DC+BE.【点睛】本题考查了全等三角形的性质和判定,角平分线的判定定理,线段和差的证明,掌握截长法和补短法是解答此题的突破口.25.(1)见解析;(2)FC =CD+CE ,见解析【分析】(1)在CD 上截取CH =CE ,易证△CEH 是等边三角形,得出EH =EC =CH ,证明△DEH ≌△FEC (SAS ),得出DH =CF ,即可得出结论;(2)过D 作DG ∥AB ,交AC 的延长线于点G ,由平行线的性质易证∠GDC =∠DGC =60°,得出△GCD 为等边三角形,则DG =CD =CG ,证明△EGD ≌△FCD (SAS ),得出EG =FC ,即可得出FC =CD+CE .【详解】(1)证明:在CD 上截取CH =CE ,如图1所示:∵△ABC 是等边三角形,∴∠ECH =60°,∴△CEH 是等边三角形,∴EH =EC =CH ,∠CEH =60°,∵△DEF 是等边三角形,∴DE =FE ,∠DEF =60°,∴∠DEH+∠HEF =∠FEC+∠HEF =60°,∴∠DEH =∠FEC ,在△DEH 和△FEC 中,DEH FEC EH EC⎪∠=∠⎨⎪=⎩,∴△DEH ≌△FEC (SAS ),∴DH =CF ,∴CD =CH+DH =CE+CF ,∴CE+CF =CD ;(2)解:线段CE ,CF 与CD 之间的等量关系是FC =CD+CE ;理由如下:∵△ABC 是等边三角形,∴∠A =∠B =60°,过D 作DG ∥AB ,交AC 的延长线于点G ,如图2所示:∵GD ∥AB ,∴∠GDC =∠B =60°,∠DGC =∠A =60°,∴∠GDC =∠DGC =60°,∴△GCD 为等边三角形,∴DG =CD =CG ,∠GDC =60°,∵△EDF 为等边三角形,∴ED =DF ,∠EDF =∠GDC =60°,∴∠EDG =∠FDC ,在△EGD 和△FCD 中,ED DFEDG FDC DG CD=⎧⎪∠=∠⎨⎪=⎩,∴△EGD ≌△FCD (SAS ),∴EG =FC ,∴FC =EG =CG+CE =CD+CE .21【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学期中测试卷一.选择题(每题4分,满分40分)1.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.5 D.﹣52.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,CF平分∠ACB,CF,BE交于点P,AC=4cm,BC=3cm,AB=5cm,则△CPB的面积为()A.2cm2B.1.5cm2C.1cm2D.2.5cm23.如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于()A.12 B.11 C.14 D.164.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5 C.4,4,8 D.3,5,105.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延长线于M,连接CD,给出四个结论:①BD=AE;②∠ADC=45°;③AB﹣BC=2MC;④AC+CE=AB;其中正确的结论有()A.1个B.2个C.3个D.4个6.如图是两个全等三角形,则∠1=()A.62°B.66°C.76°D.72°7.下列四个图标中,是轴对称图形的是()A.B.C.D.8.如图,已知每个小方格的边长为1,A,B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是以AB为腰的等腰三角形,这样的格点C有()A.4个B.5个C.6个D.79.如图,在△ABC中,∠A=60度,点D,E分别在AB,AC上,则∠1+∠2的大小为多少度()A.190 B.320 C.140 D.24010.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°二.填空题(满分24分,每小题4分)11.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是.12.一个等腰三角形的两边长分别是4和9,则周长是.13.在平面直角坐标系中,点O为坐标原点,已知△OAB是等腰直角三角形,且∠OAB=90°,若点A的坐标(3,1),则点B的坐标为.14.如图,等腰三角形ABC的底边BC长为2,面积是4,腰AC的垂直平分线EF分别交AC、AB边于E、F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值是.15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是°.16.如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD≌△ACE.你所添加的条件是.三.解答题(共9小题,满分86分)17.(8分)如图,△ABC的三个顶点坐标为A(﹣4,4),B(﹣3,1),C(﹣1,2).(1)将△ABC向右平移5个单位,得到△A1B1C1,画出图形,并直接写出A1的坐标;(2)作出△A1B1C1关于x轴对称的图形△A2B2C2,并直接写出C2点的坐标.18.(8分)如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:△AEF≌△BCD.19.(8分)问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是.20.(8分)如图,在△ABC中,AB=AC=8,BC=12,用尺规作图作△ABC的BC边上的中线AD,并求线段AD的长(保留作图痕迹,不要求写作法和证明)21.(8分)如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.(1)求BC的长;(2)分别连接OA、OB、OC,若△OBC的周长为13cm,求OA的长.22.(10分)如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.23.(10分)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.24.(12分)如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE ⊥CD于E,交直线AC于F.(1)点D在边AB上时,试探究线段BD,AB和AF的数量关系,并证明你的结论;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请直接写出正确结论.25.(14分)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q 的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.答案:一.选择题1.B.2.B.3.C.4.B.5.D.6.C.7.A.8. C.9. D.10. C.二.填空题11.92°. 12.22. 13.(2,4)或(4,﹣2). 145.. 15.60. 16.AB=AC.三.解答题17.解:(1)如图,△A1B1C1为所作;A1的坐标为(1,4);(2)如图,△A1B1C1为所作,C2点的坐标为(4,﹣2).18.解:∵AE∥BC,∴∠A=∠B,∵AD=BF,∴AF=BD,在△AEF和△BCD中,,∴△AEF≌△BCD(SAS).19.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.20.解:如图,AD为所作;∵AB=AC=8,AD为中线,∴AD⊥BC,BD=CD=BC=6,在Rt△ABD中,AD==2.21.解:(1)∵DM是线段AB的垂直平分线,∴DA=DB,同理,EA=EC,∵△ADE的周长5,∴AD+DE+EA=5,∴BC=DB+DE+EC=AD+DE+EA=5(cm);(2)∵△OBC的周长为13,∴OB+OC+BC=13,∵BC=5,∴OB+OC=8,∵OM垂直平分AB,∴OA=OB,同理,OA=OC,∴OA=OB=OC=4(cm).22.解:(1)∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°,在Rt△FDC中,∴∠C=90°﹣25°=65°,∵AB=BC,∴∠C=∠A=65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.(2)连接BF∵AB=BC,且点F是AC的中点,∴BF⊥AC,∠ABF=∠CBF=∠ABC,∴∠CFD+∠BFD=90°,∠CBF+∠BFD=90°,∴∠CFD=∠CBF,∴∠CFD=∠ABC.23.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.24.解:(1)AB=FA+BD.证明:如图1,∵BE⊥CD即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.在△FAB和△DAC中,.∴△FAB≌△DAC(ASA).∴FA=DA.∴AB=AD+BD=FA+BD.(2)(1)中的结论不成立.点D在AB的延长线上时,AB=AF﹣BD;点D在AB的反向延长线上时,AB=BD﹣AF.理由如下:①当点D在AB的延长线上时,如图2.同理可得:FA=DA.则AB=AD﹣BD=AF﹣BD.②点D在AB的反向延长线上时,如图3.同理可得:FA=DA.则AB=BD﹣AD=BD﹣AF.25.解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∵∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.。

相关文档
最新文档