2017-2018学年高中数学人教A版必修三课时作业:第3章 概率 3.1.2 Word版含答案

合集下载

必修3第三章-概率-知识点总结和强化练习:

必修3第三章-概率-知识点总结和强化练习:

高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。

本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。

二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。

2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。

3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。

三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。

作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。

教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。

四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。

五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。

3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。

你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。

新版高中数学人教A版必修3习题:第三章概率 3.1.2(1)

新版高中数学人教A版必修3习题:第三章概率 3.1.2(1)

3.1.2概率的意义课时过关·能力提升一、基础巩固1.概率是指()A.事件发生的可能性大小B.事件发生的频率C.事件发生的次数D.无任何意义2.若某篮球运动员的投篮命中率为98%,则估计该运动员投篮1 000次命中的次数为()A.20B.98C.980D.9981000次命中的次数约为1000×98%=980.3.天气预报中预报某地明天降雨的概率为90%,则()A.降雨的可能性是90%B.90%太大,一定降雨C.该地有90%的区域降雨D.降雨概率为90%没有什么意义90%说明明天降雨的可能性是90%.4.已知某学校有教职工400名,从中选举40名教职工组成教职工代表大会,每名教职工当选的概率是110,则下列说法正确的是()A.10名教职工中,必有1人当选B.每名教职工当选的可能性是1 10C.数学教研组共有50人,该组当选教工代表的人数一定是5D.以上说法都不正确5.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品.若用C表示抽到次品这一事件,则下列说法正确的是()A.事件C发生的概率为1 10B.事件C发生的频率为1 10C.事件C发生的概率接近1 10D.每抽10台电视机,必有1台次品6.某医院治疗一种疾病的治愈率为15,若前4位病人都未治愈,则第5位病人的治愈率为()A.1B.4 5C.15D.015,表明每位病人被治愈的可能性均为15,并不是5人中必有1人治愈.故选C.7.在乒乓球、足球等比赛中,裁判员经常用掷硬币或抽签法决定谁先发球,这种方法.(填“公平”或“不公平”),这两种方法都是公平的.因为采用掷硬币得正面、反面的概率相等;采用抽签法,抽到某一签的概率相等.8.某市运动会前夕,质检部门对这次运动会所用的某种产品进行抽检,得知其合格率为99%.若该运动会所需该产品共20 000件,则其中的不合格产品约有件.1-99%=1%,则不合格产品约有20000×1%=200(件).9.某射击教练评价一名运动员时说:“你射中的概率是90%.”则下面两个解释中能代表教练的观点的为.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%90%说明中靶的可能性是90%,所以①不正确,②正确.10.为了估计水库中鱼的尾数,使用以下的方法:先从水库中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出500尾,查看其中有记号的鱼,有40尾.试根据上述数据,估计水库中鱼的尾数.n(n∈N*),每尾鱼被捕到的可能性相等,给2000尾鱼做上记号后,从水库中任捕一尾鱼,带记号的概率为2000n.又从水库中捕500尾鱼,有40尾带记号,于是带记号的频率为40500.则有2000n≈40500,解得n≈25000.所以估计水库中有25000尾鱼.二、能力提升1.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是()A.100个手术有99个手术成功,有1个手术失败B.这个手术一定成功C.99%的医生能做这个手术,另外1%的医生不能做这个手术D.这个手术成功的可能性是99%99%,说明手术成功的可能性是99%.2.根据山东省教育研究机构的统计资料,今在校学生近视率约为37.4%.某眼镜商要到一中学给学生配眼镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为()A.374副B.224.4副C.不少于225副D.不多于225副,该校近视生人数约为37.4%×600=224.4,结合实际情况,眼镜商应带眼镜数不少于225副.3.某套数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是14.某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话() A.正确 B.错误C.不一定D.无法解释,答对的概率是14说明了对的可能性大小是14.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题.也可能都选错,或有1,2,4,…,甚至12个题都选择正确.4.玲玲和倩倩下象棋,为了确定谁先走第一步,玲玲对倩倩说:“拿一个飞镖射向如图所示的靶中,若射中区域所标的数字大于3,则我先走第一步,否则你先走第一步”.你认为这个游戏规则公平吗?.(填“公平”或“不公平”),所标的数字大于3的区域有5个,而小于或等于3的区域只有3个,所以玲玲先走的概率是58,倩倩先走的概率是38.所以不公平.★5.某地区牛患某种病的概率为0.25,且每头牛患病与否是互不影响的,今研制一种新的预防药,任选12头牛做试验,结果这12头牛服用这种药后均未患病,则此药.(填“有效”或“无效”)头牛都在服药后未患病,由极大似然法,可得此药有效.6.试解释下列情况的概率的意义:(1)某商场为促进销售,实行有奖销售活动,凡购买其商品的顾客中奖率是0.20;(2)一生产厂家称:我们厂生产的产品合格率是0.98.解::(1)“中奖率是0.20”是指购买其商品的顾客中奖的可能性是20%.(2)“产品的合格率是0.98”是指该厂生产的产品合格的可能性是98%.★7.某种彩票的抽奖是从写在36个球上的36个号码中随机摇出7个.有人统计了过去中特等奖的号码,声称某一号码在历次特等奖中出现的次数最多,它是一个幸运号码,人们应该买这一号码;也有人说,若一个号码在历次特等奖中出现的次数最少,由于每个号码出现的机会相等,则应该买这一号码.你认为他们的说法对吗?36个号码的36个球大小、质量是一致的,严格地说,为了保证公平,每次用的36个球, ,除非能保证用过一次后,球没有磨损、变形.因此,当把这36个球看成每次抽奖中只用了一次时,不难看出,以前抽奖的结果对今后抽奖的结果没有任何影响,他们的说法都是错误的.。

人教A版高中数学必修三试卷3.1.3概率的基本性质

人教A版高中数学必修三试卷3.1.3概率的基本性质

高中数学学习材料金戈铁骑整理制作3.1.3概率的基本性质A 组一、选择题1.下列说法正确的是( )A .互斥事件一定是对立事件,对立事件不一定是互斥事件B .互斥事件不一定是对立事件,对立事件一定是互斥事件C .事件B A 、中至少有一个发生的概率一定比B A 、中恰有一个发生的概率大D .事件B A 、同时发生的概率一定比B A 、中恰有一个发生的概率小2.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有一个黒球与都是红球B.至少有一个黒球与都是黒球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.084.把红,黄,蓝,白4张纸牌随机地分发给甲,乙,丙,丁四个人,每人一张,则事件"甲分得红牌"与事件"丁分得红牌"是( )A .不可能事件B .互斥但不对立事件C .对立事件D .以上答案都不对5.从集合{}543,21,,,中随机取出一个数,设事件A 为“取出的数是偶数”, 事件B 为“取出的数是奇数”,则事件A 与B ( )A .是互斥且是对立事件B .是互斥且不对立事件C .不是互斥事件D .不是对立事件6.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥7.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( )A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶8.掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是()A. “至少有一个奇数”与“都是奇数”B. “至少有一个奇数”与“至少有一个偶数”C.“至少有一个奇数”与“都是偶数”D.“恰好有一个奇数”与“恰好有两个奇数”9.出下列命题,其中正确命题的个数有()①有一大批产品,已知次品率为010,从中任取100件,必有10件次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③某事件发生的概率是随着试验次数的变化而变化的;④若()()()1P A B P A P B=+=,则,A B是对立事件。

高中数学人教A版必修3课件:第三章3.1 3.1.1

高中数学人教A版必修3课件:第三章3.1 3.1.1

解析: 949÷1 006≈0.943 34,1 430÷1 500≈0.953 33,1 917 ÷2 015≈0.951 36, 2 890÷3 050≈0.947 54, 4 940÷5 200=0.95. 都稳定于 0.95,故所求概率约为 0.95.
பைடு நூலகம்
探究点一
事件类型的判断
指出下列事件是必然事件、 不可能事件, 还是随机事件. (1)2012 年奥运会在英国伦敦举行; (2)甲同学今年已经上高一,三年后他被北大自主招生录取; (3)A 地区在“十三五”规划期间会有 6 条高速公路通车; (4)在标准大气压下且温度低于 0 ℃时,冰融化. [解] (1)是必然事件,因事件已经发生.
能再连任下届总统,是不可能事件,④是必然事件.
3. 某出版公司对发行的三百多种教辅用书实行跟踪式问卷调查, 连续五年的调查结果如表所示: 发送问卷数 返回问卷数 1 006 949 1 500 1 430 2 015 1 917 3 050 2 890 5 200 4 940
则本公司问卷返回的概率约为( A ) A.0.95 C.0.93 B.0.94 D.0.92
(2)(3)是随机事件,其事件的结果在各自的条件下不确定. (4)是不可能事件,在本条件下,事件不会发生.
对事件分类的两个关键点 (1)条件:在条件 S 下事件发生与否是与条件相对而言的,没有 条件,就无法判断事件是否发生; (2)结果发生与否:有时结果较复杂,要准确理解结果包含的各 种情况.
1.(1)下面的事件: ①在标准大气压下, 水加热到 80℃时会沸腾; ②a, b∈R, 则 ab=ba; ③一枚硬币连掷两次, 两次都出现正面向上.其中是不可能事件的为( B A.② C.①② B.① D.③ )

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。

高中数学第三章概率3.1.3概率的基本性质课件新人教A版必修3

高中数学第三章概率3.1.3概率的基本性质课件新人教A版必修3
球,故D=A∪B.
(2)对于事件C,可能的结果为1个红球2个白球,2个红球1个白球,3
个均为红球,故C∩A=A.
探究一
探究二
探究三
思维辨析
当堂检测
互动探究 在本例中A与D是什么关系?事件A与B的交事件是什么?
解:由本例的解答,可知A⊆D.
因为A,B是互斥事件,所以A∩B=⌀.
故事件A与B的交事件是不可能事件.
集合的观点看,事件C1是事件D3,E,H的子集,集合C1与集合D1相等.
3.请指出如果事件C2发生或C4发生或C6发生,就意味着哪个事件
发生?
提示如果事件C2发生或C4发生或C6发生,就意味着事件G发生.
4.如果事件D2与事件H同时发生,就意味着哪个事件发生?
提示如果事件D2与事件H同时发生,就意味着事件C5发生.
然是A1,A2,…,An彼此互斥.在将事件拆分成若干个互斥事件时,注意
不能重复和遗漏.
2.当所要拆分的事件非常烦琐,而其对立事件较为简单时,可先求
其对立事件的概率,再运用公式求解.但是一定要找准其对立事件,
避免错误.
探究一
探究二
探究三
思维辨析
当堂检测
变式训练2据统计,某储蓄所一个窗口排队等候的人数及相应概
点},C5={出现5点},C6={出现6点},D1={出现的点数不大于
1},D2={出现的点数大于4},D3={出现的点数小于6},E={出现的点
数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出
现的点数为奇数},等等.
1.上述事件中哪些是必然事件?哪些是不可能事件?哪些是随机
5.事件D3与事件F能同时发生吗?
提示事件D3与事件F不能同时发生.

高中数学(人教版A版必修三)配套课件:3.1.1随机事件的概率

高中数学(人教版A版必修三)配套课件:3.1.1随机事件的概率

答案
返回
题型探究
重点难点 个个击破
类型一 必然事件、不可能事件和随机事件的判定
例1 在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机 事件?
(1)如果a,b都是实数,那么a+b=b+a; (2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签; (3)铁球浮在水中; (4)某电话总机在60秒内接到至少15次传呼; (5)在标准大气压下,水的温度达到50 ℃时沸腾; (6)同性电荷,相互排斥.
人教版七年级上册Unit4 Where‘s my backpack?
超级记忆法-记忆方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
答案
不可能事件:在条件S下,一定不会发生的
事件,叫做相对于条件S的不可能事件.
事件确定事件必叫 然事 做件 相: 对在 于条 条件 件SS下 的, 必然一事定件会.发生 的事件,
随机事件:在条件S下, 可能发生也可能不发生
的事件,叫做相对于条件S的随机事件.
答案
知识点二 频数与频率 思考 抛掷一枚硬币10次,正面向上出现了3次,则在这10次试验中, 正面向上的频数与频率分别是多少? 答案 频数为3,频率为130. 在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中 事件A出现的次数nA 为事件A出现的频数,称事件A出现的比例fn(A)=nnA为 事件A出现的频率.
第三章 § 3.1 随机事件的概率
3.1.1 随机事件的概率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.0.53 B.0.5
C.0.47 D.0.37
答案:A
解析:取到号码为奇数的次数为10+8+6+18+11=53.∴f= =0.53.
5.根据山东省教育研究机构的统计资料,今在校中学生近视率约为37.4%,某配镜商要到一中学给学生配镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为()
二、填空题
7.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是________.
答案:
解析:第一次摸到黄色球的概率为 ,第二次再摸到黄色球的概率为 ,所以两次都摸到黄球的概率为 × = .
黄色皱粒:XXYy个数为1个,Xxyy个数为2个,即黄色皱粒个数为3个.
绿色圆粒:xxYY个数为1个,xxYy个数为2个,即绿色圆粒个数为3个,绿色皱粒:xxyy个数为1个.
所以黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒的比例为9:3:3:1.
能力提升
12.如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量最多的是________.
解:记纯黄色圆粒为XXYY,纯绿色皱粒为xxyy,其中X,Y为显性,x,y为隐性,则杂交试验的子一代结果为
XY
Xy
xY
xy
XY
XXYY
XXYy
XxYY
XxYy
Xy
XXYy
XXyy
XxYy
Xxyy
xY
XxYY
XxYy
xxYY
xxYy
xy
XxYy
Xxyy
xxYy
xxyy
则黄色圆粒:XXYY个数为1个,XxYY个数为2个,XXYy个数为2个,XxYy个数为4个,即黄色圆粒个数为9个.
A.374副B.224.4副
C.不少于225副D.不多于225副
答案:C
解析:根据概率,该校近视生人数应为37.4%×600=224.4,结合实际情况,眼镜商应带眼镜数不少于225副.
6.在掷骰子游戏中共抛掷6次,则点数4()
A.一定会出现B.不一定会出现
C.一定出现一次D.以上都不对
答案:B
解析:掷一次骰子,点数4出现的概率为 ,但掷6次,并不意味着必有一次点数4出现,有可能多次,有可能一次也没有.
8.某人抛掷一枚硬币100次,结果正面朝上有53次.设正面朝上为事件A,则事件A出现的频数为________,事件A出现的频率为________.
答案:530.53
9.掷一颗骰子,骰子落地时向上的数是偶数但不是3的倍数的概率是________.
答案:
解析:由题意,骰子落地时向上的点数为2,4,占全部结果的 = .
由①②两式,得
≈ .
解得n≈25 000.
所以,估计水库有鱼25 000尾.
三、解答题
10.小王和小张在玩游戏,游戏规则如下:投掷两个骰子,把两个骰子的点数相加,
如果掷出“和为7”,则小王赢;如果掷出“和为9”,则小张赢,你认为这个游戏公平吗?
为什么?如果不公平,请用列表方法说明谁赢的概率大.
解:我认为这个游戏不公平.
两个骰子的点数和参见下表:
1点
2点
3点
4点
5点
6点
1点
2
3.1.2概率的意义
课时目标
1.能够正确地理解概率的意义,会用概率的观点解释某些自然或社会现象.
2.能够正确认识概率思想在决策中的指导意义.
识记强化
概率的正确理解
随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.
课时作业
一、选择题
1.某人将一枚硬币连掷了10次,正面向上出现了6次,若用A表示正面向上这一事件,则A的()
A.概率是 B.频率是
C.频率为6 D.概率接近0.6
答案:B
解析:区分频率与概率,本题做了10次掷硬币试验,正向向上的频数为6, 是正面向上的频率,其稳定值即概率为 .
2.若某个班级内有40名学生,抽10名学生去参加某项活动,每个学生被抽到的概率为 ,其中解释正确的是()
A.4个人中,必有1个被抽到
B.每个人被抽到的可能性为
C.由于抽到与不被抽到有两种情况,不被抽到的概率为
D.以上说法都不正确
答案:B
3.一个三位数字的密码锁,每位数字都可在0到9这十个数字中任选,某人忘记了密码最后一个号码,那么此人开锁时,在对好前两位数字后,随意拨动最后一个数字恰好能开锁的概率为()
3
4
5
6
72点Biblioteka 3456
7
8
3点
4
5
6
7
8
9
4点
5
6
7
8
9
10
5点
6
7
8
9
10
11
6点
7
8
9
10
11
12
由表格可以看出:两个骰子的点数相加之和为7的情形有6种,而两个骰子的点数相加之和为9的情形只有4种,所以小王赢的概率大.
11.在孟德尔豌豆试验中,若用纯黄色圆粒和纯绿色皱粒作为父本进行杂交,试求子一代结果中性状分别为黄色圆粒、黄色皱粒、绿色圆粒和绿色皱粒的比例约为多少?
解:设水库中鱼的尾数为n,n是未知的,现在要估计n的值,将n的估计值记作n.假定每尾鱼被捕的可能性是相等的,从库中任捕一尾,设事件A={带有记号的鱼},由概率的统计定义可知P(A)≈ .①
第二次从水库中捕出500尾,观察每尾鱼上是否有记号,共需观察500次,其中带有记号的鱼有40尾,即事件A发生的频数m=40,P(A)≈ .②
答案:白球
解析:取了10次有9个白球,则取出白球的频率是 ,估计其概率约是 ,那么取出黑球的概率约是 ,那么取出白球的概率大于取出黑球的概率,所以估计袋中数量最多的是白球.
13.为了估计水库中鱼的尾数,可以使用以下方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼做上记号(不影响其存活),然后放回水库.经过适当时间,再从水库中捕出一定数量的鱼,如500尾,查看其中做记号的鱼的数量,设有40尾.试根据上述数据,估计水库中鱼的尾数.
A. B.
C. D.1
答案:C
解析:第三位数字的选择共有10种可能,随意拨动一个数字正好正确的概率为 ,故选C.
4.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:
卡片号码
1
2
3
4
5
6
7
8
9
10
取到的次数
10
11
8
8
6
10
18
9
11
9
则取到号码为奇数的频率是()
相关文档
最新文档