(专题精选)初中数学函数基础知识真题汇编附答案

合集下载

(专题精选)初中数学函数基础知识真题汇编及答案

(专题精选)初中数学函数基础知识真题汇编及答案

(专题精选)初中数学函数基础知识真题汇编及答案一、选择题1.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以B 正确.故选:B .【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.2.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】试题解析:设BP=x,CQ=y,则AP2=42+x2,PQ2=(6-x)2+y2,AQ2=(4-y)2+62;∵△APQ为直角三角形,∴AP2+PQ2=AQ2,即42+x2+(6-x)2+y2=(4-y)2+62,化简得:y=−14x2+32x整理得:y=−14(x−3)2+94根据函数关系式可看出D中的函数图象与之对应.故选D.【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.以相同速度行驶相同路程,甲车消耗汽油最多B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A错误.以10km/h的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B错误.以低于80km/h的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C错误.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确.故选D.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .【答案】D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D .5.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.7.如图,已知矩形OABC ,A (4,0),C (0,4),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线匀速运动,设动点P 的运动路程为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.8.函数1x -中,自变量x 的取值范围是( ) A .x≠1B .x >0C .x≥1D .x >1【答案】D【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-1≥0且x-1≠0,解得x >1.故选D .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图中,符合上述情况的是( )A .B .C .D .【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A 、B 、D 的路程始终都在变化,故错误;C 、修车是的路程没变化,故C 正确;故选:C .【点睛】考核知识点:函数的图象.理解题意看懂图是关键.10.已知:在ABC ∆中, 10,BC BC =边上的高5h =,点E 在边AB 上,过点E 作//EF BC 交AC 边于点F .点D 为BC 上一点,连接DE DF 、.设点E 到BC 的距离为x ,则DEF ∆的面积S 关于x 的函数图象大致为( )A.B.C.D.【答案】D【解析】【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【详解】解:∵EF∥BC,∴△AEF∽△ABC,∴55EF x BC-=,∴EF=55x-•10=10-2x,∴S=12(10-2x)•x=-x2+5x=-(x-52)2+254,∴S与x的关系式为S=-(x-52)2+254(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点睛】此题考查动点问题函数图象,相似三角形的性质,求出S与x的函数关系式是解题的关键.11.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C )与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是().A.骆驼在t时刻的体温与0时体温的绝对差(即差的绝对值)B.骆驼从0时到t时刻之间的最高体温与当日最低体温的差C.骆驼在t时刻的体温与当日平均体温的绝对差D.骆驼从0时到t时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y有可能表示的是骆驼从0时到t时刻之间的最高体温与当日最低体温的差.故选:B.【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.12.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.13.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.14.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.15.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.16.如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是A.B.C.D.【答案】C【解析】【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P在AB上运动时△ACP的面积为S,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【详解】设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=12hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=12h(AB+BC-vt)=-12hvt+12h(AB+BC),是关于t的一次函数关系式;故选C.【点睛】此题考查了动点问题的函数图象,根据题意求出两个阶段S与t的关系式,难度一般.17.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。

初三数学函数基础知识试题答案及解析

初三数学函数基础知识试题答案及解析

初三数学函数基础知识试题答案及解析1.函数y=的定义域是【答案】x≥-1.【解析】由题意得,x+1≥0,解得x≥-1.【考点】函数自变量的取值范围.2.函数中自变量x的取值范围是【答案】x>2.【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.试题解析:由题意得,x-2>0,解得x>2.【考点】函数自变量的取值范围.3.如图,在平面直角坐标系中,以点A(2,3)为顶点任作一直角∠PAQ,使其两边分别与x轴、y轴的正半轴交于点P、Q,连接PQ,过点A作AH⊥PQ于点H,设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】D.【解析】应用特殊元素法和排他法求解:如图1,当点P与点O重合时,x=0,y=2.故可排除选项C;如图2,当点Q与点O重合时, y=3.故可排除选项A;如图3,当x=2时,∵AH⊥PQ,∴,即,故可排除选项B.故选D.【考点】1.动态问题的函数图象分析;2.勾股定理;3.相似三角形的判定和性质;户4.特殊元素法和排他法的应用.4.下面在平面直角坐标系中所给的四个图像中,是函数图象的是( ).【答案】A.【解析】由函数的定义可得,只有A选项图象,对于x的每一个确定的值,y轴有唯一确定的值与它对应,是函数图象,B、C、D选项都有对于x的一个值,y有两个确定的值与它对应的情况,不是函数图象.故选A.【考点】1.函数的图象,2.函数的概念.5.函数中,自变量的取值范围是.【答案】x≤1.【解析】根据二次根式被开方数是非负数,列出不等式,求解即可.试题解析:根据题意知:1-x≥0,解得:x≤1.考点:1.函数自变量取值范围;2.二次根式有意义的条件.6.下列函数中,自变量x的取值范围是x≥2的是()A.B.C.D.【答案】B.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,得函数,,,自变量x的取值范围分别为x≤2, x≥2, -2≤x≤2, x>2.故选B.【考点】1.函数自变量的取值范围;2.二次根式和分式有意义的条件.7.函数中,自变量x的取值范围是.【答案】【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二分式分母不为0的条件,要使在实数范围内有意义,必须。

初中数学函数基础知识真题汇编及答案解析

初中数学函数基础知识真题汇编及答案解析

初中数学函数基础知识真题汇编及答案解析一、选择题1.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.2.如图1,在矩形ABCD 中,动点P 从点A 出发,以相同的速度,沿A→B→C→D→A 方向运动到点A 处停止.设点P 运动的路程为x ,△PAB 的面积为y ,如果y 与x 的函数图象如图2所示,则矩形ABCD 的面积为( )A.24 B.40 C.56 D.60【答案】A【解析】【分析】由点P的运动路径可得△PAB面积的变化,根据图2得出AB、BC的长,进而求出矩形ABCD的面积即可得答案.【详解】∵点P在AB边运动时,△PAB的面积为0,在BC边运动时,△PAB的面积逐渐增大,∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD的面积为AB·BC=24,故选:A.【点睛】本题考查分段函数的图象,根据△PAB面积的变化,正确从图象中得出所需信息是解题关键.3.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h 随时间t变化的图象大致是()A.B.C.D.【答案】B【解析】【分析】从A:到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A:随着时间的增多,高度将不再变化,由此即可求出答案.【详解】解:因为蚂蚁以均匀的速度沿台阶A1→A2→A3→A4→A5爬行,从A1→A2的过程中,高度随时间匀速上升,从A2→A3的过程,高度不变,从A3一A4的过程,高度随时间匀速上升,从A4.→A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B.故选:B.【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解.4.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20 kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度【答案】C【解析】【分析】首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.【详解】解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;故答案为:C.【点睛】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.5.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()A.3 B3C.3D.3【答案】C【解析】【分析】将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF3;直线l向右平移直到点F过点B时,y3;当直线l过点C时,x=a+2,y=0∴菱形的边长为a+2﹣a=23)=4∴当点E与点D重合时,由勾股定理得a2+2∴a=13∴菱形的面积为3故选:C.【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,6.函数中,自变量x的取值范围是()1xA.x≠1B.x>0 C.x≥1D.x>1【答案】D【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-1≥0且x-1≠0,解得x>1.故选D.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克0 1 2 3 4 5 …弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【答案】B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;B、弹簧不挂重物时的长度为10cm,错误,符合题意;C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.故选B.点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.8.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)【答案】C【解析】【分析】A.仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A、B两地之间的距离;B.根据路程,时间与速度的关系解答即可;C.由A的解答过程可得结论;D.根据题意列式计算即可得出点M的纵坐标..【详解】∵根据题意,观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,∴甲车的速度为90千米/时;∴A、B两地之间的距离为:90×5=450千米.故选项A不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;∵甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.【点睛】本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象上点的坐标的实际意义,求出甲,乙车的速度和A,B两地之间的距离是解题的关键.9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.10.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()A.2B.3C.5D.6【答案】C【解析】【分析】根据三角形中位线定理,得到S△PEF=14S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.【详解】解:∵E、F分别为AP、BP的中点,∴EF∥AB,EF=12 AB,∴S△PEF=14S△ABP,根据图像可以看出x的最大值为4,∴CD=4,∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,∴AD=24ABDS=284⨯=4,当点P在C点时,S△PEF=3,∴S△ABP=3×4=12,即S△ABC=12,∴BC=24ABCS=2124⨯=6,过点A作AG⊥BC于点G,∴∠AGC=90°,∵AD∥BC,∴∠ADC+∠BCD=180°,∵∠BCD=90°,∴∠ADC=180°-90°=90°,∴四边形AGCD是矩形,∴CG=AD=4,AG=CD=4,∴BG=BC-CG=6-4=2,∴AB=2242+=25.故选C.【点睛】本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.11.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.12.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.13.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键. 14.下列图形中的曲线不表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C【点睛】考点:函数的定义15.某市在创建文明城市工作中,围绕重点,精准发力,进一步净化了城市环境,美化了市容市貌,如图1,园林队正在迎春公园进行绿化,图2为绿化面积S(单位:2m)与工作时间t(单位:h)之间的关系图象,工作期间有1小时休息,由图可知,休息后每小时绿化面积为()A .250mB .280mC .2100mD .240m【答案】A【解析】【分析】 由图象可知休息1小时后,园林队工作了2个小时,绿化了216060100m -=,即可求出答案.【详解】解:由图象可知,园林队休息后继续工作了:422h -=,绿化面积为216060100m -=,∴休息后每小时绿化面积为:2100250m ÷=故选:A .【点睛】本题考查的知识点是函数的图象,从图象中找出与所求内容相关的信息是解此题的关键.16.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s 与t 的大致图象应为( )A .AB .BC .CD .D【答案】D【解析】 根据题意,设小正方形运动的速度为v ,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt ,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,D 符合,故选D.【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.17.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.18.如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是()A.B.C.D.【答案】C【解析】【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P在AB上运动时△ACP的面积为S,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【详解】设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=12hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=12h(AB+BC-vt)=-12hvt+12h(AB+BC),是关于t的一次函数关系式;故选C.【点睛】此题考查了动点问题的函数图象,根据题意求出两个阶段S与t的关系式,难度一般.19.甲、乙两人在一条长为600m的笔直道路上均匀地跑步,速度分别为4/m s和6/m s,起跑前乙在起点,甲在乙前面50m处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是()A.B. C.D.【答案】C【解析】【分析】甲在乙前面50m处,若两人同时起跑,在经过25秒,乙追上甲,则相距是0千米,相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是100秒,则相遇以后两人之间的最大距离是150米,据此即可作出判断.【详解】甲在乙前面50m处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A、 B错误;相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D错误;相遇以后两人之间的最大距离是:2×(100−25)=150米.故选C.【点睛】本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.20.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量【答案】B【解析】【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.。

中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。

(专题精选)初中数学二次函数全集汇编及答案

(专题精选)初中数学二次函数全集汇编及答案

(专题精选)初中数学二次函数全集汇编及答案一、选择题1.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( )①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ;②c =a+3;③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C【解析】 试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确;由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故选C .考点:二次函数的图像与性质2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.3.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点;②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】 对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a<-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误 0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.4.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A.﹣1<x<1 B.﹣3<x<﹣1 C.x<1 D.﹣3<x<1【答案】D【解析】【分析】根据已知条件求出抛物线与x轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y=ax2+bx+c与x轴交于点A(1,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.所以答案为:D.【点睛】此题考查抛物线的性质,利用对称轴及图象与x轴的一个交点即可求出抛物线与x轴的另一个交点坐标.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个互异实根.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据二次函数图象和性质,开口向下,可得a<0,对称轴x=1,利用顶点坐标,图象与x轴的交点情况,对照选项逐一分析即可.【详解】①∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,∴当x =﹣2时,y <0,即4a ﹣2b +c <0,所以①不符合题意;②∵抛物线的对称轴为直线x =﹣2b a=1,即b =﹣2a , ∴3a +b =3a ﹣2a =a <0,所以②不符合题意;③∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac ﹣4an =4a (c ﹣n ),所以③符合题意;④∵抛物线与直线y =n 有一个公共点,∴抛物线与直线y =n ﹣1有2个公共点,∴一元二次方程ax 2+bx +c =n ﹣1有两个不相等的实数根,所以④符合题意.故选:B .【点睛】 本题考查了二次函数的图象和性质的应用,二次函数开口方向,对称轴,交点位置,二次函数与一次函数图象结合判定方程根的个数,掌握二次函数的图象和性质是解题的关键.6.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( ) A .3122m -+ B .0 C .1 D .2 【答案】D【解析】【分析】 根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】 解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ),∵y =a (x ﹣m ﹣1)2+c (a≠0)∴抛物线的对称轴为直线x =m+1, ∴232x x +=m+1, ∴x 2+x 3=2m+2, ∵A (x 1,m )在直线y =﹣12x 上, ∴m =﹣12x 1, ∴x 1=﹣2m , ∴x 1+x 2+x 3=﹣2m+2m+2=2,故选:D .【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.7.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位.故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.8.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=14m m -,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.9.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.10.如图,坐标平面上,二次函数y =﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A.1 B.12C.43D.45【答案】D【解析】【分析】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【详解】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=12AB•OC=12AB•k,△ABD的面积=12AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=14(4﹣k),解得:k=45.故选:D.【点睛】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线1122y x=+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<98C.1≤a<98或a≤﹣2 D.﹣2≤a<98【答案】C【解析】【分析】分a>0,a<0两种情况讨论,根据题意列出不等式组,可求a的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选:C.【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.13.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣3【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.14.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .【答案】B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交, 故答案为B.本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.15.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D【解析】【分析】 先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D .【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直16.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1 【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.17.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误【答案】A【解析】【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.【详解】解:①∵顶点坐标为1,2m ⎛⎫ ⎪⎝⎭,12n < ∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫- ⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q 3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫ ⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++, ∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-< ⎪⎝⎭ ∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.18.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2【答案】C【解析】【分析】首先求出抛物线y=x2+2x的对称轴,对称轴为直线x=-1;然后根据A、B、C的横坐标与对称轴的位置,接着利用抛物线的增减性质即可求解;由B离对称轴最近,A次之,C最远,则对应y的值大小可确定.【详解】∵抛物线y=x2+2x,∴x=-1,而A(-5,y1),B(2.5,y2),C(12,y3),∴B离对称轴最近,A次之,C最远,∴y2<y1<y3.故选:C.【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征等知识点,能熟记二次函数的性质是解此题的关键.19.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是()A.B.C.D.【答案】C【解析】【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【详解】解:根据图象可知a >0,c <0,b >0, ∴, 故③错误; ∵.∴B (-c ,0)∴抛物线y=ax 2+bx+c 与x 轴交于A (-2,0)和B (-c ,0)两点, ∴, ac 2-bc+c=0 ∴,ac-b+1=0, ∴,故②正确; ∴,b=ac+1 ∴,∴2b-c=2,故①正确;故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异);常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.20.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P的横坐标相同,把x=1代入得:解得:y=12 -,平移的最短距离为152=22⎛⎫--⎪⎝⎭,即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.。

人教版初中数学函数基础知识真题汇编及答案

人教版初中数学函数基础知识真题汇编及答案

人教版初中数学函数基础知识真题汇编及答案一、选择题1.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.2.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.以相同速度行驶相同路程,甲车消耗汽油最多B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A 错误. 以10km/h 的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B 错误. 以低于80km/h 的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C 错误. 以高于80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确. 故选D .【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,边长为2的等边ABC ∆和边长为1的等边A B C '''∆,它们的边BC ,B C ''位于同一条直线l 上,开始时,点C '与点B 重合,ABC ∆固定不动,然后把A B C '''∆自左向右沿直线l 平移,移出ABC ∆外(点B '与点C 重合)停止,设A B C '''∆平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )A .B .C .D .【答案】C【解析】【分析】分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y 与x 的函数关系式,于是可求得问题的答案.【详解】解:如图1所示:当0≤x≤1时,过点D 作DE ⊥BC ′.∵△ABC 和△A ′B ′C ′均为等边三角形,△DBC ′为等边三角形.∴DE=32BC′=32x ,∴y=12BC ′•DE=34x 2. 当x=1时,y=34,且抛物线的开口向上. 如图2所示:1<x≤2时,过点A′作A′E ⊥B ′C ′,垂足为E .∵y=12B′C′•A′E=12×1×3=3. ∴函数图象是一条平行与x 轴的线段.如图3所示:2<x≤3时,过点D 作DE ⊥B ′C ,垂足为E .y=123x-3)2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:C .【点睛】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.5.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数6y x =-的自变量x 的取值范围是6x ≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算|9-2|的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;⑦122723333-=-=-是无理数;故正确.故选:B .【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是( )A .B .C .D .【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A 、距离越来越大,选项错误;B 、距离越来越小,但前后变化快慢一样,选项错误;C 、距离越来越大,选项错误;D 、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D .【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.8.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.9.如图,矩形ABCD 中,P 为CD 中点,点Q 为AB 上的动点(不与,A B 重合).过Q 作QM PA ⊥于M ,QN PB ⊥于N .设AQ 的长度为x ,QM 与QN 的长度和为y .则能表示y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据三角形面积得出S △PAB =12PE•AB ;S △PAB =S △PQB +S △PAQ =12QN•PB+12PA•MQ ,进而得出y=PE ABPB⋅,即可得出答案.【详解】解:连接PQ,作PE⊥AB垂足为E,∵过Q作QM⊥PA于M,QN⊥PB于N,∴S△PAB=12 PE•AB;S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ,∵矩形ABCD中,P为CD中点,∴PA=PB,∵QM与QN的长度和为y,∴S△PAB=S△PQB+S△PAQ=12QN•PB+12PA•MQ=12PB(QM+QN)=12PB•y,∴S△PAB=12PE•AB=12PB•y,∴y=PE AB PB⋅,∵PE=AD,∴PE,AB,PB都为定值,∴y的值为定值,符合要求的图形为D,故选:D.【点睛】此题考查了矩形的性质,三角形的面积,动点函数的图象,根据已知得出y=PE ABPB⋅,再利用PE=AD,PB,AB,PB都为定值是解题关键.10.在平面直角坐标系xoy中,四边形0ABC是矩形,且A,C在坐标轴上,满足3OA = ,OC=1.将矩形OABC 绕原点O 以每秒15°的速度逆时针旋转.设运动时间为t 秒()06t ≤≤ ,旋转过程中矩形在第二象限内的面积为S ,表示S 与t 的函数关系的图象大致如右图所示,则矩形OABC 的初始位置是( )A .B .C .D .【答案】D【解析】【分析】【详解】解:根据图形可知当t=0时,s=0,所以矩形OABC 的初始位置不可能在第二象限,所以A 、C 错误;因为1OC =,所以当t=2时,选项B 中的矩形在第二象限内的面积为S=1331236⨯⨯=,所以B 错误, 因为3OA =,所以当t=2时,选项D 中的矩形在第二象限内的面积为S=13132⨯⨯=,故选D . 考点:1.图形旋转的性质;2.直角三角形的性质;3.函数的图象.11.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.12.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.13.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h【答案】C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.14.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.15.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产45件.D.人乙一天生产40(件),则他获得薪金140元【答案】C【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180602030504-=+=(件),故选项C错误;由图象可知,工人乙一天生产40(件),他获得的薪金为:140元,故选项D正确,故选:C.【点睛】本题考查函数图象的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.17.下列图象中,表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A. B. D错误.故选C.【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.18.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C )与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是( ).A .骆驼在t 时刻的体温与0时体温的绝对差(即差的绝对值)B .骆驼从0时到t 时刻之间的最高体温与当日最低体温的差C .骆驼在t 时刻的体温与当日平均体温的绝对差D .骆驼从0时到t 时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y 有可能表示的是骆驼从0时到t 时刻之间的最高体温与当日最低体温的差. 故选:B .【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.19.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A .y=x+2B .y=x 2+2C .2x +D .y=12x + 【答案】C【解析】试题分析:A .2y x =+,x 为任意实数,故错误;B .22y x =+,x 为任意实数,故错误;C .2y x =+,20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C . 考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.20.甲、乙两车同时从A 地出发,各自都以自己的速度匀速向B 地行驶,甲车先到B 地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y (千米)与乙车行驶的时间x (小时)之间的函数图象,则下列说法不正确的是( )A .A 、B 两地之间的距离是450千米B .乙车从出发到与甲车返回时相遇所用的时间是6.6小时C .甲车的速度是80千米/时D .点M 的坐标是(6,90)【答案】C【解析】【分析】A.仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A 、B 两地之间的距离;B.根据路程,时间与速度的关系解答即可;C.由A 的解答过程可得结论;D.根据题意列式计算即可得出点M 的纵坐标..【详解】∵根据题意,观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,∴甲车的速度为90千米/时;∴A 、B 两地之间的距离为:90×5=450千米.故选项A 不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x 小时,根据题意得:60x +90(x ﹣6)=450,解得x =6.6,∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B 不合题意;∵甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.【点睛】本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象上点的坐标的实际意义,求出甲,乙车的速度和A,B两地之间的距离是解题的关键.。

初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28道典型题(含答案和解析)1.已知关于x 的方程 mx+3=4的解为 x=1,则直线 y=(m−2)x−3一定不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵关于x的方程mx+3=4的解为x=1.∴m+3=4.∴m=1.∴直线y=(m−2)x−3为直线y=−x−3.∴直线y=(m−2)x−3一定不经过第一象限.考点:函数——一次函数——一次函数与一元一次方程.2.如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB解析式是().A. y=−2x−3B. y=−2x−6C. y=−2x+3D. y=−2x+6答案:D.解析:∵直线AB经过点(a,b),且2a+b=6.∴直线AB经过点(a,6−2a).∵直线AB与直线y=−2x平行.∴设直线AB的解析式是:y=−2x+b1.把(a,6−2a)代入函数解析式得:6−2a=−2a+b1.则b1=6.∴直线AB的解析式是y=−2x+6.考点:函数——一次函数——一次函数图象与几何变换——一次函数平移变换.3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.答案:x>23.解析:∵函数y=2x过点A(m,3).∴2m=3.解得:m=23.∴A(32,3).∴不等式2x>ax+4的解集为x>23.考点:函数——一次函数——一次函数与一元一次不等式——两条直线相交或平行问题.4.若函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1),则关于x、y的二元一次方程组{x−y=a2x+y=b的解是.答案:{x=2y=1.解析:因为函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1).所以方程组{x−y=a2x+y=b的解是{x=2y=1.考点:函数——一次函数——一次函数与二元一次方程——一次函数与二元一次方程(组)的关系.5.一次函数y=2x−3的图象与y轴交于A,另一个一次函数y=kx+b与y轴交于B,两条直线交于C,C点的纵坐标是1,且S△ABC=5,求k、b的值.答案:(2,1).解析:由题意知C(2,1).过C作CD⊥y轴,CD=2.·AB·CD=5.S△ABC=12∴AB=5.∴B(0,2)或(0,−8).x+2.当B(0,2)时,y=−12x−8.当B(0,−8)时,y=−92考点:函数——一次函数——求一次函数解析式——两条直线相交或平行问题.6.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),求关于x的不等式a(x−1)−b>0的解集.答案:x<−1.解析:∵一次函数y=ax+b的图象过第一、二、四象限.∴b>0,a<0.把(2,0)代入解析式y=ax+b得:0=2a+b.解得:2a=−b.b=−2.a∵a(x−1)−b>0.∴a(x−1)>b.∵a<0..∴x−1<ba∴x<−1.考点:函数——一次函数——一次函数与一元一次不等式.7.如果一次函数y=−x+1的图象与x轴、y轴分别交于A点、B点,点M在x轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,那么这样的点M有().A. 3个B. 4个C. 5个D. 7个答案:B.解析:一次函数y=−x+1中令x=0,解得y=1.令y=0,解得x=1.∴A(1,0),B(0,1),即OA=OB=1.在直角三角形AOB中,根据勾股定理得:AB=√2.分四种情况考虑,如图所示:当BM1=BA时,由BO⊥AM1,根据三线合一得到O为M1A的中点,此时M1(−1,0).当AB=AM2时,由AB=√2,得到OM2=AM2−OA=√2−1,此时M2(1−√2,0).当BA=AM3时,由AB=√2,得到AM3=√2,则OM3=OA+AM3=1+√2,此时M3(1+√2,0).当M4A=M4B时,此时M4与原点重合,此时M4(0,0).综上,这样的M点有4个.故选B.考点:函数——一次函数——一次函数综合题——一次函数与等腰三角形结合.8.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/S的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).答案:4+2√3.解析:由图②可知,t在2到4秒时,△PAD的面积不发生变化.∴在AB上运动的时间是2秒,在BC上运动的时间是4−2=2秒.∵动点P的运动速度是1cm/s.∴AB=2cm,BC=2cm.过点B作BE⊥AD于点E,过点C作CF⊥AD于点F.则四边形BCFE是矩形.∴BE=CF,BC=EF=2cm.∵∠A=60°.∴BE=ABsin60°=2×√3=√3.2AE=ABcos60°=2×1=1.2∴1×AD×BE=3√3.2×AD×√3=3√3.即12解得AD=6cm.∴DF=AD−AE−EF=6−1−2=3.在Rt△CDF中,CD=√CF2+DF2=√√32+32=2√3.所以,动点P运动的总路程为AB+BC+CD=2+2+2√3=4+2√3.∵动点P的运动速度是1cm/s.∴点P从开始移动到停止移动一共用了(4+2√3)÷1=4+2√3(秒).故答案为:4+2√3.考点:函数——一次函数——一次函数的应用.四边形——梯形.的图像上,OA长为2且∠1=60°。

(专题精选)初中数学一次函数经典测试题及解析

(专题精选)初中数学一次函数经典测试题及解析

(专题精选)初中数学一次函数经典测试题及解析一、选择题1.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】 试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.2.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .24y x =-+C .31y x =+D .31y x -=-【答案】B【解析】【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.3.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2B .8C .﹣2D .﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x ,将B (m ,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A .考点:一次函数图象上点的坐标特征.4.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S (单位:km )和大客车行驶的时间t (单位:min )之间的函数关系如图所示.下列说法中正确的个数是( )①学校到景点的路程为40km ;②小轿车的速度是1km /min ;③a =15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.5.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903=小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.6.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是().①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为165y x=+;③第40天,该植物的高度为14厘米;④该植物最高为15厘米.A.①②③B.②④C.②③D.①②③④【答案】A【解析】【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得:156kb⎧=⎪⎨⎪=⎩,∴直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,1406145y=⨯+=,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,1506165y=⨯+=,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.7.一次函数y=(m﹣2)x n﹣1+3是关于x的一次函数,则m,n的值为()A .m≠2,n=2B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A【解析】【分析】 直接利用一次函数的定义分析得出答案.【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A .【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.8.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1 【答案】C【解析】【分析】【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴a+1<0,解得a<-1,故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2-B .1-C .1D .2【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x =时,2y = ,当2x =时,12y = , ∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=V . 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.11.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线,当x=0,得y=3;当y=0,x=4,∴A(4,0),B(0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,∴AC平分∠OAB,∴CD=CO=n,则BC=3-n,∴DA=OA=4,∴DB=5-4=1,在Rt△BCD中,DC2+BD2=BC2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.13.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A【解析】【分析】 根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集.【详解】由图象可得,12k x b k x +>的解集为x <1,故选:A .【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.14.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.15.下列函数:①y x =;②4z y =;③4y x =,④21y x =+其中一次函数的个数是( )A .1B .2C .3D .4 【答案】C【解析】【分析】根据一次函数的定义条件进行逐一分析即可.【详解】①y=x 是一次函数,故①符合题意; ②4z y =是一次函数,故②符合题意; ③4y x=自变量次数不为1,故不是一次函数,故③不符合题意; ④y=2x+1是一次函数,故④符合题意.综上所述,是一次函数的个数有3个,故选:C .【点睛】此题考查了一次函数的定义,解题关键在于掌握一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.16.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数 y kx b =+的图象可能是:A .B .C .D .【答案】B【解析】【分析】【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.17.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b 过一、二、四象限,则函数值y 随x 的增大而减小,因而k <0;图象与y 轴的正半轴相交则b >0,因而一次函数y=-bx+k 的一次项系数-b <0,y 随x 的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y 随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.18.下列各点在一次函数y=2x﹣3的图象上的是()A.( 2,3) B.(2,1) C.(0,3) D.(3,0【答案】B【解析】【分析】把各点分别代入一次函数y=2x﹣3进行检验即可.【详解】A、2×2﹣3=1≠3,原式不成立,故本选项错误;B、2×2﹣3=1,原式成立,故本选项正确;C、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;D、2×3﹣3=3≠0,原式不成立,故本选项错误,故选B.【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.19.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.20.生物活动小组的同学们观察某植物生长,得到该植物高度y (单位:cm )与观察时间x (单位:天)的关系,并画出如图所示的图象(//CD x 轴),该植物最高的高度是( )A .50cmB .20cmC .16cmD .12cm【答案】C【解析】【分析】 设直线AC 的解析式为()0y kx b k =+≠,然后利用待定系数法求出直线AC 的解析式,再把50x =代入进行计算即可得解.【详解】解:设直线AC 的解析式为()0y kx b k =+≠∵()0,6A ,()30,12B∴61230b k b=⎧⎨=+⎩ ∴156k b ⎧=⎪⎨⎪=⎩ ∴165y x =+∴当50x =时,16y =∴该植物最高的高度是16cm .故选:C【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(专题精选)初中数学函数基础知识真题汇编附答案一、选择题D次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车1.如图,2020长),火车在隧道内的长度与火车进入隧道的时间x之间的关系用图象描述大致是()A.B.C.D.【答案】A【解析】【分析】火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化2.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()A.B.C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.3.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.4.如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为()A.3 B3C.3D.3【答案】C【解析】【分析】将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF3;直线l向右平移直到点F过点B时,y3;当直线l过点C时,x=a+2,y=0∴菱形的边长为a+2﹣a=23)=4∴当点E与点D重合时,由勾股定理得a2+2∴a=13∴菱形的面积为3故选:C.【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,5.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A (﹣3,y 1)、B (0,y 2)、C (2,y 3)为二次函数y =(x+1)2+1的图象上的三点,∴y 1=(﹣3+1)2+1=5,y 2=(0+1)2+1=2,y 3=(2+1)2+1=10,∴y 2<y 1<y 3.故选:B .【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.6.如图,已知矩形OABC ,A (4,0),C (0,4),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线匀速运动,设动点P 的运动路程为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.7.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A.B.C.D.【答案】C【解析】【分析】根据题意可对每个选项逐一分析判断图象得正误.【详解】解:A、从图象上看小亮的路程走平路不变是不正确的,故不是.B、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是.故选C.8.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8.假设每分钟的进水量和出水量分钟内既进水又出水,接着关闭进水管直到容器内的水放完是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.()A .20B .24C .18D .16【答案】A【解析】【分析】 先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a 升, 由函数图象,得:302058a --=, 解得:a =154, ∴关闭进水管后出水管放完水的时间为:30÷154=8分钟, ∴从开始进水到把水放完需要12+8=20分钟,故选:A .【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.9.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD ,DC ,CB 上运动,设运动时间为x (秒),那么APQ ∆的面积()2cm y 随着时间x (秒)变化的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】根据题意分三种情况讨论△APQ 面积的变化,进而得出△APQ 的面积y (cm 2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP =x ,Q 点运动路程为2x ,①当点Q 在AD 上运动时,y =12AP•AQ =12x•2x =x 2,图象为开口向上的二次函数; ②当点Q 在DC 上运动时, y =12AP•DA =12x×3=32x ,是一次函数; ③当点Q 在BC 上运动时, y =12AP•BQ =12x•(12−2x )=−x 2+6x ,为开口向下的二次函数, 结合图象可知A 选项函数关系图正确,故选:A .【点睛】 本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ 的面积变化.10.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.11.若12x y -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】由题意可知:{12x 0x 0-≥≠, 解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.甲、乙两车同时从A 地出发,各自都以自己的速度匀速向B 地行驶,甲车先到B 地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y (千米)与乙车行驶的时间x (小时)之间的函数图象,则下列说法不正确的是( )A .A 、B 两地之间的距离是450千米B .乙车从出发到与甲车返回时相遇所用的时间是6.6小时C .甲车的速度是80千米/时D .点M 的坐标是(6,90)【答案】C【解析】【分析】A.仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A 、B 两地之间的距离;B.根据路程,时间与速度的关系解答即可;C.由A 的解答过程可得结论;D.根据题意列式计算即可得出点M 的纵坐标..【详解】∵根据题意,观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,∴甲车的速度为90千米/时;∴A 、B 两地之间的距离为:90×5=450千米.故选项A 不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x 小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;∵甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.【点睛】本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象上点的坐标的实际意义,求出甲,乙车的速度和A,B两地之间的距离是解题的关键.13.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B.考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.m s,14.甲乙两同学同时从400m环形跑道上的同一点出发,同向而行,甲的速度为6/ m s,设经过xs后,跑道上两人的距离(较短部分)为ym,则y与乙的速度为4/x0300≤≤之间的关系可用图像表示为()xA.B.C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x x y x x x x ⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C 选项符合题意.故选:C .【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.2019年,中国少年岑小林在第六届上海国际交互绳大赛上,破“30秒内单脚单摇轮换跳次数最多”吉尼斯世界纪录!实践证明1分钟跳绳的最佳状态是前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变,则跳绳频率(次/秒)与时间(秒)之间的关系可以用下列哪幅图来近似地刻画( )A .B .C.D.【答案】C【解析】【分析】根据前20秒频率匀速增加,最后10秒冲刺,中间频率保持不变判断图象即可.【详解】:秒频率保持不变,排除选项A和D,再根据最后10秒冲解:根据题意可知,中间2050刺,频率是增加的,排除选项B,因此,选项C正确.故选:C.【点睛】本题考查的知识点是一次函数的实际应用,理解题意是解此题的关键.16.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h【答案】C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.17.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A .B .C .D .【答案】D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D .故选D .考点:函数的图象.18.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.19.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C ︒)与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是().A.骆驼在t时刻的体温与0时体温的绝对差(即差的绝对值)B.骆驼从0时到t时刻之间的最高体温与当日最低体温的差C.骆驼在t时刻的体温与当日平均体温的绝对差D.骆驼从0时到t时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y有可能表示的是骆驼从0时到t时刻之间的最高体温与当日最低体温的差.故选:B.【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.20.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是A.B.C.D.【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.。

相关文档
最新文档