书法(2020年吉林省中考题)
2020年吉林省长春市中考语文试题及参考答案(word解析版)

2020年长春市初中毕业学业水平考试语文(全卷满分120分,考试时间120分钟)一、积累与运用(15分)阅读下面文字,完成1~4题。
(8分)一辈子又一辈的言传,一家又一家的立德立言。
汇聚成家族历史,雕____(琢啄)出家族的风骨和神貌,“家风”一词,承载.着厚重的文化和情感。
它在中华优秀传统文化的体系中占据举足轻重的地位,既影响了一个人的境界格局,也关系这国家的前途命运。
中华民族自古有“家国天下”的文化自觉,家是中国人的人生起点,是信心的源泉和精神的依托,家谱,家训,家书,家规,各种物质的,非物质的家的产物,都承载了中华优秀传统文化的精髓。
而随着社会形态,价值体系、科学技术的演进,这些宝贵的精神财富也在不断进行着时代性的变化,____(焕涣)发出新的魅力,从某种意义上来说,家风是中国人的精神信仰。
1.参照《现代汉语词典》的解释,为文中加点字选择正确的读音()(2分)A.zǎi B.zài2.请从括号中选择正确的汉字写在横线上。
(2分)(1)雕(琢啄)(2)(焕涣)3.解释成语“举足轻重“在文中的意思。
(2分)4.可以替换画横线句中关联词语而不改变原句语义的一项是()(2分)A.如果……就……B.既……又……C.要么……要么……D.只有……才……5.古诗文默写填空。
(7分)(1)子曰:“”,思而不学则殆。
(《论语•为政》)(2),。
朔气传金柝,寒光照铁衣。
(《木兰诗》)(3)杜甫的《望岳》中可以读出诗人傲视一切的雄心和气概的诗句是“,”。
(4)生活中我们难免身处困境,陷入迷茫。
此时可以用陆游《游山西村》中的,劝勉自己。
二、阅读(45分)(一)阅读下面的课内文言文,完成6~8题。
(7分)爱莲说周敦颐水陆草木之花,可爱者甚蕃。
晋陶渊明独爱菊。
自李唐来,世人甚爱牡丹。
予独爱莲之出淤泥而不染,濯.清涟而不妖,中通外直,不蔓不枝.,香远益清,亭亭净植,可远观而不可亵玩焉。
予谓菊,花之隐逸者也;牡丹,花之富贵者也;莲,花之君子者也。
吉林省2020年中考语文真题试题(含解析1)

吉林省2020年中考语文真题试题一、积累运用1.名句默写。
(1)蒹葭苍苍,白露为霜。
所谓伊人,(诗经﹣蒹葭)(2),随风直到夜郎西(李白《闻王昌龄左迁龙标遥有此寄》)(3)当与朋友远别时,我们会用王勃《送杜少府之任蜀州》中的名句“,”赠别壮行。
(4)范仲淹在《渔家傲﹣秋思》中运用典故,抒发强烈的爱国思乡之情的诗句是:,。
(5)周敦颐《爱莲说》中“,”是君子身处污浊环境,超然脱俗,保持高风亮节的真实写照。
【答案】(1)在水一方(2)我寄愁心与明月(3)海内存知己,天涯若比邻.(易错字:涯)(4)浊酒一杯家万里,燕然未勒归无计.(易错字:燕)(5)出淤泥而不染,濯清涟而不妖.(易错字:濯、涟)考点:默写常见的名句名篇。
能力层级为识记A。
2.阅读语段,按要求完成下面的题目:(1)世界需要爱。
(2)没有了爱,谁也无法阻塞人生的风雨。
(3)爱如漆黑长夜里的明灯,为孤寂失路的人指引方向(,;)爱如茫茫沙漠中的绿洲,为唇焦口燥的人呈上琼浆。
(4)在爱的怀抱中,才能幸福快乐地成长。
(1)给第3句选择正确的标点符号,写在横线上(2)“谁也无法阻塞人生的风雨。
”有语病,请改正过来(3)给第4句补上恰当的关联词语(4)仿造文中划线的句子,再续写一个句子爱如炎暑烈日下的树荫,为酷热难当的人提供清凉。
【答案】(1);(2)“阻塞”改为“阻挡”(3)只有(4)运用比喻修辞、符合情境、语意连贯.示例:爱如炎暑烈日下的树荫,为酷热难当的人提供清凉。
【解析】试题分析:(1)本题考查学生标点符号的使用能力.前后两个句子句式相同,内容相近,二者之间是并列关系,故应选择分号。
(2)本题考查学生修改病句的能力。
阅读句子,会发现这个句子用词不当,应将“阻塞”改为“阻挡”。
(3)本题考查关联词的使用能力.根据句意,“爱的怀抱”是“幸福成长”的条件,又加上后一句中有一个“才”,可以判定应填写“只有”。
(4)本题考查句子的仿写能力。
解答此题首先要观察所给的句子,分析其特点,然后根据分析结果仿写句子即可.注意应在结构、字数、句式、修辞等方面一致。
2020年吉林省中考数学试卷及答案解析

2020年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.(2分)﹣6的相反数是( )A .6B .﹣6C .16D .−162.(2分)国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为() A .11.09×106 B .1.109×107 C .1.109×108 D .0.1109×1083.(2分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A .B .C .D .4.(2分)下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .(2a )2=2a 2D .a 3÷a 2=a5.(2分)将一副三角尺按如图所示的方式摆放,则∠α的大小为( )A .85°B .75°C .65°D .60°6.(2分)如图,四边形ABCD 内接于⊙O ,若∠B =108°,则∠D 的大小为( )A .54°B .62°C .72°D .82°二、填空题(每小题3分,共24分)7.(3分)分解因式:a 2﹣ab = .8.(3分)不等式3x +1>7的解集为 .9.(3分)一元二次方程x 2+3x ﹣1=0根的判别式的值为 .10.(3分)我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为 .11.(3分)如图,某单位要在河岸l 上建一个水泵房引水到C 处.他们的做法是:过点C作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 .12.(3分)如图,AB ∥CD ∥EF .若AC CE =12,BD =5,则DF = .13.(3分)如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点.若△ADE 的面积为12,则四边形DBCE 的面积为 .14.(3分)如图,在四边形ABCD 中,AB =CB ,AD =CD ,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD 的对角线AC ,BD 相交于点O .以点B 为圆心,BÔ的长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则EF长为(结果保留π).三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=√7.16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.(5分)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m 的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)21.(7分)如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=kx(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x 轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.五、解答题(每小题8分,共16分)23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=45,则四边形DCFG的面积为.六、解答题(每小题10分,共20分)25.(10分)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.(10分)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+3 2.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.参考答案与试题解析一、单项选择题(每小题2分,共12分)1.(2分)﹣6的相反数是( )A .6B .﹣6C .16D .−16【解答】解:﹣6的相反数是6,故选:A .2.(2分)国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为( )A .11.09×106B .1.109×107C .1.109×108D .0.1109×108【解答】解:11090000=1.109×107,故选:B .3.(2分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为( )A .B .C .D .【解答】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A ,故选:A .4.(2分)下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .(2a )2=2a 2D .a 3÷a 2=a【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意;B 、(a 2)3=a 6,原计算错误,故此选项不符合题意;C 、(2a )2=4a 2,原计算错误,故此选项不符合题意;D 、a 3÷a 2=a ,原计算正确,故此选项符合题意;故选:D .5.(2分)将一副三角尺按如图所示的方式摆放,则∠α的大小为( )A.85°B.75°C.65°D.60°【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.6.(2分)如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°【解答】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.二、填空题(每小题3分,共24分)7.(3分)分解因式:a2﹣ab=a(a﹣b).【解答】解:a2﹣ab=a(a﹣b).8.(3分)不等式3x+1>7的解集为x>2.【解答】解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x >2,故答案为:x >2.9.(3分)一元二次方程x 2+3x ﹣1=0根的判别式的值为 13 .【解答】解:∵a =1,b =3,c =﹣1,∴△=b 2﹣4ac =9+4=13.所以一元二次方程x 2+3x ﹣1=0根的判别式的值为13.故答案为:13.10.(3分)我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为 (240﹣150)x =150×12 .【解答】解:设快马x 天可以追上慢马,依题意,得:(240﹣150)x =150×12.故答案为:(240﹣150)x =150×12.11.(3分)如图,某单位要在河岸l 上建一个水泵房引水到C 处.他们的做法是:过点C作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 垂线段最短 .【解答】解:过点C 作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.12.(3分)如图,AB ∥CD ∥EF .若AC CE =12,BD =5,则DF = 10 .【解答】解:∵AB ∥CD ∥EF , ∴BD DF=AC CE=12,∴DF =2BD =2×5=10. 故答案为10.13.(3分)如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点.若△ADE 的面积为12,则四边形DBCE 的面积为32.【解答】解:∵D ,E 分别是△ABC 的边AB ,AC 的中点, ∴DE 是△ABC 的中位线, ∴DE ∥BC ,DE =12BC , ∴△ADE ∽△ABC , ∴S △ADE S △ABC=(DE BC)2=(12)2=14,∵△ADE 的面积为12, ∴△ABC 的面积为2,∴四边形DBCE 的面积=2−12=32, 故答案为:32.14.(3分)如图,在四边形ABCD 中,AB =CB ,AD =CD ,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD 的对角线AC ,BD 相交于点O .以点B 为圆心,BO 长为半径画弧,分别交AB ,BC 于点E ,F .若∠ABD =∠ACD =30°,AD =1,则EF̂的长为12π (结果保留π).【解答】解:在△ABD 与△CBD 中, {AB =CBAD =CD BD =BD, ∴△ABD ≌△CBD (SSS ),∴∠ABD =∠CBD =30°,∠ADB =∠CDB ,CD =AD =1, ∴∠ABC =60°,∵AD =CD ,∠ADB =∠CDB , ∴BD ⊥AC ,且AO =CO , ∴∠ACB =90°﹣30°=60°, ∴∠BCD =∠ACB +∠ACD =90°, 在Rt △BCD 中,∵∠CBD =30°, ∴BD =2CD =2,在Rt △COD 中,∵∠ACD =30°, ∴OD =12CD =12,∴OB =BD ﹣OD =2−12=32, ∴EF̂的长为:60π⋅32180=12π,故答案为12π.三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a +1)2+a (1﹣a )﹣1,其中a =√7. 【解答】解:原式=a 2+2a +1+a ﹣a 2﹣1 =3a . 当a =√7时,原式=3√7.16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A ,B ,C ,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A 卡片的概率.【解答】解:根据题意列表如下:A B C A AA BA CA B AB BB CB CACBCCC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A 卡片的有5种情况, ∴小吉同学抽出的两张卡片中含有A 卡片的概率为59.17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数. 【解答】解:设乙每小时做x 个零件,甲每小时做(x +6)个零件, 根据题意得:90x+6=60x,解得:x =12,经检验,x =12是原方程的解,且符合题意, ∴x +6=18.答:乙每小时做12个零件.18.(5分)如图,在△ABC 中,AB >AC ,点D 在边AB 上,且BD =CA ,过点D 作DE ∥AC ,并截取DE =AB ,且点C ,E 在AB 同侧,连接BE .求证:△DEB ≌△ABC .【解答】证明:∵DE ∥AC , ∴∠EDB =∠A . 在△DEB 与△ABC 中, {DE =AB∠EDB =∠A BD =CA, ∴△DEB ≌△ABC (SAS ). 四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A ,B ,C 均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB 重合的线段MN ,使MN 与AB 关于某条直线对称,且M ,N 为格点.(2)在图②中,画一条不与AC 重合的线段PQ ,使PQ 与AC 关于某条直线对称,且P ,Q 为格点.(3)在图③中,画一个△DEF ,使△DEF 与△ABC 关于某条直线对称,且D ,E ,F 为格点.【解答】解:(1)如图①,MN 即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m 的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)【解答】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=AF DF,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.21.(7分)如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=kx(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x 轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.【解答】解:(1)将点A的坐标为(2,4)代入y=kx(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=kx的解析式为y=8x,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=8 x,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD=12×2×4+12(2+4)×2=10.22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.【解答】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×2660=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.五、解答题(每小题8分,共16分)23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为3L,机器工作的过程中每分钟耗油量为0.5L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.【解答】解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当10<x≤60时,设y关于x的函数解析式为y=ax+b,{10a +b =3060a +b =5, 解得,{a =−0.5b =35,即机器工作时y 关于x 的函数解析式为y =﹣0.5x +35(10<x ≤60); (3)当3x =30÷2时,得x =5, 当﹣0.5x +35=30÷2时,得x =40,即油箱中油量为油箱容积的一半时x 的值是5或40.24.(8分)能够完全重合的平行四边形纸片ABCD 和AEFG 按图①方式摆放,其中AD =AG =5,AB =9.点D ,G 分别在边AE ,AB 上,CD 与FG 相交于点H . 【探究】求证:四边形AGHD 是菱形.【操作一】固定图①中的平行四边形纸片ABCD ,将平行四边形纸片AEFG 绕着点A 顺时针旋转一定的角度,使点F 与点C 重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为 56 .【操作二】将图②中的平行四边形纸片AEFG 绕着点A 继续顺时针旋转一定的角度,使点E 与点B 重合,连接DG ,CF ,如图③,若sin ∠BAD =45,则四边形DCFG 的面积为 72 .【解答】解:【探究】∵四边形ABCD 和AEFG 都是平行四边形, ∴AE ∥GF ,DC ∥AB ,∴四边形AGHD 是平行四边形, ∵AD =AG ,∴四边形AGHD 是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为: ME +EF +MC +AD +DM +AM +AG +GN +AN +BN +BC +NF =(ME +AM +AG +EF +NF )+(AD +BC +DM +MC +AN +BN )=2(AE +AG )+2(AB +AD )=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD =AG =5,∠DAB =∠BAG , 又AM =AM ,∴△AMD ≌△AMG (SAS ), ∴DM =GM ,∠AMD =∠AMG , ∵∠AMD +∠AMG =180°, ∴∠AMD =∠AMG =90°, ∵sin ∠BAD =45, ∴DM AD=45,∴DM =45AD =4, ∴DG =8,∵四边形ABCD 和四边形AEFG 是平行四边形, ∴DC ∥AB ∥GF ,DC =AB =GF =9, ∴四边形CDGF 是平行四边形, ∵∠AMD =90°,∴∠CDG =∠AMD =90°, ∴四边形CDGF 是矩形,∴S 矩形DCFG =DG •DC =8×9=72,故答案为:72.六、解答题(每小题10分,共20分)25.(10分)如图,△ABC 是等边三角形,AB =4cm ,动点P 从点A 出发,以2cm /s 的速度沿AB 向点B 匀速运动,过点P 作PQ ⊥AB ,交折线AC ﹣CB 于点Q ,以PQ 为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为2x cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.【解答】解:(1)∵动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,∴AP的长为2xcm;故答案为:2x;(2)当点D落在BC上时,如图1,BP=AB﹣AP=4﹣2x,∵PQ⊥AB,∴∠QP A=90°,∵△PQD等边三角形,△ABC是等边三角形,∴∠A=∠B=∠DPQ=60°,∴∠BPD=30°,∴∠PDB=90°,∴PD⊥BC,∴△APQ≌△BDP(AAS),∴BD=AP=2x,∵BP=2BD,解得x =23;(3)①如图2,当0<x ≤23时,∵在Rt △APQ 中,AP =2x ,∠A =60°,∴PQ =AP •tan60°=2√3x ,∵△PQD 等边三角形,∴S △PQD =12×2√3x •3x =3√3x 2cm 2,所以y =3√3x 2;②如图3,当点Q 运动到与点C 重合时,此时CP ⊥AB ,所以AP =12AB ,即2x ═2,解得x =1,所以当23<x ≤1时,如图4,设PD 、QD 与BC 分别相交于点G 、H ,∴BP=4﹣2x,AQ=2AP=4x,∴BG=12BP=2﹣x∴PG=√3BG=√3(2﹣x),∴S△PBG=12×BG•PG=√32(2﹣x)2,∵AQ=2AP=4x,∴CQ=AC﹣AQ=4﹣4x,∴QH=√3CQ=√3(4﹣4x),∴S△QCH=12×CQ•QH=√32(4﹣4x)2,∵S△ABC=12×4×2√3=4√3,∴S四边形PGHQ=S△ABC﹣S△PBG﹣S△QCH﹣S△APQ=4√3−√32(2﹣x)2−√32(4﹣4x)2−12×2x×2√3x=−21√32x2+18√3x﹣6√3,所以y=−21√32x2+18√3x﹣6√3;③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,此时PG=BP•sin60°=(4﹣2x)×√32=√3(2﹣x),∵PB=4﹣2x,∴BQ=2BP=2(4﹣2x)=4(2﹣x),∴BG=12BP=2﹣x,∴QG=BQ﹣BG=3(2﹣x),∴重叠部分的面积为:S △PQG =12×PG •QG =12×√3(2﹣x )•3(2﹣x )=3√32(2﹣x )2. 所以y =3√32(2﹣x )2.综上所述:y 关于x 的函数解析式为:当0<x ≤23时,y =3√3x 2;当23<x ≤1时,y =−21√32x 2+18√3x ﹣6√3; 当1<x <2时,y =3√32(2﹣x )2.26.(10分)如图,在平面直角坐标系中,抛物线y =−12x 2+bx +32与x 轴正半轴交于点A ,且点A 的坐标为(3,0),过点A 作垂直于x 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ ⊥l 于点Q ,M 是直线l 上的一点,其纵坐标为﹣m +32.以PQ ,QM 为边作矩形PQMN .(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值.(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.【解答】解:(1)把点A (3,0)代入y =−12x 2+bx +32,得到0=−92+3b +32, 解得b =1.(2)∵抛物线的解析式为y =−12x 2+x +32,∴P (m ,−12m 2+m +32),∵M ,Q 重合,∴﹣m+32=−12m2+m+32,解得m=0或4.(3)由题意PQ=MQ,且抛物线的顶点在该正方形内部,∴3﹣m=﹣m+32−(−12m2+m+32)且﹣m+32>2,得m<−12解得m=1−√7或1+√7(不合题意舍弃),∴m=1−√7.(4)当点P在直线l的左边,点M在点Q下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+32<−12m2+m+32,∴m2﹣4m<0,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中,当3<m<4时,抛物线不在矩形PQMN内部,不符合题意,当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中,综上所述,满足条件的m的值为0<m<3或m>4.。
吉林省长春市九台区多校2024-2025学年九年级上学期期中语文试题

吉林省长春市九台区多校2024-2025学年九年级上学期期中语文试题一、基础知识综合阅读语段,按要求完成下面小题。
翻开那些令人敬仰的书法家的作品,直击内心的美顷刻间洗涤心灵。
王羲之行书的笔法,似神女飞天,“群鸿戏海,舞鹤游天”□张旭草书的章法,像鬼神变动,“变幻莫测,惊世骇俗”;怀素草书的气势,如壮士拔剑,“骤雨旋风,声势满堂”□行草作品总是那么出神入化、妙不可言,让人在艺术的氛围中心kuàng神怡。
楷书四大家的作品,则给人别样的感受。
柳公权的书法①,如出水芙蓉,一笔一划,温婉秀丽,又不失骨气。
颜真卿的作品②,像一座千年古钟,读者端详其中每一条纹理,都会产生浑厚的共鸣。
赵孟頫书法③,如一位金榜题名的才俊,意气风发中蕴含万种风情。
欧阳询的书法④,像一个武功高深的侠士,刚劲洒脱。
1.给加点的字注音,根据拼音写汉字。
(1)顷.刻间( )(2)心kuàng神怡( )2.在“□”处依次填入标点符号,最恰当的一项是()A.逗号省略号B.句号破折号C.分号省略号D.句号感叹号3.依次填入语段横线处的词语,顺序正确的一项是()A.①端庄清秀①松风鹤骨①厚重古朴①风流倜傥B.①厚重古朴①风流倜傥①松风鹤骨①端庄消秀C.①风流倜傥①松风鹤骨①端庄清秀①厚重古朴D.①端庄清秀①厚重古朴①风流倜傥①松风鹤骨4.下列出自语段中的词语,短语类型不同其他三项的是()A.洗涤心灵B.骤雨旋风C.温婉秀丽D.刚劲洒脱二、名句名篇默写5.在下面田字格中填写古诗文名句。
“古时文人路,生不逢时多。
”刘长卿在《长沙过贾谊宅》中以“汉文有道恩犹薄,(1)”道出了千古文人的悲剧与无奈。
虽命运不济,他们仍能自强不息。
“(2),”(《酬乐天扬州初逢席上见赠》),是刘禹锡凭借美酒重振精神的自强不息。
“(3),醒能述以文者,太守也”(《醉翁亭记》),体现了欧阳修虽被贬官,身处逆境却能与民同乐的政治情怀。
“欲为圣明除弊事,(4)”(《左迁至蓝关示侄孙湘》),是韩愈即使年迈苍老依旧报国之心不减的老而弥坚的自强不息。
2020年吉林省中考语文试卷-答案

2020年吉林省初中毕业生学业水平考试语文答案解析一、1.【答案】不舍昼夜【解析】诗词默写要求:一、不能添字,不能少字;二、字的笔画要准确。
注意:昼夜。
2.【答案】千树万树梨花开【解析】诗词默写要求:一、不能添字,不能少字;二、字的笔画要准确。
注意:梨花。
3.【答案】谈笑有鸿儒往来无白丁【解析】诗词默写要求:一、不能添字,不能少字;二、字的笔画要准确。
注意:鸿儒。
4.【答案】无可奈何花落去似曾相识燕归来【解析】诗词默写要求:一、不能添字,不能少字;二、字的笔画要准确。
注意:燕归来。
5.【答案】(1)C(2)受命之日寝不安席食不甘味(3)A(4)B【解析】(1)本题考查文化常识。
篆书特点:篆书笔法瘦劲挺拔,曲线较多,直线较少。
起笔有方笔、圆笔,也有尖笔,收笔“悬针”较多。
隶书特点:隶书多呈宽扁型,横画长而竖画短,讲究“蚕头燕尾”“一波三磔”。
楷书特点:楷书的笔画与笔画之间有内在的呼应关系,既起收有序、笔笔分明、坚实有力,又停而不断、直而不僵、弯而不弱、流畅自然。
结构上要强调笔画与部首均衡分布、重心平稳、比例适当、字形端正、合乎规范,字与字排列在一起时大小要匀称、行款整齐。
行书特点:是介于楷书、草书之间的一种字体,是楷书的草化或草书的楷化。
行书的结构形态,一般与楷书相距不远,虽然在笔画上有增有减,但不像草书那样变得不易识别。
祝枝山的书法作品在笔画上是横平竖直的,字的形状呈现方块状,大小匀称,并且没有连笔,没有笔画的增减,故判断是楷书,选C。
(2)答题要点:抄写语句时要注意不能写错字,不能写到方框外面,笔画要横平竖直,不能连笔。
注意“寝”的正确书写。
(3)本题考查成语意思。
A寝食不安:意思是睡不好觉,吃不好饭,十分忧虑担心的样子;B夜长梦多:意思是比喻时间一拖长,情况可能发生不利的变化;C食不果腹:意思是吃不饱肚子,形容生活艰难;D 废寝忘食:意思是顾不得睡觉,忘记了吃饭,形容专心努力;结合“寝不安席食不甘味”可知,选A。
2020年吉林省中考数学试卷(附答案详解)

2020年吉林省中考数学试卷一、选择题(本大题共18小题,共48.0分)1.下列实数是无理数的是()A. √2B. 1C. 0D. −52.下列图形是中心对称图形的是()A. B. C. D.3.2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A. 88.9×103B. 88.9×104C. 8.89×105D. 8.89×1064.下列运算正确的是()A. 2x2+x2=2x4B. x3⋅x3=2x3C. (x5)2=x7D. 2x7÷x5=2x25.以下调查中,最适合采用全面调查的是()A. 检测长征运载火箭的零部件质量情况B. 了解全国中小学生课外阅读情况C. 调查某批次汽车的抗撞击能力D. 检测某城市的空气质量6.一元二次方程x2−2x+1=0的根的情况是()A. 有两个不等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A. 60°B. 65°C. 70°D. 75°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A. 16B. 14C. 13D. 129.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A. 15B. 20C. 25D. 3010.甲、乙两地相距600km,提速前动车的速度为vkm/ℎ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A. 600v −13=6001.2vB. 600v=6001.2v−13C. 600v −20=6001.2vD. 600v=6001.2v−2011.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A. 50.5寸B. 52寸C. 101寸D. 104寸12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y=1x(x>0)于点C,D.若AC=√3BD,则3OD2−OC2的值为()B. 3√2C. 4D. 2√313.−6的相反数是()A. 6B. −6C. 16D. −1614.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A. 11.09×106B. 1.109×107C. 1.109×108D. 0.1109×10815.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.16.下列运算正确的是()A. a2⋅a3=a6B. (a2)3=a5C. (2a)2=2a2D. a3÷a2=a17.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A. 85°B. 75°C. 65°D. 60°18.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A. 54°B. 62°C. 72°二、填空题(本大题共14小题,共42.0分)19.如图,在数轴上表示的x的取值范围是______.20.计算:√12−√3=______.21.某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158231801“射中9环以上”的频率0.750.830.780.790.800.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).22.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是______.23.以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.24.如图,在边长为2√3的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为______.25.分解因式:a2−ab=______.26.不等式3x+1>7的解集为______.27.一元二次方程x2+3x−1=0根的判别式的值为______.28.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为______.29.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是______.30.如图,AB//CD//EF.若ACCE =12,BD=5,则DF=______.31.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为12,则四边形DBCE的面积为______.32.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则EF⏜的长为______(结果保留π).三、计算题(本大题共1小题,共6.0分)33.计算:−(−1)+32÷(1−4)×2.四、解答题(本大题共19小题,共144.0分)34.先化简,再求值:x+1x ÷(x−1x),其中x=3.35.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.36.小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90829986989690100898387888190931001009692100整理数据:80≤x<8585≤x<9090≤x<9595≤x<10034a8分析数据:平均分中位数众数92b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.37.如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40n mile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20√6n mile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?38.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和5台B型机器人同时工作2h共分拣垃圾3.6吨,3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.39.如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP 是⊙O 的切线;(2)连接AB 交OP 于点F ,求证:△FAD∽△DAE ; (3)若tan∠OAF =12,求AEAP 的值.40. 如图1,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =−2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC.设点A 的纵坐标为t ,△ABC 的面积为s . (1)当t =2时,请直接写出点B 的坐标; (2)s 关于t 的函数解析式为s ={14t 2+bt −54,t <−1或t >5a(t +1)(t −5),−1<t <5,其图象如图2所示,结合图1、2的信息,求出a 与b 的值;(3)在l 2上是否存在点A ,使得△ABC 是直角三角形?若存在,请求出此时点A 的坐标和△ABC 的面积;若不存在,请说明理由.41.先化简,再求值:(a+1)2+a(1−a)−1,其中a=√7.42.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.43.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.44.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE//AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.45.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.46.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)(x>0)的图象47.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=kx 上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.48.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.49.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为______L,机器工作的过程中每分钟耗油量为______L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.50.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为______.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角,则四边形DCFG 度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=43的面积为______.51.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC−CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD 与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为______cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.52.如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为−m+32.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案和解析1.【答案】A【知识点】无理数【解析】【分析】本题考查无理数的意义,准确把握无理数的意义是正确判断的前提.无限不循环小数是无理数,而1,0,−5是整数,也是有理数,因此√2是无理数.【解答】解:无理数是无限不循环小数,而1,0,−5是有理数,因此√2是无理数,故选:A.2.【答案】D【知识点】中心对称图形【解析】【分析】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.3.【答案】C【知识点】科学记数法-绝对值较大的数【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于889000有6位,所以可以确定n=6−1=5.【解答】解:889000=8.89×105.故选:C.4.【答案】D【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】【分析】此题主要考查了整式的运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、2x2+x2=3x2,故此选项错误;B、x3⋅x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.5.【答案】A【知识点】全面调查与抽样调查【解析】【分析】本题考查全面调查、抽样调查的意义,在具体实际的问题情境中理解全面调查、抽样调查的意义是正确判断的前提.利用全面调查、抽样调查的意义,结合具体的问题情境进行判断即可.【解答】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”,“调查某批次汽车的抗撞击能力”,“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.6.【答案】B【知识点】根的判别式【解析】【分析】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.先根据方程的一般式得出a、b、c的值,再计算出△=b2−4ac的值,继而利用一元二次方程的根的情况与判别式的值之间的关系可得答案.【解答】解:∵a=1,b=−2,c=1,∴△=(−2)2−4×1×1=4−4=0,∴有两个相等的实数根,故选:B.7.【答案】B【知识点】作一个角的平分线、等腰三角形的性质【解析】【分析】本题考查了作图−基本作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE的度数.【解答】解:∵BA=BC,∠B=80°,×(180°−80°)=50°,∴∠A=∠ACB=12∴∠ACD=180°−∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=12∠ACD=65°,∴∠DCE的度数为65°,故选:B.8.【答案】C【知识点】概率公式【解析】【分析】此题考查了列表法与树状图法有关知识,概率公式.用到的知识点为:概率=所求情况数与总情况数之比.由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.【解答】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是26=13,故选:C.9.【答案】B【知识点】相似三角形的判定与性质、正方形的性质【解析】【分析】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF//BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【解答】解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF//BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴ANAD =EFBC,∵BC=120,AD=60,∴AN=60−x,∴60−x60=x120,解得:x=40,∴AN=60−x=60−40=20.故选:B.10.【答案】A【知识点】由实际问题抽象出分式方程【解析】【分析】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶时间是解题关键.直接利用总时间的差值进而得出等式求出答案.【解答】解:因为提速前动车的速度为vkm/ℎ,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/ℎ,根据题意可得:600v −13=6001.2v.故选:A.11.【答案】C【知识点】勾股定理的应用【解析】【分析】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.构造直角三角形,根据勾股定理即可得到结论.【解答】解:过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,CD=1,AE=r−1,则AB=2r,DE=10,OE=12在Rt△ADE中,AE2+DE2=AD2,即(r−1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.12.【答案】C【知识点】反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征、勾股定理【解析】【分析】本题考查了反比例函数、一次函数图象上点的坐标特征,勾股定理,正确利用AC=√3BD 得到a,b的关系是解题的关键.延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.根据AC=√3BD得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.【解答】解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=1x (x>0)上,则CE=1a,DF=1b.∴BD=BF−DF=b−1b ,AC=1a−a.又∵AC=√3BD,∴1a −a=√3(b−1b),两边平方得:a2+1a2−2=3(b2+1b2−2),即a2+1a2=3(b2+1b2)−4,在直角△ODF中,OD2=OF2+DF2=b2+1b2,同理OC2=a2+1a2,∴3OD2−OC2=3(b2+1b2)−(a2+1a2)=4.故选:C.13.【答案】A【知识点】相反数【解析】【分析】本题考查了相反数,解决本题的关键是熟记相反数的定义.根据相反数的定义,即可解答.【解答】解:−6的相反数是6,故选A.14.【答案】B【知识点】科学记数法-绝对值较大的数【解析】解:11090000=1.109×107,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【答案】A【知识点】简单组合体的三视图【解析】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图.解题的关键是掌握简单组合体的三视图的定义,注意:从左边看得到的图形是左视图.16.【答案】D【知识点】同底数幂的除法、幂的乘方与积的乘方、同底数幂的乘法【解析】解:A、a2⋅a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.17.【答案】B【知识点】三角形内角和定理【解析】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD−∠BCA=60°−45°=15°,∠α=180°−∠D−∠ACD=180°−90°−15°=75°,故选B.18.【答案】C【知识点】圆内接四边形的性质、圆周角定理【解析】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°−∠B=180°−108°=72°,故选:C.运用圆内接四边形对角互补计算即可.本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.19.【答案】x<1【知识点】在数轴上表示不等式的解集【解析】【分析】本题主要考查在数轴上表示不等式的解集.用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.解:在数轴上表示的x的取值范围是x<1,故答案为:x<1.20.【答案】√3【知识点】二次根式的加减【解析】【分析】本题主要考查了二次根式的加减,属于基础题型.先化简√12=2√3,再合并同类二次根式即可.【解答】解:√12−√3=2√3−√3=√3.故答案为:√3.21.【答案】0.8【知识点】利用频率估计概率【解析】【分析】本题考查了利用频率估计概率,解决本题的关键是理解当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.故答案为:0.8.22.【答案】556个【知识点】数式规律问题【解析】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.根据题意可得前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+ 34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.【解答】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.23.【答案】(−4,3)【知识点】旋转中的坐标变化*【解析】【分析】本题考查了坐标与图形变化−旋转,解决本题的关键是掌握旋转的性质.画出图示,根据点M(3,4)逆时针旋转90°得到点N,则可得点N的坐标为(−4,3).【解答】解:如图,∵点M(3,4)逆时针旋转90°得到点N,则点N的坐标为(−4,3).故答案为:(−4,3).24.【答案】43π【知识点】菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、轨迹【解析】【分析】本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠BPD=120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.【解答】解:如图,作△CBD的外接圆⊙O,连接OB,OD.∵四边形ABCD是菱形,∵∠A=∠C=60°,AB=BC=CD=AD,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,∵∠ADE+∠BDE=60°,∴∠DBF+∠BDP=60°,∴∠BPD=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P四点共圆,由BC=CD=BD=2√3,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P的运动的路径的长=120⋅π⋅2180=43π.故答案为43π.25.【答案】a(a−b)【知识点】因式分解-提公因式法【解析】解:a2−ab=a(a−b).直接把公因式a提出来即可.本题主要考查提公因式法分解因式,属于基础题.26.【答案】x>2【知识点】一元一次不等式的解法【解析】解:3x+1>7,移项得:3x>7−1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.移项、合并同类项、系数化为1即可得答案.此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤.27.【答案】13【知识点】根的判别式【解析】解:∵a=1,b=3,c=−1,∴△=b2−4ac=9+4=13.所以一元二次方程x2+3x−1=0根的判别式的值为13.故答案为:13.根据一元二次方程根的判别式△=b2−4ac即可求出值.本题考查了根的判别式,解决本题的关键是掌握根的判别式.28.【答案】(240−150)x=150×12【知识点】数学传统文化-代数类、由实际问题抽象出一元一次方程【解析】解:设快马x天可以追上慢马,依题意,得:(240−150)x=150×12.故答案为:(240−150)x=150×12.设快马x天可以追上慢马,根据两马的速度之差×快马出发的时间=慢马的速度×慢马提。
2022年吉林省中考语文真题(解析版)

【乙】
求业之精别无他法日专而已矣。谚曰“艺多不养身”,谓不专也,吾掘井多而无泉可饮,不专之咎也。诸弟总须力图专业。如九弟志在习字,亦不必尽废他业。但每日习字工夫,断不可不提起精神,随时随事,皆可触悟。四弟、六弟,吾不知其心有专嗜否?若志在穷经,则须专守一经;志在作制义,则须专看一家文稿;志在作古文,则须专看一家文集。作各体诗亦然,作试帖亦然,万不可以兼营并骛,兼营则必一无所能矣。
8.[甲]文现身说法或“以事实为例”或“运用对比手法”等。[乙]文讲道理或“引用谚语”或“运用比喻阐述道理”或“举例说理”等。
9.酷爱学习,勤奋刻苦,虚心求教(谦恭求教),珍惜优越的学习条件,有明确的目标,有远大的志向。不慕虚荣,意志坚定,专心致志等。
【解析】
【3题详解】
A.《送东阳马生序》是一篇赠序,不是书序。故选A。
②这段大江,叫金沙江。水色净蓝,不见沙金的灿黄。眼底的莹澈江流,正与明翠的群峰相映。
③五龙雪山西麓的石鼓镇,深偎于半月似的江湾。
④水浪激溅的渡口,一座碑——中国工农红军第二方面军长征渡江纪念碑,将人们的视线引向高处。毛主席的题词“英勇奋斗的红军万岁”,镌于坚挺的碑身,像霞光一样明亮。
⑤纪念碑是一棵意志的树,朝蓝天生长着希望。战士心中也有这样的树:主干是信仰,花叶是梦想,迎着太阳升起的方向,挺立着,摇动着,要在解放的天空下歌唱,欢庆人民世纪的诞生。他们坚信,第一缕曙色把寥廓天宇染红的时候,阳光会穿破雨霾风障,将人间照得一派明耀。
(4)置身于青草碧透、花瓣纷飞的美景中,我们会情不自禁地想到陶渊明《桃花源记》中的名句:“________________,________________。”
【答案】①.关山度若飞②.人有悲欢离合③.月有阴晴圆缺④.山回路转不见君⑤.雪上空留马行处⑥.芳草鲜美⑦.落英缤纷
2024年吉林省中考真题数学试卷含答案解析

2024年吉林省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1-【答案】D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同【答案】A 【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,2【答案】C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C 【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 .8.因式分解:a 2﹣3a=.【答案】a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.不等式组2030x x ->⎧⎨-<⎩的解集为 .【答案】23x <</32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.正六边形的每个内角等于°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC 的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .【答案】()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为 2m (结果保留π).三、解答题15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有∴幸运游客小明与小亮恰好抽中同一个项目的概率17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.【答案】证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.【答案】白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴黑色琴键由:361652+=(个),答:白色琴键52个,黑色琴键36个.19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.【答案】(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E、F,作直线EF,则直线EF即为所求;,的中点;易证明四边形ABCD是矩形,且E、F分别为AB CD、,作直线GH,则直线GH即为所求;(2)解:如图所示,取格点G H⊥.易证明四边形OGTH是正方形,点E为正方形OGTH的中心,则OE GH20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元?(1)20192023-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,②201920232020年全国居民人均可支配收入最低.【答案】(1)8485元(2)35128元(3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元,答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)在Rt GAD 中,45EAD ∠=∴873tan DG AG DG EAD===∠在Rt GAC △中,37EAC ∠=∴tan 873CG AG EAC =⋅∠=∴873654.75CD DG CG =-=-23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:以对称轴为基准向两边各取相同的长度/mm x 16.519.823.126.429.7凳面的宽度/mm y 115.5132148.5165181.5【分析数据】如图③,小组根据表中x ,y 的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1),解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P从点A /s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.∵90C ∠=︒,30B ∠=∴60BAC ∠=︒,∵AD 平分BAC ∠,∴30PAQ BAD ∠=∠=∵PQ AB ∥,∴30APQ BAD ∠=∠=∴PAQ APQ =∠∠,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =∴QE QA =,即22AE AQ t ==∵30PAQ ∠=︒,∴1322PG AP ==∵PQE V 是等边三角形,∴QE PQ AQ ===∴12S QE PG =⋅=∵PQE V 是等边三角形,∴60E ∠=︒,而CE AE AC =-∴tan CF CE =⋅∠∴1S CE CF =⋅∵30DAC ∠=︒DCA ∠=由上知3DC =,∴23AD =,∴此时323PD t =-26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.则10m -≤≤,综上:10m -≤≤或12m ≤≤.【详解】(1)解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩;(2)解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,∴0x ≤时,y 随着x 的增大而增大,综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y ∴当2t <时,抛物线223y x x =-+与直线y 当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线∴当11t ≥时,抛物线223y x x =-+与直线y ∴当2t <或11t ≥时,抛物线223y x x =-+与直线即:当2t <或11t ≥时,关于x 的方程2ax +Ⅲ:∵,1P Q x m x m ==-+,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,∴12m ≤≤;②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,∴10m -≤≤,综上:10m -≤≤或12m ≤≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.书法是我国传统文化和艺术修养的重要组成部分。
请欣赏明代书法家祝枝山的书法作品(局部),依据图片中方框内的句子回答问题。
(1)关于书法字体,判断正确的一项是()
A.篆书 B.隶书 C.楷书 D.行书
(2)将“受命之日寝不安席食不甘味”正确、工整、规范地抄写下来。
__________________________________________
(3)若将此句含义用成语表达,正确的一项是()
A.寝食不安 B.夜长梦多
C.食不果腹 D.废寝忘食
(4)在我们学过的《出师表》中,与此句意思相近的-项是()
A.五月渡泸,深入不毛
B.受命以来,夙夜忧叹
C.苟全性命于乱世,不求闻达于诸侯
D.咨诹善道,察纳雅言
答案:
5.(1)C
(2)评分要求:抄写要求准确、工整、规范。
评分等级可分为三等:书泻具备三个条件,可为一等(1分);书写不足三个条件,可为二等(0.5分);书写出现错误,不得分。
(3)A (4)B。