人教版(五四制)数学九年级上册全册课件【完整版】
最新人教版九年级数学上册全册课件.

1.设计有趣的情景导入,激发学生的学习兴趣。
2.结合生活实际,让学生感受数学在现实中的应用价值。
教案反思
1.教学内容是否全面,是否符合学生的认知水平。
2.教学方法是否有效,学生是否积极参与课堂活动。
3.课堂提问和解答环节是否充分,学生是否真正理解和掌握所学知识。
4.课后作业和拓展延伸的设置是否合理,能否有效提高学生的数学素养。
六、板书设计
1.一元二次方程的解法步骤。
2.几何证明的基本方法。
3.圆的性质及应用。
七、作业设计
1.作业题目:
(1)求解以下一元二次方程:x^2 - 5x + 6 = 0。
(2)证明:等腰三角形的底角相等。
(3)已知圆的半径为5,求该圆的面积。
2.答案:
(1)x1 = 3, x2 = 2。
(2)证明过程略。
2.学会几何证明的基本方法,提高逻辑思维能力。
3.掌握圆的性质,并能应用于解决几何问题。
三、教学难点与重点
教学难点:一元二次方程的求解、几何证明的逻辑推理、圆的性质应用。
教学重点:培养学生解决实际问题的能力、提高逻辑思维能力和空间想象力。
四、教具与学具准备
教具:多媒体教学设备、黑板、粉笔。
学具:学生用书、练习本、直尺、圆规。
2.对于重点和难点内容,可以适当放慢语速,提高音量,强调关键信息。
二、时间分配
1.实践情景引入阶段,时间控制在5-10分钟,避免过长而影响后续内容的学习。
2.例题讲解和随堂练习阶段,时间分配要合理,确保学生有足够的时间理解和消化。
三、课堂提问
1.提问要具有针对性,引导学生思考关键问题。
2.鼓励学生主动提问,及时解答他们的疑惑,增强课堂互动。
人教版九年级数学上全册课件(1)

人教版九年级数学上全册课件一、教学内容1. 第一章实数与代数式1.1 有理数1.2 整式1.3 方程与方程组1.4 不等式与不等式组2. 第二章函数2.1 一次函数2.2 二次函数2.3 反比例函数3. 第三章几何3.1 平面几何基本概念3.2 三角形3.3 四边形3.4 圆4. 第四章统计与概率4.1 统计4.2 概率二、教学目标1. 掌握各章节的基本概念、公式、定理,提高学生的数学素养。
2. 培养学生的逻辑思维能力、分析问题解决问题的能力。
3. 通过对全册内容的系统学习,提高学生的数学成绩,为高中数学学习打下坚实基础。
三、教学难点与重点1. 教学难点:函数的图像与性质,几何中的证明与计算。
2. 教学重点:各章节的基本概念、公式、定理。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:课本、练习册、文具。
五、教学过程1. 导入:通过实际情景引入本节课的主题,激发学生的学习兴趣。
2. 新课讲解:详细讲解课本中的例题,引导学生跟随思路,理解并掌握相关知识点。
3. 随堂练习:针对讲解的内容,设计相应的练习题,让学生即时巩固所学知识。
5. 布置作业:根据本节课的内容,设计具有一定难度的作业,让学生课后巩固。
六、板书设计根据讲解的内容,设计简洁清晰的板书,帮助学生梳理知识点,加深记忆。
七、作业设计1. 作业题目:(1) 请列出本节课所讲的主要知识点。
(2) 根据所学内容,完成课后练习题。
(3) 选择一道本节课的例题,用自己的语言解释解题思路。
2. 作业答案:(1) 本节课的主要知识点有:……(2) 课后练习题答案:……(3) 例题解题思路:……八、课后反思及拓展延伸2. 拓展延伸:鼓励学生参加数学竞赛、研究小组等活动,提高学生的数学能力。
重点和难点解析一、教学难点与重点本节课的教学难点主要是函数的图像与性质,以及几何中的证明与计算。
函数的图像与性质是学生理解和掌握函数概念的关键,几何中的证明与计算则是培养学生逻辑思维能力和解决问题能力的重要环节。
人教版化学(五四制)九年级全一册课件【新教材】

化学
全册优质课课件
课题一 金属材料
学习目标
1.掌握常见金属的特性及应用,以及合金的性能; 2.掌握金属材料与人类生活和社会发展的密切关系; 3.理解性质与用途之间的关系。
青铜器时代
马 踏 飞 燕
秦 陵 铜 车 马
司 母 戊 大 方 鼎
铁器时代
金
铁耙
镡
金
首
铁
剑
河北沧州铁狮子
特性
不同金属的物理性质差别也较大。例如: 1.大多数金属都是银白色的,但铜却呈紫红色, 金呈黄色; 2.在常温下,大多数金属是固态,但汞是液态; 3.金属的导电性、导热性、密度、熔点、硬度等 物理性质差别也较大。
一些金属物理性质的比较
物理性质 导电性(以银的 导电性为100作标 准)
密度/(g·cm-3)
3
金属活动性顺序
学习目标
1.知道铁、铝、铜等常见金属与氧气的反应; 2.通过对常见金属与某些金属化合物溶液、盐酸(或 稀硫酸)反应的实验探究,认识置换反应; 3.了解金属的活动性顺序,并能用金属活动性顺序对 有关的置换反应进行简单的判断。
金属材料的发展
青铜器
铁器
铝器
• 铝的应用非常广泛,这不 仅与铝的物理性质有关,还与 铝的化学性质密切有关。
铬铁 银 铜 金 铝 铅 (大) 9 4-5 2.5-4 2.5-3 2.5-3 2-2.9 1.5 (小)
金属 之最
地壳中含量最高的金属元素──铝 人体中含量最高的金属元素──钙 目前世界年产量最高的金属──铁 导电、导热性最好的金属──银 硬度最高的金属──铬 熔点最高的金属──钨 熔点最低的金属──汞 密度最大的金属──锇 密度最小的金属──锂
最新人教版九年级数学上册全册课件.

最新人教版九年级数学上册全册课件.一、教学内容1. 相似三角形的定义:探讨两个三角形对应角度相等,对应边成比例的图形。
2. 相似三角形的性质:包括面积比、周长比等,以及相似三角形中位线、高线、角平分线的性质。
3. 相似三角形的判定:通过已知条件判定两个三角形相似的方法。
二、教学目标1. 理解相似三角形的定义,掌握相似三角形的性质和判定方法。
2. 能够运用相似三角形的知识解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生分析问题、解决问题的能力。
三、教学难点与重点重点:相似三角形的定义、性质及判定。
难点:相似三角形在实际问题中的运用。
四、教具与学具准备教具:黑板、粉笔、多媒体课件。
学具:笔记本、尺子、圆规、三角板。
五、教学过程1. 实践情景引入:通过展示两个形状相似的物体,引导学生思考如何判断它们相似。
2. 知识讲解:讲解相似三角形的定义、性质及判定方法,结合实例进行讲解。
3. 例题讲解:选取具有代表性的例题,讲解相似三角形的解题思路和方法。
4. 随堂练习:布置随堂练习题,让学生巩固所学知识,并及时解答学生的疑问。
6. 作业布置:布置课后作业,巩固所学知识。
六、板书设计板书设计如下:相似三角形定义:对应角度相等,对应边成比例的三角形性质:1. 面积比等于相似比的平方2. 周长比等于相似比3. 中位线、高线、角平分线性质判定:1. 已知两三角形相似2. 根据相似三角形的性质,解决问题七、作业设计1. 作业题目:已知两个三角形相似,求解未知边的长度。
已知:三角形ABC与三角形DEF相似,AB=8cm,BC=12cm,DE=6cm,EF=9cm。
求:DF的长度。
答案:DF=5cm。
2. 作业题目:已知两个三角形相似,求解未知角的度数。
已知:三角形ABC与三角形DEF相似,∠A=40°,∠D=60°。
求:∠B的度数。
答案:∠B=80°。
八、课后反思及拓展延伸本节课通过实例引入,让学生直观地理解相似三角形的定义,通过讲解和练习,使学生掌握相似三角形的性质和判定方法。
人教版(五四制)数学八年级下册全册课件【完整版】

说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等。
逆命题: 内错角相等,两条直线平行。成立 (2)如果两个实数相等,那么它们的立方相等。
逆命题:如果两个实数的立方相等,那么这两个实数相等。成立 (3)如果两个实数相等,那么它们的绝对值相等。
逆命题:如果两个实数的绝对值相等,那么这两个实数相等不。成立 (4)全等三角形的对应角相等。 逆命题:对应角相等的两个三角形是全等三角形。不成立 (5)对顶角相等。 逆命题:相等的两个角是对顶角。不成立
感悟:原命题成立时, 逆命题有时成立,有时不
成立。
谢谢
特殊的平行四边形
一、矩形
观察思考 形成概念
当独木桥前后运动时,四边形ABCD是什么形状? 当独木桥最后停下时,四边形ABCD有什么特殊的变化? 当独木桥静止时,四边形ABCD是什么图形?
c
b
B
C
a
C C 90
勾股定理的逆定理:如果三角形的三边长
a、b、c满足 a2 + b2 = c2,那么这个三
角形是直角三角形。
A
D
工人师傅想要检测一扇小门两边AB、
CD是否垂直于底边BC和门的上边AD,
但他只带了一把卷尺,你能替工人
师傅想办法完成任务吗?
B
C
例如检查△ABC是否直角三角形?
定理与逆定理
3.直角三角形两条边分别是3和4,则第三条边是 ______________。
总结归纳
本节课你学到哪些知识?有什么收获?
谢谢
勾股定理的逆定理
预习检测
1.下列三条线段不能组成直角三角形 的是( )
A. a 8,b 15,c 17
B. a 9,b 12,c 15
人教版(五四制)数学九年级下册全册课件【完整版】

相同点:形状相同。
不同点:大小不一定相同。
解析:直观上,把一个图形放大或缩小得到的图形
与原图形是相似的。实际上,相似图形是指形状相同, 大小不一定相同的图形。
想一想
观察右边的图形是否是相似图形?
解析:相似图形只是图形的形状相同,大小不一定相同。
想一想
下列说法中正确的是( ) ①所有的等腰梯形都是相似图形; ②所有的平行四边形都是相似图形; ③所有的圆都是相似图形; ④所有的正方形都是相似图形; ⑤所有的等腰三角形都是相似图形。 A.②③⑤ B.①②④ C.③④ D.①②③
相似多边形的性质: 相似多边形对应角相等,对应边的比相等。
相似多边形对应边的比称为相似比。
做一做
在比例尺为1:10000000的地图上,量的甲、乙两地 的距离是30cm ,求两地的实际距离。
探讨
两个面积相等的长方形是相似的吗? 平面镜中的像与本人的相似吗?哈哈镜呢? 放电影时,胶片上的图像和它映射到屏幕上的图像是相似的吗?
如果两个三角形的三组对应边的比相等,那么 这两个三角形相似。 三角形相似的判定方法2:
两个三角形的两组对应边的比相等,且它们的 夹角相等,那么这两个三角形相似。
三角形相似的判定方法3:
如果一个三角形的两个角与另一个三角形两个 角对应相等,那么这两个三角形相似。
相似三角形对应高的比、对应中线的比、 对应角平分线的比、周长的比等于相似比。
平行线分线段成比例定理: 三条平行线截两条直线,所得的对应线段的比相等。
平行线分线段成比例定理推论:平行于三角形一 边的直线截其他两边(或两边延长线),所得的对应 线段的比相等。
判定三角形相似的(预备)定理:平行于三角形 一边的直线和其他两边所在直线相交,所成的三角 形与原来三角形相似。
新人教版九年级数学上册全册课件.

新人教版九年级数学上册全册课件.一、教学内容二、教学目标1. 理解并掌握二次函数、锐角三角函数、圆的性质及计算方法;2. 能够运用所学的知识解决实际问题,培养解决问题的能力;3. 培养学生的空间想象能力、逻辑思维能力和数据分析能力。
三、教学难点与重点教学难点:二次函数的性质及图像、锐角三角函数的计算、圆的方程与性质。
教学重点:二次函数的解析式、锐角三角函数的定义、圆与直线的关系。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、圆规、三角板;2. 学具:课本、练习本、圆规、三角板。
五、教学过程1. 导入:通过展示生活中的实例,引入二次函数、锐角三角函数、圆的概念;2. 新课讲解:(1)讲解二次函数的性质、图像及解析式;(2)讲解锐角三角函数的定义、图像及计算;(3)讲解圆的性质、方程及与直线的关系;3. 例题讲解:针对每个知识点,讲解经典例题,引导学生运用所学知识解决问题;4. 随堂练习:布置一些有针对性的练习题,让学生巩固所学知识;6. 课堂反馈:了解学生的学习情况,及时解答学生的疑问。
六、板书设计1. 二次函数:性质、图像、解析式;2. 锐角三角函数:定义、图像、计算;3. 圆:性质、方程、与直线的关系;4. 例题及解题步骤;5. 课堂练习题目。
七、作业设计1. 作业题目:(1)求二次函数y=x^22x3的顶点坐标和对称轴;(2)已知直角三角形的一个锐角为30°,求其余两个锐角的正弦、余弦、正切值;(3)已知圆的方程为(x2)^2+(y+3)^2=25,求圆的半径和圆心坐标。
2. 答案:八、课后反思及拓展延伸1. 反思:本节课的教学效果如何?学生对知识点的掌握程度如何?哪些地方需要加强?2. 拓展延伸:引导学生探索二次函数、锐角三角函数、圆在实际生活中的应用,提高学生的实际应用能力。
可布置一些拓展性练习题,如研究二次函数图像的变换、锐角三角函数在实际测量中的应用等。
重点和难点解析1. 教学难点与重点的确定;2. 教学过程中的例题讲解和随堂练习;3. 作业设计中的题目和答案;4. 课后反思及拓展延伸。
人教版五四学制九年级(初三)数学上册全套PPT课件

某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20 x2 40 x 20
这三个函数关系式有什么共同点?
y 6 5 4 3 2 1
y = x 2 - 6x + 9 x2 + x - 2 = 0 x 2 - 6x + 9 = 0 x2 - x + 1 = 0
y=x +x-2
2
-3 -2 -1O -1 -2
1 2 3 4 5 6 x
2.小组合作,类比探究
归纳 一般地,从二次函数 y = ax 2 + bx + c 的图象可知: (1)如果抛物线 y = ax 2 + bx + c 与 x 轴有公共点, 公共点的横坐标是 x0,那么当 x = x0 时,函数值是 0,因 此 x = x0 是方程 ax 2 + bx + c = 0 的一个根. (2)二次函数 y = ax 2 + bx + c 的图象与 x 轴的位置 关系有三种:没有公共点,有一个公共点,有两个公共 点. 这对应着一元二次方程 ax 2 + bx + c = 0 的根的三种 情况:没有实数根,有两个相等的实数根,有两个不等 的实数根.
y 6 x2
1 2 1 m n n 2 2
y 20 x2 40 x 20源自通过实例,归纳二次函数的定义
二次函数的定义:一般地,形如 (a ,b ,c 是常数,a≠0) 2 y ax bx c x 是自变量,a, 的函数,叫做二次函数.其中, b,c 分别是函数解析式的二次项系数、一次项 系数和常数项.