应用时间序列分析(知识点总结)

合集下载

统计学时间序列分析

统计学时间序列分析

统计学时间序列分析时间序列是经济学、金融学和其他社会科学领域中的一个重要分析对象。

通过对时间序列数据的分析,我们可以揭示数据之间的关系、趋势和周期性,从而为决策提供有力的支持和预测。

统计学时间序列分析是一种应用数学方法的工具,用于对时间序列数据进行建模和预测。

一、时间序列的基本概念时间序列是按时间顺序排列的一系列观测值的集合。

在时间序列分析中,我们关注数据之间的内在关系,而忽略其他因素的影响。

时间序列数据通常具有以下特征:1. 趋势性:时间序列数据的长期变化趋势。

2. 季节性:时间序列数据在一年内固定时间段内的重复模式。

3. 循环性:时间序列数据中存在的多重周期性波动。

4. 随机性:时间序列数据中的不规则、无法预测的波动。

二、时间序列分析的方法在进行时间序列分析时,我们可以采用以下方法来揭示数据的内在规律:1. 描述性统计分析:通过计算数据的均值、方差、相关系数等指标,对数据的整体特征进行描述。

2. 图表分析:通过绘制折线图、柱状图等图表,展示时间序列数据的变化趋势和周期性。

3. 分解模型:将时间序列数据分解为趋势项、季节性项和残差项,以揭示数据的内在结构。

4. 平滑法:通过移动平均法、指数平滑法等方法,消除时间序列数据的随机波动,从而揭示趋势和季节性成分。

5. 自回归移动平均模型(ARIMA):ARIMA模型是一种常用的时间序列分析方法,可以对数据进行预测和建模。

它综合考虑了自回归、移动平均和差分的影响因素。

三、时间序列分析的应用领域时间序列分析广泛应用于经济学、金融学、市场调研等领域,具体应用包括:1. 经济预测:通过对经济数据进行时间序列分析,可以预测未来的经济发展趋势,为政府决策提供参考。

2. 股票市场分析:时间序列分析可以帮助分析师预测股票市场的走势,制定投资策略。

3. 需求预测:通过对销售数据进行时间序列分析,可以预测产品的需求量,为企业的生产和供应链管理提供指导。

4. 天气预测:通过对气象数据进行时间序列分析,可以预测未来的天气状况,为农业、旅游等行业提供参考。

统计学原理 时间序列 知识点公式汇总

统计学原理 时间序列 知识点公式汇总
累计增长量=报告期水平-某一固定时期(基期)水平
累计增长量=∑逐期增长量
年距增长量=报告期发展水平-上年同期发展水平
平均增长量
平均增长量=∑逐期增长量/逐期增长量个数
=累计增长量/(动态数列项数-1)
时间序列速度指标分析
发展速度
发展速度=报告期水平/基期水平
定基发展速度(总速度)=报告期水平/基期水平
定基增长速度=定基发展速度-1
=ห้องสมุดไป่ตู้计增长量/固定基期水平
环比增长速度=环比发展速度-1
=逐期增长量/前一期水平
同比增长速度=同比增长量/上年同期发展水平=同比发展速度-1
平均发展速度
几何平均法
方程法
平均增长速度
平均增长速度=平均发展速度-1
>1某种现象在一个较长的时期内逐期平均递增
平均递增速度平均递增率
<1某种现象在一个较长的时期内逐期平均递减
平均递减速度平均递减率
长期趋势分析
时距扩大法
同一数列前后时距长短应当一致,根据具体的性质和特点而定。但会使新序列的项数大大减少,丢失原时间序列所包含的大量信息,不利于进一步的深入分析。
移动平均法
修饰项数越多,趋势线越平滑;当移动平均的时期长度等于周期长度或其整倍数时,能把周期波动完全抹掉
项数值=原数列项数-移动平均项数+1
最小平方法
季节变动分析
折线图
散点图
3年↑资料
同期平均法
1、列表横:月/季,纵:年
2、∑各年同月/季及各年同月/季平均数
3、∑同年各月/季及同年各月/季平均数
4、求季节比率(季节指数)
S.I.=同月(季)平均数/全期各月平均数*100%
月资料,∑季节比例=1200%

第六章 时间序列分析

第六章  时间序列分析

第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。

这种数据称为时间序列数据。

时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。

时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。

表现了现象在时间上的动态变化,故又称为动态数列。

一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。

同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。

研究时间数列的意义:了解与预测。

[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。

知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。

在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。

几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。

二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。

应用统计学时间数列分析

应用统计学时间数列分析

应用统计学时间数列分析时间数列分析是统计学中的一项重要内容,通过对时间序列数据进行分析,可以揭示数据之间的内在关联和规律。

本文将探讨时间数列分析在实际应用中的重要性和方法。

什么是时间数列分析时间数列(Time Series)指的是按时间顺序排列的一系列数据观测值。

时间数列分析是指根据时间数列数据进行的统计分析方法,旨在发现数据中存在的趋势、季节性、周期性等规律,以便进行预测和决策。

时间数列分析的重要性时间数列分析在许多领域都有广泛的应用,包括经济学、金融、医学、气象等。

通过时间数列分析,我们可以:•发现数据中的趋势和规律•预测未来数据走势•制定决策和策略•检验模型的有效性•揭示不同变量之间的关联时间数列分析方法1. 平稳性检验平稳性是时间数列分析的前提条件之一,可以通过单位根检验、ADF检验等方法来判断时间数列是否平稳。

如果时间数列不平稳,需要进行差分处理或其他转换方法使其平稳化。

2. 自相关性分析自相关性分析是检验数据是否存在自相关性(即相邻数据之间的相关性)的方法,可以通过自相关图和偏自相关图来判断数据中的自相关性程度。

3. 移动平均法移动平均法是一种基本的时间数列预测方法,通过计算一定窗口内的数据均值来平滑数据曲线,以便更好地观察数据走势和预测未来走向。

4. 季节性调整在时间数列分析中,常常需要对数据进行季节性调整,以消除季节性影响,使预测结果更为准确。

应用实例1. 股票价格预测时间数列分析在金融领域有着广泛的应用。

通过分析股票价格的时间数列数据,可以预测股价的未来走势,指导投资决策。

2. 气象预测气象数据也是时间数列数据的一种,通过对气象数据进行时间数列分析,可以预测未来的气候变化和天气情况,为灾害预警和农业生产提供依据。

3. 经济指标分析经济数据的时间数列分析可以揭示经济增长趋势、波动周期等信息,帮助政府和企业做出相应决策。

结语时间数列分析是统计学中一个重要的分析方法,通过对时间序列数据进行分析,可以揭示数据之间的规律、趋势和关联。

计量经济学中的时间序列分析

计量经济学中的时间序列分析

计量经济学中的时间序列分析时间序列分析是计量经济学中的重要内容之一,它主要研究特定变量随时间变化的规律性和趋势。

通过时间序列分析,我们可以更好地理解经济现象,预测未来变化趋势,制定合适的政策和策略。

本文将从时间序列的概念入手,介绍时间序列分析的基本原理、方法和应用。

一、时间序列的概念时间序列是按照时间顺序排列的一系列数据观测值的集合。

在计量经济学中,时间序列通常用来观察和研究某一经济变量在不同时间点上的变化情况。

时间序列数据可以是连续的,也可以是间断的,常见的时间单位包括年、季、月、周等。

通过对时间序列数据的分析,我们可以揭示出其中的规律性和特征。

二、时间序列分析的基本原理时间序列分析的基本原理是利用过去的数据来预测未来的发展趋势。

在时间序列分析中,常用的方法包括趋势分析、周期性分析、季节性分析和不规则波动分析。

趋势分析主要用来观察时间序列数据的长期变化趋势,周期性分析则是研究数据是否存在固定长度的周期性波动,季节性分析则是研究数据是否呈现出固定的季节性变化规律,而不规则波动分析则是研究一些随机因素对数据的影响。

三、时间序列分析的方法时间序列分析的方法有很多种,其中常用的包括移动平均法、指数平滑法、回归分析法、ARIMA模型等。

移动平均法通过计算连续几个期间的平均值来平滑数据,达到去除数据波动的目的;指数平滑法则是通过计算加权平均来对数据进行平滑处理,使得预测值更加准确;回归分析法则是通过建立经济模型来研究时间序列数据之间的关系,进行预测和分析;ARIMA模型则是一种时间序列的自回归与移动平均模型,可以对时间序列数据进行拟合和预测。

四、时间序列分析的应用时间序列分析在经济学、金融学、管理学等领域有着广泛的应用。

在经济学中,时间序列分析可以用来研究经济增长、通货膨胀、失业等经济现象的发展趋势;在金融学中,时间序列分析可以用来预测股票价格、汇率、利率等金融变量的变化情况;在管理学中,时间序列分析可以用来制定企业的生产计划和销售策略,提高企业的运营效率。

浅谈时间序列的预测(知识点总结)

浅谈时间序列的预测(知识点总结)

浅谈时间序列的预测第一部份、时间序列及其分解时间序列是同一现象在不同时间上的相继观察值排列而成的序列。

它可以分平稳序列和非平稳序列两大类,平稳是基本上不存在趋势序列。

非平稳序列是包含趋势、季节性或周期性的序列,它可能只含有其中的一部份,也可能是几种成分的组合。

趋势是时间序列在长时期内呈现出来的某种持续上升或持续下降的变动,也称为长期趋势。

时间序列中的趋势可以是线性也可以非线性的。

季节性也称为季节变动,它是时间序列在一年内重复出现的周期性波动周期性也称循环波动,它是时间序列中呈现出 来的围绕长期趋势的一种波浪形或振荡式变动。

时间序列中除去趋势、周期性和季节性之后的偶然性变动,称为随机性,也称为不规则波动综合上述时间序列可分为;)()、季节性或季节变动趋势(S T )(I C 动)、随机性或不规则波周期性或循环波动(传统时间序列分析的一一项主要内容就是把这些成分从时间序列中分离出来,并将它们之间的关系用数学关系予以表达,而后分别进行分析。

按4种成分时间序列的影响方式不同,时间序列可分解为加法模型、乘法模型等。

其中较为常用的是乘法模型,其表现形式t t t t t I C S T Y ⨯⨯⨯= 第二部份、时间序列的描述分析1、图形描述作图可以为选择预测模型提供基本依据 2、增长率分析增长率是对现象在不同时间的变化状况所做的描述。

由于对比的基期不同,增长率有不同的计算方法。

增长率也称增长速度,它是时间序列中报告其观察值与基期观察值之比减1后的结果,用%表示。

由于对比基期不同,增长率可以分为环比增长率和定基增长率。

环比增长率是报告期观察值与前一时期观察值之比减1,说明现象逐期增长变化的程度;定基增长率是报告期观察值与某一固定时期观察值之比减1,说明现象在整个观察期内总的增长变化程度。

设增长率为G ,则环比增长率和定基增长率可表示为;期的观察值表示用于对比的固定基在上式中定基增长率;环比增长率;0000111Y ,,2,11,,2,11n i Y Y Y Y Y G n i Y Y Y Y Y G ii i i ii i i i =-=-==-=-=---平均增长率;也称平均增长速度,它是时间序列中逐期环比值的几何平均数减1后的结果,计算公式为;为环比值的个数表示平均增长率;式中,n G Y Y Y Y Y Y Y Y G n nn n n 11011201-=-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-关于增长率分析中应注意以下两个问题1、当时间序列中有观察值出现0或负数时,不宜计算增长率2、在有些情况下,不能单纯就增长率论增长率,要注意增长率与绝对水平的结合分析。

第六章时间序列分析

第六章时间序列分析

第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。

这种数据称为时间序列数据。

时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。

时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。

表现了现象在时间上的动态变化,故又称为动态数列。

一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。

同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。

研究时间数列的意义:了解与预测。

[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。

知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。

在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。

几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。

二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。

时间序列法统计知识点

时间序列法统计知识点

时间序列法统计知识点时间序列法是一种基于时间的统计分析方法,广泛应用于各个行业,包括金融、经济、气象、销售等领域。

通过分析时间序列的特点和规律,可以预测未来的趋势和变动,为决策提供依据。

本文将从以下几个方面介绍时间序列法的基本原理和应用。

一、时间序列的概念和特点时间序列是按时间顺序排列的数据序列,每个时间点都对应一个数值。

时间序列的特点包括趋势、季节性和随机性。

趋势是指时间序列在长期内呈现出的总体变化方向,可以是上升、下降或平稳。

季节性是指时间序列在短期内呈现出的周期性变动,例如每年的销售量在圣诞节前后会有明显增加。

随机性是指时间序列的不规则波动,不受趋势和季节性的影响。

二、时间序列分析的方法时间序列分析主要包括平滑法、分解法和回归法等方法。

1.平滑法平滑法是一种通过计算时间序列的移动平均值或加权平均值来消除随机波动的方法。

常用的平滑法包括简单平滑法和指数平滑法。

简单平滑法是通过计算时间序列的移动平均值来获得趋势;指数平滑法是通过加权平均计算来消除随机波动,并预测未来趋势。

2.分解法分解法是将时间序列分解为趋势、季节性和随机性三个部分,然后对每个部分进行分析。

分解法常用的方法有X-11分析法和STL分解法。

3.回归法回归法是通过建立时间序列与其他变量之间的回归模型来预测未来趋势。

回归法常用的方法有简单线性回归和多元回归。

三、时间序列分析的应用时间序列分析在各个领域都有广泛的应用。

1.经济领域时间序列法可以用来预测经济指标的变化,例如GDP、通货膨胀率等。

通过对时间序列的分析,可以帮助政府和企业做出相应的决策,例如调整货币政策、制定生产计划等。

2.金融领域时间序列法在金融领域的应用非常广泛。

通过对股票价格、汇率、利率等时间序列的分析,可以预测市场的趋势和波动,帮助投资者做出正确的投资决策。

3.销售预测时间序列法可以用来预测产品的销售量,帮助企业做出合理的生产计划和库存管理。

通过对历史销售数据的分析,可以发现产品的季节性销售规律,并预测未来的销售趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v记 B 为后移算子,有
BXt = Xt−1 X t−d = Bd Xt , ∀d ≥ 1
14
后移算子的运算性质
(1) B0 = 1;
(2) B(CXt ) = CB( Xt ) = CXt−1 , C为任意常数; (3) B( X t ± Yt ) = X t−1 ± Yt −1;
(4) Bn X t = Xt−n;
25
下题中第一张为ACF图, 第二张为PACF图
1
0.5
0 12345678
-0.5
-1
1
0.5
0 12345678
-0.5
-1
该随机过程应建模为(指出滞后阶数) AR(1) 过程.
26
下题中第一张为ACF图, 第二张为PACF图
1
0.5
0 12345678
-0.5
-1
1
0.5
0 12345678
-0.5
11
一. 差 分
差分是通过逐项相减消除前后期数据相关性 的方法,可剔除序列中的趋势性,是非平稳 序列的均值平稳化的预处理.
v一阶差分(相距一期的两个序列值之间的减
法运算称为1 阶差分运算)
∇X t
=
X t

X t−1
其中 称为差分算子.
12
高阶差 分
对 1 阶差分后序列再进行一次 1 阶差分运算 称为 2 阶差分:
23
四.
ARM A模 型 的 特 性
一. 差分方程
二. 格林函数和平稳性 三. 逆函数和可逆性 四. 时间序列模型的统计特性
均值函数 方差函数 自协方差函数 自相关函数 偏自相关函数
低 阶 模 型
24
五.
平 三类平稳时间序列的自相关函数 (ACF)和 稳 偏自相关函数 (PACF) 的统计特性: 时 间 模 型 的 建 立
-1
该随机过程应建模为(指出滞后阶数) MA(1) 过程.
27
下题中第一张为ACF图, 第二张为PACF图
1
0.5
0 12345678
-0.5
-1
1
0.5
0 12345678
-0.5
-1
该随机过程应建模为(不需指出滞后阶数) ARMA 过程.
28
六.
平 稳 时 间 预 测
一. 条件期望预测 Xˆ t (l) = E( Xt+l | Xt , Xt−1 , Xt−2 ,L) 二. 条件期望的性质 三. 预测的三种形式
18
季节差 分
季节差分运算(S 为周期)
∇sXt = Xt − Xt−s.

. 一. AR(n)模型

二. MA(m)模型


三. ARMA(n, m)模型


at : WN (0,σ 2 )

E(at ) =
0,
Var(at )
=
σ
2 a
,
E(atas ) =
0,
s

t


20
一. AR(n)模型
• 对于蕴含着固定周期的序列进行步长为周期 长度的差分运算,通常可以较好地提取周期 信息.
17
四少都具有周期性.
设 Xt 为一含有周期为S 的周期性波动序列,则 Xt, Xt+s, Xt+2s, … 为各相应周期点的数值,它们 则表现出非常相近或呈现某一趋势的特征,如 果把每一观察值同下一周期相应时刻的观察值 相减,这就叫季节差分. 季节差分可以消除周期性的影响.

五. 随机游走(Random Walk)序列


3
一.时间序列的定义
1. 从统计的角度讲: 时间序列是某一个指标在不同 的时间上的不同数值按时间先后顺序排成的序列.
2. 从数学意义上讲: 时间序列是一组随机变量 X(t) (或一个随机过程) 在一系列时刻 t1, t2, t3, …, tN (t1 < t2 < …< tN) 的一 次样本实现. 3. 从系统意义上讲: 时间序列是某一系统在不同 时间(条件)下的响应.
时间序列分析 知识点总结
本课程主要内容
• 时间序列简介 • 时间序列的预处理 • 平稳时间序列模型 • ARMA模型的特性 • 平稳时间序列模型的建立 • 平稳时间序列预测

一. 时间序列的定义
. 二. 时间序列的主要分类


三.宽平稳(Weak Stationary)

四. 白噪声序列(White Noise)
∇2 Xt = ∇Xt − ∇Xt−1
依此类推,对 d 1 阶差分后序列再进行一 次1 阶差分运算称为 d 阶差分:
∇d X t = ∇d −1 X t − ∇ d −1 X t −1
13
二. 后移算子(Backshift Operator)
v后移算子类似于一个时间指针,当前序列值 乘以一个后移算子,就相当于把当前序列值 的时间向过去拨了一个时刻.
4
二. 时间序列的主要分类
按序列的统计特性分: 平稳序列, 非平稳序列.
u平稳序列:时间序列的统计特性不随时间 而变化。
u非平稳序列:时间序列的统计特性随时间
而变化。
平稳时间序列
严平稳序列 宽平稳序列
5
三.宽平稳(Weak Stationary)
• 满足如下条件的序列称为宽平稳序列
(1)
E
(
X
2 t
d
∑ = [1 +
(−1)
k
C
k d
B
k
]
X
t
k=1
其中
Cdk
=
d! k !(d −
. k)!
16
三. 差分方式的选择
• 序列蕴含着显著的线性趋势,一阶差分就可 以实现趋势平稳 ;
• 序列蕴含着曲线趋势,通常低阶(二阶或三 阶)差分就可以提取出曲线趋势的影响;
• 一般而言,若序列具有二次趋势,则两次差 分后可变换为平稳序列;
n
n
∑ ∑ (5) (1 − B)n =
(−1)i Cni Bi = 1 +
(
−1)i
C
i n
B
i
,
i=0
i =1
其中
C
i n
=
n! i !(n − i)! .
15
二者的关系
∇Xt = Xt − Xt−1 = X t − BX t = (1 − B) X t
⇒ ∇ =1− B
从而
∇d X t = (1 − B)d X t
用差分方程形式进行预测
作超前一步和两步预测 给出95%的置信区间
29
X at
t
=
ϕ 1
X
t
−1
+ϕ 2
:
WN
(0,σ
2 a
)
Xt−2
+L
+
ϕ n
X
t−n
+
at

E
(
X
sat
)
=
0,
∀s
<
t
AR 模型描述的是系统对过去自身 状态的记忆.
21
二. MA(m)模型

X a
t
t
= at − θ1at : WN (0,σ
−1
2)
a

θ
2at
−2
−L
− θmat −m
6
严平稳与宽平稳的关系
• 一般关系 – 严平稳条件比宽平稳条件苛刻,通常情况下, 严平稳(低阶矩存在)能推出宽平稳成立, 而宽平稳序列不能反推严平稳成立;
严平稳
低阶矩存在
宽平稳
7
四. 白噪声序列 (White Noise)
• 白噪声序列{at} 也称为纯随机序列, 它 满足如下两条性质 :
(1) Eat = 0 , ∀t ∈T
MA 模型描述的是系统对过去时刻进 入系统的噪声的记忆
22
三. ARMA(n, m)模型

Xt
=
ϕ 1
X
t
−1
+L + ϕn Xt−n
at
:
WN
(0,
σ
2 a
)
+
at
− θ1at−1
−L −θmat−m
E ( Xs ⋅ at ) =0, ∀s < t
ARMA 模型则是系统对过去自身状态以及各 时刻进入的噪声的记忆。
二. 后移算子

X t = X t −1 + at Var( X t ) = ∞
其中: at 为白噪声序列, 那么就称该模型为随机游 走模型, 这样的时间序列称随机游走过程.

三. 差分方式的选择


四. 季节差分

注意: 随机游走过程是非平稳时间序列.


9
10
时间序列的非平稳性及处理方法 1. 均值非平稳:差分 2. 方差和自协方差非平稳:Box-Cox变换
)
<
∞,
∀t
∈T.
方差有界
(2) E( Xt ) = µ , µ 为常数, ∀t ∈ T . 均值为常数
(3) γ (t, s) = γ (t + h, s + h) = γ (s − t, 0), ∀t, s, h 且 s − t ∈ T .
自协方差函数只依赖于时间的间隔 长度, 而与时间的起止点无关
(2)
γ
(t,
s)
=
σ 2 , 0,
相关文档
最新文档