第十二章陶瓷烧结原理与技术

合集下载

陶瓷烧结PPT课件

陶瓷烧结PPT课件

未来研究方向与展望
新材料与新工艺的开发
跨学科合作与技术融合
智能化与数字化技术的 应用
未来,研究者们将继续探索新型陶瓷 材料,研究新的烧结工艺和技术,以 满足各种应用需求。同时,如何实现 陶瓷材料的绿色生产和降低成本也是 未来的重要研究方向。
陶瓷烧结技术涉及到材料科学、物理 学、化学等多个学科领域,未来的研 究将更加注重跨学科的合作和技术融 合,以推动陶瓷材料的发展和应用。
还原气氛
可以还原杂质,提高陶瓷的纯度。
压力的影响
常压烧结
是最常见的烧结方式,适用于大多数 陶瓷材料。
加压烧结
在加压条件下,可以促进陶瓷的致密 化,提高其性能。
05
陶瓷烧结的质量控制与检测
质量控制方法
原料质量控制
对原料的化学成分、粒度、含水 率等指标进行严格检测和控制,
确保原料质量稳定。
工艺参数控制
在烧结过程中,对温度、压力、气 氛等工艺参数进行精确控制,以获 得最佳的烧结效果。
设备维护与校准
定期对烧结设备进行维护和校准, 确保设备运行稳定,提高产品的重 复性和可靠性。
性能检测与评价
物理性能检测
检测产品的密度、气孔率、热膨 胀系数等物理性能指标,确保产
品性能符合要求。
力学性能检测
通过抗弯强度、抗压强度等力学 性能试验,评估产品的机械性能
和可靠性。
耐腐蚀性能检测
对产品的耐酸、耐碱、耐热等性 能进行检测,以适应不同环境下
的使用要求。
缺陷分析与改进
缺陷识别
通过外观检查、无损检测等方法,识别产品中的 缺陷和问题。
原因分析
对缺陷产生的原因进行深入分析,找出根本原因 并制定相应的改进措施。

陶瓷烧结方法

陶瓷烧结方法
特点
马弗炉是一种传统的陶瓷烧成设备,具有结构简单、操作方便、加 热速度快等优点。
应用范围
适用于各种陶瓷材料的烧成、烧结和熔融等工艺过程,特别适合于 大规模生产。
使用注意事项
使用马弗炉时应注意安全,避免烫伤和火灾事故;同时应注意炉温的 控制和炉内气氛的调节,以保证烧成效果。
真空炉
特点
真空炉是在真空环境下进行加热的设备,具有高温、高真 空的特点,可以有效地去除材料中的气体和杂质,提高产 品的纯度和性能。
02
烧结方法的分类
固相烧结
01
02
03
定义
固相烧结是陶瓷材料在完 全或部分熔融状态下获得 致密化的过程。
特点
固相烧结过程中不出现液 相,致密化主要依靠颗粒 重排、扩散传质和颗粒表 面能的驱动。
应用
适用于制备高熔点、低导 热系数、低塑性的陶瓷材 料,如氧化铝、氮化硅等。
液相烧结
定义
01
液相烧结是通过添加可熔性组分(如金属、玻璃或其它陶瓷材
在复合材料中的应用
树脂基复合材料
通过烧结方法制备树脂基复合材料,提高材料的强度、刚度和耐 腐蚀性。
碳纤维复合材料
通过烧结方法制备碳纤维复合材料,实现材料的轻量化和高性能 化。
玻璃纤维复合材料
通过烧结方法制备玻璃纤维复合材料,提高材料的强度和耐热性。
感谢您的观看
THANKS
瓷材料的致密度和力学性能。
应用
适用于制备形状复杂、细孔结构的陶 瓷制品,如蜂窝陶瓷、多层陶瓷电容
器等。
03
烧结工艺参数
温度
低温烧结
低温烧结通常在1000℃以下进行,适用于对热敏感的材料,如某些玻璃或陶瓷。低温烧结可以减少材料内部的热应力, 降低烧结温度对材料性能的影响。

陶瓷烧结技术

陶瓷烧结技术

陶瓷烧结技术
陶瓷烧结技术是一种制备高性能陶瓷的重要方法,其通过将粉末烧结成坚硬、致密、尺寸稳定的成品,大大提高了陶瓷的力学性能、化学稳定性和热稳定性。

陶瓷烧结技术的应用范围非常广泛,包括高温陶瓷、结构陶瓷、生物陶瓷、电子陶瓷等多个领域。

陶瓷烧结技术的基本原理是,将陶瓷粉末在高温下烧结成坚硬、致密的材料。

在烧结过程中,陶瓷粉末会逐渐熔化形成一种液相,该液相可以在陶瓷颗粒表面扩散并形成化学键和晶界,从而提高陶瓷的致密性和强度。

不同的陶瓷材料需要不同的烧结条件,如温度、压力、时间等。

陶瓷烧结技术的方法包括热压烧结、微波烧结、闪光烧结、等离子体烧结等多种方式。

其中热压烧结是一种最为常用的方法,其将陶瓷粉末置于高温高压下,通过热流和压力的作用使颗粒结合。

微波烧结则是利用微波辐射使陶瓷材料加热和烧结。

而闪光烧结和等离子体烧结则是利用高能电子或离子束直接作用于陶瓷粉末,实现快速有效的烧结。

陶瓷烧结技术的优点在于其能够制备出非常高性能的陶瓷材料。

其中包括高硬度、高强度、高耐磨、高温稳定性以及化学稳定性等。

这些
性能使得陶瓷材料在航空航天、化工、医疗、电子等领域具有广泛的应用前景。

总之,陶瓷烧结技术是一种非常重要的材料制备方法,其制备出来的陶瓷材料在各种领域都有着广泛的应用前景。

随着科技的不断发展和研究的深入,陶瓷烧结技术也将不断更新和改进,向更高性能、更节能、更环保的方向发展。

《陶瓷烧结方法》课件

《陶瓷烧结方法》课件

2
在高温同时施加高电压脉冲电流,使粉
末快速烧结,常用于制作钢和超硬合金。
3
微波烧结法
通过粉末中所含的微波吸收剂,在微波 炉中快速烧结制造新材料和高性能金属 陶瓷复合材料。
激光烧结法
利用激光加热粉末,使其迅速熔融并结 合成材料。被广泛应用于制造新型复合 材料。
陶瓷烧结过程中的关键技术
烧结温度与时间控制
控制烧结温度和时间对陶瓷 组织和性能有着至关重要的 影响。
热压强度控制
热压强度对陶瓷烧结的瓷砖 干缩和密度均有着重要的影 响。
等温氧化控制
等温氧化是一种重要的表面 处理方法,它可以提高材料 的表面质量和性能。
陶瓷烧结的应用领域
电子领域
陶瓷烧结技术被广泛用于制造电 路板和其他电子元器件,其特性 适合各种高频应用。
传统烧结方法
短时高温烧结法
在高温下以较短时间使粉末结合 成实体,常用于制造建筑材料和 骨科植入物。
长时间低温烧结法
在较低的温度下以较长时间使粉 末结合成实体,常用于制作砖、 陶器等。
合成烧结法
先将粉末中的化学物质反应生成 所需物质,再进行高温烧结,常 用于制造高性能功能材料。
现代烧结方法
1
脉冲电流烧结法
陶瓷烧结方法
在制造陶瓷制品时,陶瓷烧结方法是其中至关重要的一环。本课程将介绍传 统和现代烧结方法,以及烧结过程中的关键技术和应用领域。
概述
陶瓷烧结是一种用高温使粉末结合成坚硬材料的方法。它主要用于制造各种陶瓷制品。传统烧结方法主要有三 种:短时高温、长时间低温和合成烧结法。现代烧结方法则主要有微波烧结造关节、种植义齿 和其它骨科植入物,因其生物相 容性和高强度而广泛应用。
环保领域

烧结的概念——精选推荐

烧结的概念——精选推荐

第十二章烧结(Sinter)第一节基本概念一、烧结1、烧结的意义烧结是粉末冶金、陶瓷、耐火材料、超高温材料等部门的一个重要工序。

烧结的目的是把粉状物料转变为致密体。

这种烧结致密体是一种多晶材料,其显微结构由晶体、玻璃相和气孔组成,烧结过程直接影响显微结构中晶粒尺寸和分布,气孔尺寸和分布以及晶界体积分数….。

烧结过程可以通过控制晶界移动而抑制晶粒的异常生长或通过控制表面扩散、晶界扩散和晶格扩散而充填气孔,用改变显微结构方法使材料性能改善。

因此,当配方、原料粒度、成型等工序完成以后,烧结是使材料获得预期的显微结构以使材料性能充分发挥的关键工序。

2、烧结的定义宏观定义:一种或多种固体(金属、氧化物、氮化物等)粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体,这种过程称为烧结。

微观定义:由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末体产生强度并导致致密化和再结晶的过程。

由于烧结体宏观上出现体积收缩,致密度提高和强度增加,因此烧结程度可以用坯体收缩率、气孔率、吸水率或烧结体密度与理论密度之比(相对密度)等指标来衡量。

3、与烧结有关的一些概念A.烧结与烧成(firing):烧成:包括多种物理和化学变化。

例如脱水、坯体内气体分解、多相反应和熔融、溶解、烧结等。

而烧结仅仅指粉料经加热而致密化的简单物理过程,烧结仅仅是烧成过程的一个重要部分。

B.烧结和熔融(Melt):烧结是在远低于固态物质的熔融温度进行的。

泰曼发现烧结温度(T S)和熔融温度(T M)的关系有一定规律:金属粉末 T S=(0.3~0.4)T M盐类 T S=0.57T M硅酸盐 T S=(0.8~0.9)T M烧结和熔融这两个过程都是由原子热振动而引起的,但熔融时全部组元都为液相,而烧结时至少有一组元是处于固态。

C.烧结与固相反应:两个过程均在低于材料熔点或熔融温度之下进行的。

陶瓷烧结原理

陶瓷烧结原理

陶瓷烧结原理陶瓷烧结是指将陶瓷粉末在一定的温度下进行烧结,使其颗粒之间发生结合,形成致密的块状材料的过程。

烧结是陶瓷工艺中的重要环节,其原理和过程对最终产品的性能和质量具有重要影响。

下面将从烧结原理、影响因素和应用范围等方面进行详细介绍。

一、烧结原理。

陶瓷烧结的原理是在一定温度下,陶瓷粉末颗粒之间发生表面扩散和颗粒间扩散,使颗粒之间结合成块状材料。

在烧结过程中,首先是颗粒间扩散,即颗粒表面的原子或分子向颗粒内部扩散,使颗粒之间产生结合力。

随着温度的升高,颗粒表面扩散加剧,颗粒间的结合力增强,最终形成致密的块状材料。

二、影响因素。

1. 温度,烧结温度是影响烧结效果的关键因素,过低的温度会导致颗粒间扩散不足,无法形成致密材料;过高的温度则可能导致材料烧结过度,出现变形或开裂的情况。

2. 时间,烧结时间也是影响烧结效果的重要因素,过短的时间会导致烧结不完全,材料性能不达标;过长的时间则可能造成能耗浪费和生产效率低下。

3. 压力,在烧结过程中施加一定的压力可以促进颗粒间的结合,提高烧结效率和材料密度。

4. 添加剂,适量的添加剂可以改善陶瓷粉末的流动性和烧结性能,提高最终产品的质量。

三、应用范围。

陶瓷烧结广泛应用于陶瓷制品的生产过程中,如陶瓷砖、陶瓷器皿、陶瓷瓷砖等。

通过烧结工艺,可以使陶瓷制品具有较高的强度、硬度和耐磨性,满足不同领域的需求。

总结,陶瓷烧结是一项重要的陶瓷加工工艺,其原理是在一定温度下实现颗粒间的结合,影响因素包括温度、时间、压力和添加剂等,应用范围广泛,可用于生产各种陶瓷制品。

掌握烧结原理和技术,对于提高陶瓷制品的质量和性能具有重要意义。

陶瓷材料的烧结与原理

陶瓷材料的烧结与原理

陶瓷材料的烧结与原理烧结是陶瓷材料加工的重要工艺之一,通过烧结可以使陶瓷材料的颗粒结合成坚实的整体,提高其物理和化学性能。

烧结的原理主要包括粒间结合、扩散和晶粒长大三个方面。

首先是粒间结合。

烧结陶瓷材料的第一步是颗粒的接触,在高温下颗粒接触面出现局部融化,形成粒间结合区。

当局部融化发生时,一些颗粒间的空隙被完全填满,使得颗粒间距变小。

局部熔融的液相材料充当粘结剂,促使颗粒互相结合,形成更加坚固的结构。

其次是扩散。

在烧结过程中,颗粒间的物质会发生扩散,使得局部结合区域的颗粒之间更加牢固地结合。

扩散过程受温度、时间和颗粒之间的距离等因素的影响。

一般来说,扩散速率随着温度的上升而增加,扩散距离也会增加,从而促进了材料的结合。

最后是晶粒长大。

在烧结过程中,由于颗粒间的扩散,晶粒之间的材料也发生了重排和扩散。

在高温下,晶粒会长大,晶界会消失或减少,从而提高陶瓷材料的致密性和力学性能。

晶粒长大的速率受到烧结温度、时间和材料颗粒的尺寸等因素的影响。

除了上述原理外,烧结还受到其他因素的影响,例如:1.烧结温度:烧结温度决定了材料的烧结速率和晶粒长大速率。

温度过高可能导致结构破坏或晶粒过大,温度过低则会导致烧结不完全。

2.烧结时间:烧结时间决定了物质的扩散程度和晶粒的长大程度。

时间过短会导致烧结不完全,时间过长则会导致结构破坏。

3.烧结气氛:烧结过程中的气氛对于陶瓷材料的烧结也有一定影响,不同的气氛可以影响材料的结构和性能。

4.材料的物理和化学性质:材料的物理和化学性质直接影响烧结的过程和结果。

例如,不同成分的材料具有不同的烧结性质。

总之,烧结是陶瓷材料加工过程中不可或缺的一环,通过粒间结合、扩散和晶粒长大等原理,可以实现颗粒间的结合,提高陶瓷材料的致密性和力学性能。

同时,烧结过程中的温度、时间、气氛等因素,以及材料的物理和化学性质,也对烧结的效果产生一定的影响。

以上就是关于陶瓷材料烧结与原理的简要介绍。

陶瓷烧结原理

陶瓷烧结原理

陶瓷烧结原理
陶瓷烧结是通过加热粉末状陶瓷原料,在一定时间内保持一定的温度,使原料颗粒之间发生表面融合和颈缩现象,最终形成致密的固体块状材料的过程。

它是一种常用的陶瓷成型方法,常用于制作各种陶瓷制品。

陶瓷烧结的原理可以分为四个阶段:加热阶段、颈缩阶段、烧结阶段和冷却阶段。

首先,在加热阶段,通过提供热能,使陶瓷原料的温度逐渐升高。

在这个过程中,原料中的有机物会发生分解和燃烧,释放出气体和水蒸气。

接下来是颈缩阶段,在这个阶段,温度继续上升,陶瓷颗粒之间的接触面积增大,颈缩现象开始发生。

颈缩是指颗粒之间的表面融合,颗粒逐渐变得胶状。

这个过程中,粉末颗粒之间的距离减小,空隙逐渐消失。

然后是烧结阶段,在这个阶段,温度进一步升高,使陶瓷颗粒之间更加牢固地结合在一起。

这是因为烧结过程中,颗粒表面发生熔融和扩散,形成新的晶体和结晶相,这些结晶相能够填充原来的空隙,使材料变得更加致密和坚固。

最后是冷却阶段,在这个阶段,将加热功率减小,让材料缓慢降温。

这样可以避免突然降温导致的热应力,陶瓷制品在冷却过程中会发生收缩,如果冷却过快可能会导致开裂。

综上所述,陶瓷烧结的原理是通过加热原料使其发生颈缩和烧结,最终形成致密的陶瓷制品。

这个过程中温度的控制非常重要,不仅影响烧结的程度,还会影响材料的性能和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章陶瓷烧结原理与技术
烧成制度曲线
第十二章陶瓷烧结原理与技术
烧成制度对产品性能的影响
升温速度 : 漫速升温,其抗张强度比快速升温的坯体增加, 并且气孔率低。尤其是在排胶阶段和大件制品。
烧成温度:直接影响晶粒尺寸、液相的组成和数量以及气孔的 形貌和数量。过高的烧成温度使陶瓷的晶粒过大或少数晶粒 猛长,破坏组织结构的均匀性和致密性;过低的烧成温度则 使陶瓷不易致密化。
第十二章陶瓷烧结原理与技术
陶瓷烧结能垒示意图



烧结势垒
陶瓷胚体
烧结推动力
陶瓷烧结体
第十二章陶瓷烧结原理与技术
烧成制度
烧成制度包括温度制度(指升温速 度、烧成温度、保温时间及冷却速度、 气氛制度和压力制度,表14-3列出烧成 制度的变化对产品性能的影响,实际生 产中还要考虑窑炉加热类型、内部结构 和装窑方式等。
烧成与烧结的区别
烧成:除了包括烧结过程外,还包 括其它物理化学过程。
烧结:仅指陶瓷致密化过程,包括 均匀细致的晶粒尺寸和低气孔率。
第十二章陶瓷烧结原理与技术
影响烧结的主要因素
1.粉料的粒度
粉料粒度愈细,活性愈高,增加了烧结 推动力,缩短了原子扩散距离,提高了颗 粒在液相中的溶解度。烧结温度可相应降 低150~300℃。
第十二章陶瓷烧结原理与技术
蒸发和凝聚传质 (气相): 由于颗粒表面曲率有差异,各 部位蒸气压不同,物质从蒸气压高处蒸发而凝聚到蒸气压 低处.
扩散传质(固相): 晶体的晶格中缺位或空位的浓度存 在差异时,物质就会由缺陷浓度大的部位定向扩散到浓度 部位.由于在颈部、晶界表面和晶粒间存在空位浓度梯度, 烧结过程中空位向体内移动,则物质通过体扩散、表面扩 散和晶界扩散向颈部作定向传递
粘性和塑性流动传质 高温下某些晶粒具有牛顿型液体 的粘性流动,使相邻晶粒中心互相逼近,晶粒间产生粘合 作用形成封闭气孔,封闭气孔由于粘性流动密实化,产生 粘性流动传质;高温下坯体中固相含量较高,会产生塑性 流动传质 .
溶解-沉淀传质 (液相) : 固相分散于液相中,细小颗粒 (其溶解度高)或颗粒表面的凸起部分溶解进入液相,并 通过液相转移到另一粗颗粒表面(其溶解度低)而沉淀下 来,直至晶粒长大 一定的液相量,固相被液相润湿, 固相在液相中有适当的溶解度
气氛制度:分为还原气氛(如氢气或含氢气气氛)、中性(如 氮气)和惰性(如氩气)及普通气氛(空气)。在氧分压低 的气氛中,如在氢气、一氧化碳、惰性气体或真空中烧成的, 可得到良好的氧化物陶瓷烧结体。不同陶瓷性能要求不同气 氛制度。
压力制度: 参见热压烧结第十二章陶瓷烧结原理与技术
第十二章陶瓷烧结原理与技术
第十二章 陶瓷烧结原理与技术
关于烧结机理若干问题: 1.陶瓷的烧结定义? 2.陶瓷烧结过程及要弄清的几个要点是什么? 3.陶瓷烧结推动力的来源? 4.烧结为什么要加热进行? 5.为什么烧结过程的物质传递总是向颗粒与颗
粒点接触的颈部方向移动?
第十二章陶瓷烧结原理与技术
6.烧结过程的物质传质机构有哪些? 7.界面的形成?粒界移动与晶粒长大?平直晶
第十二章陶瓷烧结原理与技术
4.烧结过程中物质移动的推动力
粉末物料在烧结过程中有一种推动力在 起作用,这个推动力就是过剩粉末体的表面 能下降。
第十二章陶瓷烧结原理与技术
烧结为什么要加热进行?
陶瓷粉体的表面能在数百至上千焦/摩之间, 与化学反应过程能量变化(可达几至几十 万焦/摩)相比,这个烧结推动力实在是很 小的。因此烧结不能自动进行,必须对粉 体施以高温,才能促使粉体越过能垒转变 为烧结体。
第十二章陶瓷烧结原理与技术
烧结后期
:随着晶界上的物质继续 向气孔扩散填充,使致密 化继续进行,晶粒继续均 匀长大,气孔随晶界一起 移动,直至获得致密化的 陶瓷材料,。另外,不同 形状的晶界,移动的情况 也各不相同,弯曲的晶界 总是向曲率中心移动。曲 率半径愈小,移动就愈快。 在烧结后期晶粒生长在过 程中,出现气孔迁移速率 显著低于晶界迁移速率的 现象,这时气孔脱开晶界, 被包裹到晶粒内。
保温时间:指在高温下保持得时间,它能促进新型陶瓷致密化, 但过长的保温可使晶体过分长大或发生二次重结晶。
降温速度 :缓慢冷却收缩率大,相对气孔率小,残留应力小。 对于某些新型陶瓷,由于急冷(甚至是淬火急冷)能防止某 些化合物的分解、固溶体的脱溶及粗晶的形成,故能提高产 品的电气性能,但热应力大。
界与120°角的诞生? 8.固相反应和固相烧结的区别? 9. 烧结与烧成的区别? 10.烧成制度曲线的制定? 11.何谓二次重结晶?是利是害? 12. 各种烧成方法的特点与特色?
第十二章陶瓷烧结原理与技术
1.烧结的定义 粉末经过成型,在烧结炉中当加
热到一定温度后便开始收缩,在低于 熔点温度下即变成致密的、坚硬的烧 结体,这种过程称为“烧结”。 图14-1为烧结现象的示意图。
第十二章陶瓷烧结原理与技术
Atom movemen第t十i二n章陶l瓷i烧q结u原理id与技术phase sintering.
3.烧结过程中的物质传递
烧结过程是一个物质的传递过程,通常物 质传递方式有以下四种,烧结过程中物质 传递的方式和机理列于表14-1。
蒸发和凝聚传质 (气相) 扩散传质(固相) 粘性和塑性流动传质 溶解-沉淀传质 (液相)
第十二章陶瓷烧结原理与技术
2.烧结阶段
生胚: 陶瓷生坯颗粒 之间呈点接触。
烧结前期:高温时物质 通过不同的扩散途径向 颗粒间的颈部和气孔部 位填充,使颈部渐渐长 大,颗粒间接触界面扩 大,使气孔缩小、致密 化程度提高,孤立的气 孔布于晶粒相交的位置 上,坯体的密度超过理 论密度的90%。
第十二章陶瓷烧结原理与技术
但是颗粒细,表面活性强,可吸附大
量气体或离子,如CO32-等,这不利于颗
粒间接触而起了阻碍烧结的作用。
另外从防止二次重结晶来考虑也并非粒度 愈细愈好。最适宜的烧结起始粒度为 0.05~0.5μm。
第十二章陶瓷烧结原理与技术
2.外加剂的作用 在固相烧结中,少量外加剂可与烧结
相生成固溶体,促进缺增加而加速烧结。 在有液相参加的烧结中,外加剂能改变液 相的性质,从而促进烧结。其主要作用有:
相关文档
最新文档