圆极化波及其MATLAB仿真-西电电子教案
电力系统的MATLABSIMULINK仿真与应用_第1章

电力系统的MATLABSIMULINK仿真与应用_第1章第1章概述教:电力系统的材ATMLB/ASmuiinl仿k及应真用王晶国翁庆有兵张西电子安科大技学版出社论理教学:0学3时上机教:1学学8第1章时概述第章概述111.电系力统用常真仿软简介1件2.MATLAB/ISMUILKN述1概3.简电单演路示习题第1章述概1.1电系力常统仿用真件软介简力系电是统一个规模、大变的时杂复统系在国,民济经有中非重常的作用要。
电力系统字仿数真成已为力电系研统、究规划、行、运设计各等方面不可个缺或的具,特工是电力别系统新术的技开研究发新、装置设的、计参数确的定更是需要过仿真来确认。
目通常前用的电力系统真软件仿有:(1邦纳)维尔力电局Bonn(vileleowePrdmAniirtaiton,BP)A开发的PA程B和EMT序P(ElcteroagnmetiTcaniretnProram)程序;g1章第概述()2尼托巴曼高直压输电研流究心(M中natioabHDCReVaechrCenet)开r的发PCSDAEM/DC(TPoerwySemCtmoputrAideedDein/glectEoramngticeTranient PrgrominacudilngDirceturrenC)t序程;(3)德西国子公门司制研的力系电仿统真件软NEOMTAC(NtweokrToroniacMhnieCnotrl)o;4)(中电力科学国研究院开的电发力系分统析合综程序PSASP(oPweryStmAneayliSftowaerPackage;)()5MatWhro公k司发开的科与学工程算软件计ATLMABMat(riL某barotoary矩,实验室阵。
)第1章述概电力统分析系软件了除以几上,还有美种国加大学州伯克利校分制研的PPSCIES(miulaiotnPogramwrithnItegaretCircdiuEmthapi)美国、TP 公司开发I的PSSE/美、EPRI公国司开的ETMS发P、BBA公司开发的YMSPO程W序美和国ESAD公开发的电司力统分析系软件DSAE等。
电力电子技术与MATLAB仿真第二版教学设计

电力电子技术与MATLAB仿真第二版教学设计本文旨在介绍一种电力电子技术与MATLAB仿真第二版教学设计。
电力电子技术已经成为电力系统中的重要组成部分,电力电子技术的发展也极大地促进了电力系统的发展。
而MATLAB仿真软件也成为电力电子技术研究和教学中不可或缺的工具。
本文将介绍如何设计电力电子技术与MATLAB仿真第二版的教学。
教学目标学生通过本课程的学习,应该掌握以下技能:1.了解电力电子技术的基础原理与应用。
2.掌握电力电子器件的工作原理以及应用。
3.掌握常用的交流调压电路、直流调压电路、逆变电路及其控制策略。
4.掌握运用MATLAB仿真电力电子技术及其控制策略。
5.了解电力电子技术的未来发展方向。
教学内容1.基础原理首先在本课程开始前,我们要首先介绍电气基础原理,包括磁路,电路等基础概念。
然后对电力电子技术领域中常见的电力电子器件进行介绍,如:二极管、晶闸管、场效应晶体管、绝缘栅双极型晶体管等。
2.交流调压电路交流调压电路是电源电压不随输入电压变化而变化的电路,常用于变压器的二次侧和换流变压器的直流侧。
本部分学习交流调压电路的基础原理,掌握电感型和电容型电压调节器及其控制策略,以及采用MATLAB进行仿真设计。
3.直流调压电路直流电源是电子产品中重要的电源,本部分将介绍直流调压电路的基础原理,掌握电阻型、电动势型、磁场控制型和开关型等直流电压调节器,采用MATLAB进行仿真设计。
4.逆变电路逆变电路可以将直流电源转换为交流电源,并且可以根据需要改变输出电压的大小和波形。
本部分学习逆变电路的基础原理,掌握常见的全波桥式逆变器、半桥式逆变器、全桥式逆变器等电路及其控制策略。
5.MATLAB仿真本部分将学习如何使用MATLAB进行电力电子电路仿真,并将前面学到的电路进行模拟,以验证其正确性。
教学方法本课程采用讲授和实验相结合的教学方法。
在讲授过程中,介绍电力电子技术的基础原理,实验环节将采用MATLAB仿真。
matlab全套教程-西电PPT课件

白刺属植物化学成分的研究现状与发展趋势近年来,随着科学技术的进步,白刺属植物化学成分的研究日渐受到重视,为植物化学研究赋予了新的理解与内涵,其中的研究涉及的领域包括生物活性成分的筛选、结构的鉴定以及化学反应的研究。
作为一个多种植物物种的家族,白刺属植物的化学成分研究具有广泛的研究价值,它们的研究进展总结为下:
一、白刺属植物化学成分研究的现状
自20世纪60年代以来,白刺属植物化学成分研究一直受到世界各地科学家的关注,多次发表学术文献,分研究重点放在抗氧化物质、抗肿瘤物质、抗菌物质和抗病毒物质等领域,至今发表的学术文献多达数百篇,包括40余个有抗氧化活性的化合物、20多种有抗病毒作用的化合物,以及白刺属植物的结构活性的研究。
二、白刺属植物化学成分发展趋势
随着普及化学技术,目前,白刺属植物化学成分研究的发展趋势越来越多的注重药学研究,以色列,美国,中国,加拿大,英国,台湾等国家和地区都开展了大量的相关研究。
报道结果显示,白刺属植物活性成分拥有多种生化活性,其中,抗氧化活性、抗肿瘤活性、抗病毒活性、抗菌活性等活性成分在临床研究中发挥着重要的作用。
此外,白刺属植物的新型活性成分也是当前研究的重点,可能具有重要的抗病毒、抗肿瘤、抗氧化、抗菌和免疫调节等药理作用。
最后,白刺属植物化学成分研究及其发展趋势也受到了包括生物分类学家和系统学家等专家学者的关注,这样可以更准确地揭示白刺
属植物的化学成分及其药理活性,以促进其在临床研究中的应用。
综上所述,白刺属植物化学成分的研究现状和未来的发展趋势仍然具有重要的研究价值,未来将会在生物活性成分的筛选、结构的鉴定以及化学反应的研究等方面有更多新的发现和突破。
matlab模拟电荷系的电场线和等势面

matlab模拟电荷系的电场线和等势面MATLAB是一种功能强大的数值计算和数据可视化软件,可用于模拟电荷系的电场线和等势面。
本文将介绍如何使用MATLAB进行电场线和等势面的模拟,并通过示例对问题进行回答。
首先,我们需要了解模拟电场线和等势面的基本原理。
电场线是显示电场强度和方向的曲线,而等势面则是表示在其中的点上电势相等的曲面。
根据高斯定律和库伦定律,可以通过给定的电荷分布和边界条件计算出电场和电势分布。
在MATLAB中,可以使用PDE工具箱来模拟电场线和等势面。
首先,需要定义电荷分布和边界条件。
然后,可以使用PDE工具箱中的偏微分方程求解器来求解电势分布,并根据电场与电势的关系绘制电场线和等势面。
下面以一个简单的例子来说明如何在MATLAB中模拟电场线和等势面。
假设有两个等量但带有相反电荷的点电荷位于原点和(2,0)处,我们希望求解其电场和等势面。
首先,我们定义电荷量和位置:q1 = 1; % 第一个电荷量q2 = -1; % 第二个电荷量r1 = [0, 0]; % 第一个电荷位置r2 = [2, 0]; % 第二个电荷位置然后,我们定义求解区域和边界条件:xmin = -5;xmax = 5;ymin = -5;ymax = 5;gdm = [1; 0; xmin; xmax; ymin; ymax;];ns = char('gdm');sf = 'gdm';dl = decsg(gdm,sf,ns);model = createpde;geometryFromEdges(model,dl); applyBoundaryCondition(model,'dirichlet','Edge',1:4,'u',0); applyBoundaryCondition(model,'neumann','Edge',5:6,'g',0);接下来,使用偏微分方程求解器来求解电势分布:specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',0); generateMesh(model);result = solvepde(model);p = result.NodalSolution;最后,根据电场与电势的关系绘制电场线和等势面:[Ey,Ex] = gradient(p);figure;contour(p,'LevelList',-5:0.5:5);hold on;quiver(-5:0.5:5,-5:0.5:5,Ex,Ey);title('Electric Field Lines and Equipotential Surfaces');xlabel('x');ylabel('y');legend('Equipotential Surfaces','Electric Field Lines');axis([-5 5 -5 5]);通过上述代码,我们可以得到电场线和等势面。
matlab仿真电磁波的极化实验

电磁场与电磁波实验实验四电磁波的极化实验学院:电子工程班级:姓名:秦婷学号:理论课教师:实验课教师:同做者:实验日期:2020 年 5 月20 日请务必填写清楚姓名、学号、班级及理论课任课老师。
实验四 电磁波的极化实验一、 实验目的:1. 通过虚拟仿真观察并理解电磁波极化的概念2. 学习电磁波极化的测量方法3. 学会判读线极化波,圆极化波的方法 二、 实验装置实验装置如图1所示。
图中:①为微波源;②为隔离器;③为负载;④为可变衰减器;⑤为T 型接头;⑥和⑦为发射天线;⑧为可变相移器;⑨为接收天线;⑩为检波器;⑪为指示电流表。
①②⑤③④⑧⑥⑦⑨⑩⑪图1 电磁波极化实验系统T 型接头用以将传来的微波功率分成等强度的两束波。
衰减器用于调节支路中的功率强弱。
相移器用以调节支路中的初相位φ,从而产生相位的变化。
三、 实验原理:平面电磁波沿轴线前进没有z E 分量,一般情况下,存在x E 分量和y E 分量,如果y E 分量为零,只有x E 分量我们称其为X 方向线极化。
如果只有y E 分量而没有x E 分量我们称其为Y 方向线极化。
在一般情况下,x E 和y E 都存在,在接收此电磁波时,将得到包含水平与垂直两个分量的电磁波。
如果此两个分量的电磁波的振幅和相位不同时,可以得到各种不同极化形式的电磁波。
1. 如果电磁波场强的X 和Y 分量为:()1cos x xm E E t kz ωϕ=+− (1)()2cos y ym E E t kz ωϕ=+−(2)其中1ϕ、2ϕ为初相位,2k πλ=。
若1ϕ等于2ϕ,或1ϕ与2ϕ相位差为2n π时,其合成电场为线极化波,其幅度为:()1E t kz ωϕ==−+(3)电场分量与X 轴的夹角为:arctanarctany ym xxmE E E E α===常数 (4)2. 如果1ϕ与2ϕ相位差90°或270°,则:()1cos x xm E E t kz ωϕ=−+ (5)()2cos y ym E E t kz ωϕ=−+(6)合成电磁场为:E ===常数(7)它的方向是:()1tan tan y xE t kz E αωϕ==−+(8)1t kz αωϕ=−+(9)表示合成场振幅不随时间变化,其方向是随时间而旋转的圆极化波。
电力电子的matlab仿真实验指导书(改)【精选文档】

“电力电子”仿真实验指导书MATLAB仿真实验主要是在simulink环境下的进行的。
Simulink是运行在MATLAB环境下,用于建模、仿真和分析动态系统的软件包。
它支持连续、离散及两者混合的线性和非线性系统。
由于它具有直观、方便、灵活的特点,已经在学术界、工业界的建模及动态系统仿真领域中得到广泛的应用。
Simulink提供的图形用户界面可使用鼠标的拖放操作来创建模型。
Simulink本身包含sources、sinks、Discrete、math、Nonlinear和continuous 等模块库。
实验主要使用Sinks、Sources、Signals & System和Power System Blockset这四个模块库中的一些模块搭建电力电子课程中的典型电路进行仿真。
在搭建成功的电路中使用scope显示模块显示仿真的波形、验证电路原理分析结果。
这些典型电路包括:1)单相半波可控整流电路(阻性负载和阻感负载)2)单相全控桥式整流电路(阻性负载和阻感负载)3)三相全控桥式整流电路(双窄脉冲阻性负载和双窄脉冲阻感负载)4)降压斩波电路、升压斩波电路5)三相半波逆变电路、三相全波逆变电路。
一、matlab、simulink基本操作多数学生在做这个实验是时候可能是第一次使用matlab中的simulink来仿真,因此下面首先介绍一下实验中要掌握得的一些基本操作(编写试验指导书时所使用的matlab6.1版本)。
若实验过程中使用matlab的版本不同这些基本操作可能会略有不同。
图0-1 matlab启动界面matlab的启动界面如图0—1所示,点击matlab左上方快捷键就可以进入simulink程序界面(在界面右侧的Command Window中输入simulink命令回车或者在Launch Pad窗口中点击simulink子菜单中Library Browser都可以进入simulink程序界面)如图0—2所示.+图0-2 simulink程序界面1。
(完整版)电力电子技术MatLab仿真.

本文前言MATLAB的简介MATLAB是一种适用于工程应用的各领域分析设计与复杂计算的科学计算软件,由美国Mathworks公司于1984年正式推出,1988年退出3.X(DOS)版本,19992年推出4.X(Windows)版本;19997年腿5.1(Windows)版本,2000年下半年,Mathworks公司推出了他们的最新产品MATLAB6.0(R12)试用版,并于2001年初推出了正式版。
随着版本的升级,内容不断扩充,功能更加强大。
近几年来,Mathworks公司将推出MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。
MATLAB已成为美国和其他发达国家大学教学和科学研究中最常见而且必不可少的工具。
MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需要。
在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数摸索有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。
MATLAB强大而简易的做图功能,能根据输入数据自动确定坐标绘图,能自定义多种坐标系(极坐标系、对数坐标系等),讷讷感绘制三维坐标中的曲线和曲面,可设置不同的颜色、线形、视角等。
如果数据齐全,MATLAB通常只需要一条命令即可做图,功能丰富,可扩展性强。
MATLAB软件包括基本部分和专业扩展部分,基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分风,可以满足大学理工科学生的计算需要,扩展部分称为工具箱,它实际上使用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的问题,或实现某一类的新算法。
现在已经有控制系统、信号处理、图象处理、系统辨识、模糊集合、神经元网络及小波分析等多种工具箱,并且向公式推倒、系统仿真和实时运行等领域发展。
电力电子技术MATLAB仿真报告模板

《电气专业核心课综合课程设计》题目:基于MATLAB的电力电子技术仿真分析学校:院(系):专业班级:学生姓名:学号:指导教师:目录绪论………………………………………………………………………………………页码1.整流电路仿真………………………………………………………………………………页码 1.1单相半波可控整流系统………………………………………………………………页码 1.1.1晶闸管的仿真…………………………………………………………………页码 1.1.2单相半波可控整流电路的仿真………………………………………………页码 1.2晶闸管三相桥式整流系统的仿真…………………………………………………页码1.3相位控制的晶闸管单相交流调压器带系统的仿真………………………………页码2.斩波电路仿真………………………………………………………………………………页码 2.1降压斩波电路(Buck变换器)………………………………………………………页码 2.1.1可关断晶闸管(GTO)的仿真…………………………………………………页码 2.1.2 Buck变换器的仿真………………………………………………………页码 2.2升压斩波电路(Boost变换器)………………………………………………………页码2.2.1绝缘栅双极型晶体管(IGBT)的仿真…………………………………………页码2.2.2 Boost变换器的仿真……………………………………………………………页码4.逆变电路仿真………………………………………………………………………………页码4.1晶闸管三相半波有源逆变器的仿真………………………………………………页码5.课程设计总结………………………………………………………………………………页码参考文献……………………………………………………………………………………页码电气专业核心课综合课程设计任务书一、设计(调查报告/论文)题目基于MATLAB的电力电子技术仿真分析二、设计(调查报告/论文)主要内容1.晶闸管的仿真模型及以单相半波整流器为例,说明晶闸管元件应用系统的建模与仿真方法;2.晶闸管三相桥式整流系统的建模与仿真;3. 可关断晶闸管的仿真模型及以可关断晶闸管元件组成的Buck变换器为例的仿真过程;4.绝缘栅双极型晶体管元件的仿真模型及一个由IGBT元件组成的Boost 变换器的建模与仿真;5.相位控制的晶闸管单相交流调压器带系统的建模与仿真;6.晶闸管三相半波有源逆变器的建模与仿真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波大作业圆极化波及其MATLAB仿真
专业:信息对抗技术班级:021231
学生姓名:
指导教师:***
一、引言
电磁波电场强度的取向和幅值随时间而变化的性质,在光学中称为偏振。
如果这种变化具有确定的规律,就称电磁波为极化电磁波(简称极化波)。
如果极化电磁波的电场强度始终在垂直于传播方向的(横)平面内取向,其电场矢量的端点沿一闭合轨迹移动,则这一极化电磁波称为平面极化波。
电场的矢端轨迹称为极化曲线,并按极化曲线的形状对极化波命名,其主要分类有线极化波,圆极化波和椭圆极化波。
二、原理详解
下面我们详细分析圆极化波的产生条件。
假设均匀平面电磁波沿+Z 方向传播,电场强度矢量E 频率和传播方向均相同的两个分量
x
E 和
y
E ,电场强度矢量的表达式为
-00()(1)()y x x X y y
jkz
x x y y j j jkz
x xm y ym E E E E e E e E e e φ
φ-=+=+=+E a a a a a a
电场强度矢量的两个分量的瞬时值为
cos()(2)cos()
(3)
x xm x y ym y E E t kz E E t kz ωφωφ=-+=-+
设,,0,
2
xm ym m x y E E E z π
φφ==-=±
= 那么式(2)式(3)变为
cos()cos()
2x m x y y y
E E t E E t ωφπωφ=+=+
消去t 得
22
()()1y x m m
E E E E += 此方程就是圆方程。
电磁波的两正交电场强度分量的合成电场强度矢量E
的模和幅角分别依次为
(4)sin(t )arctan[](t )
(5)cos(t )
m
x x x E E ωφαωφωφ==±+==±++
由式(4)和式(5)可见,电磁波的合成电场强度矢量的大小不随时间变化,而其余x 轴正向夹角α将随时间变化。
因此合成的电场强度矢量的矢端轨迹为圆,故称为圆极化。
三、仿真分析
下面我们用MATLAB 进行仿真分析。
假设电磁波为圆极化波,且沿+z 方向传播,则其电场强度矢量轨迹如下图一所示:
x
电场强度矢量
y
z
图一
而当固定位置观察圆极化波的矢端轨迹,其结果如下图二:
-1
-0.5
00.5
1
-1
-0.8-0.6-0.4-0.200.2
0.40.60.8
1Ex
E y
固定位置圆极化波矢端轨迹
图二
固定时刻观察圆极化矢端轨迹如下图三:
-1
-0.5
00.5
1
-1
-0.8-0.6-0.4-0.200.2
0.40.60.8
1Ex
E y
固定时刻圆极化波矢端轨迹
图三
其中当固定时刻的电场矢量的x 和y 分量如下图四:
-1-0.8-0.6
-0.4-0.200.20.40.60.81
5
10
Ex
z
固定时刻电场强度矢量分量Ex
-1-0.8-0.6-0.4-0.2
00.20.40.60.81
5
10
Ey
z
固定时刻电场强度矢量分量Ey
图四
四、仿真代码
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%电磁场与电磁波大作业 %%%% %%%%圆极化波及其MATLAB 仿真 %%%% %%%%作者:柯炜鑫 %%%% %%%%学号:02123049 %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 圆极化波及其MATLAB 仿真 图一代码:
w=1.5*pi*(10e+8); z=0:0.05:20; k=120*pi;
for t=linspace(0,1*pi*10e-8,200) e1=sqrt(2)*cos(w*t-pi/2*z); e2=sqrt(2)*sin(w*t-pi/2*z); h1=sqrt(2)/k*cos(w*t-pi/2*z); h2=-sqrt(2)/k*sin(w*t-pi/2*z); plot3(e1,e2,z);
xlabel('x');
ylabel('y');
zlabel('z');
title('电场强度矢量');
grid on
end
图二代码:
clc;clear;
exm=1;
eym=1;
faix=0;
faiy=pi/2;
wt=0:.001:10;
kz=0;
plot(exm*cos(wt-kz+faix),eym*cos(wt-kz+faiy)); axis([-1.1 1.1 -1.1 1.1]);
xlabel('Ex');
ylabel('Ey');
axis equal;
grid on;
title('固定位置圆极化波矢端轨迹')
图三代码:
clc;clear;
exm=1;
eym=1;
faix=0;
faiy=pi/2;
wt=0;
kz=0:.001:10;
plot(exm*cos(wt-kz+faix),eym*cos(wt-kz+faiy)); axis([-1.1 1.1 -1.1 1.1]);
xlabel('Ex');
ylabel('Ey');
axis equal;
grid on;
title('固定时刻圆极化波矢端轨迹');。