图像边缘检测课程设计报告
边缘检测实验报告

边缘检测实验报告边缘检测实验报告引言:边缘检测是图像处理中的一项重要任务,它能够有效地提取图像中物体的边界信息,为后续的图像分割、物体识别等任务提供基础。
本实验旨在探究不同的边缘检测算法在不同场景下的表现,并对其进行评估和比较。
一、实验背景边缘检测是图像处理领域的经典问题,早期的边缘检测算法主要基于梯度的计算,如Sobel、Prewitt等。
随着深度学习的发展,基于卷积神经网络的边缘检测方法也取得了显著的进展。
本实验将选择传统的Sobel算子和基于深度学习的Canny算法进行对比。
二、实验步骤1. 数据准备:选择一组包含不同场景、不同复杂度的图像作为实验数据集,确保数据集的多样性和代表性。
2. 算法实现:使用Python编程语言,利用OpenCV库实现Sobel算子和Canny 算法。
对于Sobel算子,我们将尝试不同的卷积核大小和阈值设置。
对于Canny算法,我们将调整高低阈值的取值范围。
3. 实验评估:使用评估指标来衡量不同算法的性能,如准确率、召回率、F1值等。
同时,我们还可以通过可视化的方式来比较不同算法的边缘检测效果。
三、实验结果在实验中,我们选择了10张不同类型的图像进行边缘检测,并使用Sobel算子和Canny算法进行处理。
通过对比实验结果,我们得出以下结论:1. Sobel算子:- 当卷积核大小较小(如3x3)时,Sobel算子能够较好地检测到图像中的细节边缘,但对于噪声较多的图像效果较差。
- 当卷积核大小较大(如7x7)时,Sobel算子能够更好地抑制噪声,但会导致边缘检测结果的模糊。
- 阈值的设置对Sobel算子的效果也有较大影响,较低的阈值可以提高边缘检测的敏感性,但也容易引入噪声。
2. Canny算法:- Canny算法基于梯度的计算和非极大值抑制,能够有效地检测到图像中的边缘,并且对噪声有较好的鲁棒性。
- 高低阈值的设置对Canny算法的效果影响较大,合适的阈值范围可以提高边缘检测的准确性和稳定性。
实验六、图像的边缘检测

实验六、图像的边缘检测一、实验目的1、了解图像边缘提取的基本概念;2、了解进行边缘提取的基本方法;3、掌握用MA TLAB 语言进行图像边缘提取的方法。
二、实验原理图像分析和理解是图像处理的重要分支,研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。
从图像的分析和理解来说,最基本的两个内容就是图像的分割和区域描述。
图像分割就是将图像中具有不同含义的对象提取出来,区域描述是对对象本身及对象间关系的描述,使之具有某种指定的数学或符号表达形式,使计算机能够理解具体对象的具体含义。
图像分割可分为两种:基于边界的分割技术和基于区域的分割技术,边缘检测技术是所有基于边界分割的图像分析方法的第一步,检测出边缘的图像就可以进行特征提取和形状分析了。
因此边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。
在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。
边缘检测实际上就是检测图像特征发生变化的位置。
由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。
边缘检测的方法大多数是基于方向导数掩模求卷积的方法。
导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。
一阶导数f x∂∂与f y∂∂是最简单的导数算子,它们分别求出了灰度在x 和y 方向上的变化率,而方向α上的灰度变化率可以用下面式子计算:cos sin (cos sin )f f f G i j x yααααα∂∂∂=+=+∂∂∂对于数字图像,应该采用差分运算代替求导,相对应的一阶差分为:(,)(,)(1,)(,)(,)(,1)x y f i j f i j f i j f i j f i j f i j ∆=--∆=--方向差分为:(,)(,)cos (,)sin x y f i j f i j f i j ααα∆=∆+∆函数f 在某点的方向导数取得最大值的方向是1tan/f f y x α-⎡⎤∂∂=⎢⎥∂∂⎣⎦,方向导数的最大值是1222f f G x y ⎡⎤⎛⎫∂∂⎛⎫=+⎢⎥⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦称为梯度模。
数字图像处理实验报告(图像边缘检测)

实验报告实验名称实验三图像边缘检测课程名称数字图像处理某成绩班级学号日期地点备注:1、实验目的(1)了解并掌握使用微分算子进行图像边缘检测的基本原理;(2)编写程序使用Laplacian 算子(二阶导数算子)实现图像锐化,进一步理解图像锐化的实质;(3)掌握使用不同梯度算子(一阶导数算子)进行图像边缘检测的原理、方法,根据实验结果分析各种算子的工作效果;(4)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。
2、实验环境(1)Windows XP/7(2)Matlab 7.1/7.143、实验方法本次实验要求对256×256大小,256级灰度的数字图像lena.img进行处理。
(1)对该图像进行锐化处理,要求采用Laplacian算子进行锐化,分α=1和α=2两种情况,按如下不同情况进行处理:①g1(m,n)=f(m,n)-α∇f②g2(m,n)=4αf(m,n)-α[f(m-1,n)+f(m+1,n)+f(m,n-1)+f(m,n+1)]I、要对图像进行处理,要先读取该图像,实验代码如下:close all;clear all;fid=fopen('lena.img','r');image=fread(fid,[256,256],'uint8');fclose(fid);II、读取图像后,对该图像的每一像素(不考虑图像的边界部分)进行遍历,根据公式①(公式①相当于做差分)对每一灰度进行计算,将所得的结果存入一矩阵g1中(矩阵g1初始化为该图像的矩阵),代码如下(仅以ɑ=1为例):g1=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1) g1(i,j)=(1+4*a)*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endendIII、根据公式②对图像的每一个像素(不考虑图像的边界部分)进行计算,将所得之存入矩阵g2中(g2初始化值为该图像的矩阵值),具体方法与上一步类似,代码如下(仅以ɑ=1为例):g2=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g2(i,j)=4*a*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endend(2)分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对原图像进行边缘检测,显示处理前、后图像。
实验四 图像的边缘检测1

3、用不同方向(‘水平’、‘垂直’、‘水平和垂直’)的Sobel算子对图像进行边缘检测。比较三种情况的结果。
代码:
I=imread('rice.png');
subplot(2,2,1)
imshow(I)
BW2=edge(I,'sobel',[] ,'horizontal');
subplot(2,2,2)
代码:
I=imread(‘cameraman.tif’);
imshow(I);
结果:
2、分别用Roberts、Sobel和拉普拉斯高斯算子对图像进行边缘检测。比较三种算子处理的结果。
代码:
I=imread('rice.png');
subplot(2,2,1)
imshow(I)
BW1=edge(I,'roberts');
掌握了用MATLAB语言进行图像边缘提取的方法。
imshow(BW2), title('水平方向的Sobel算子')
BW2=edge(I,'sobel',[] ,'vertical');
subplot(2,2,3)
imshow(BW2), title('´垂直方向的Sobel算子')
BW2=edge(I,'sobel',[] ,'both');
subplot(2,2,4)
20122013学年第一学期医学图像处理实验报告班级学号姓名实验时间20121030实验地点4601实验成绩实验题目图像的边缘检测一实验目的1理解图像边缘提取的基本概念
2012-2013学年第一学期《医学图像处理》实验报告
数字图像课程设计报告:边缘检测算子的比较

数字图像处理课程设计报告题目数字图像课程设计—各边缘检测算子的对比系别电气系班级xxxxxxxxxxxxx 学号xxxxxxxxxxxx姓名xxxx 指导老师xxxx时间xxxxxxx目录一、课题设计的任务 (3)1.1 课题选择 (3)1.2 课题设计的背景 (3)二、课题原理简介 (3)三、经典边缘检测算子性能比较及程序 (6)3.1MATLAB程序仿真 (6)3.2实验结果的比较 (10)四、实验结论 (11)五、参考文献 (11)一、课题设计的任务1.1课题选择各边缘检测的对比1.2 课题设计的背景我们感知外部世界的途径主要是听觉和视觉。
而视觉主要是获取图像的信息,例如图片的特征和周围的背景区域的差别。
这种灰度或结构等信息的突变,就称之为边缘。
图像的边缘对人类视觉而言具有重要意义,有些差别很细微,人眼很难观察,这时就需要计算机图像处理技术,物体边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘。
本次我的课程设计就利用了MATLAB软件,通过实验,对各边缘检测算子进行了对比和研究,例如基于一阶导数的边缘检测算子Roberts算子、Sobel算子,基于二阶导数的拉普拉斯算子,canny边缘检测算子等。
并且在4天内完成了课程设计作业,基本达到既定要求。
二、课题原理简介边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。
检测出的边缘并不等同于实际目标的真实边缘。
图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。
边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘,如下图所以。
不同的是一阶导数认为最大值对应边缘位置,而二阶导数则以过零点对应边缘位置。
(a)图像灰度变化(b)一阶导数(c)二阶导数下面是一些主要的边缘检测算子的原理介绍1 Roberts(罗伯特)边缘检测算子景物的边缘总是以图像中强度的突变形式出现的,所以景物边缘包含着大量的信息。
详细的图像分割之边缘检测实验报告

边缘检测实验报告一、实验目的通过课堂的学习,已经对图像分割的相关理论知识已经有了全面的了解,知道了许多图像分割的算法及算子,了解到不同的算子算法有着不同的优缺点,为了更好更直观地对图像分割进行深入理解,达到理论联系实际的目的,特制定如下的实验。
二、实验原理:图像处理有两大类目的:1.改善像质(增强、恢复);2.图像分析:对图像内容作出描述;其一般的图像处理过程如下:图像分割的算法有:(1)阈值分割原理:(,)(,)(,)EBLf x y Tg x y L f x y T≥⎧=⎨<⎩(2)边缘检测:梯度对应一阶导数,对于一个连续图像函数f(x,y):梯度矢量定义:梯度的幅度:梯度的方向:a) Roberts 算子b) Sobel 算子Roberts 算子[]TTyxy f x f G G y x f ⎦⎤⎢⎣⎡∂∂∂∂==∇),(122)()),((),(y x G G y x f mag y x f +=∇=∇)arctan(),(x y G y x =φ()()()[]()()[]{}21221,,11,1,,+-++++-=j i f j i f j i f j i f j i gc) Prewitt 算子d) Kirsch 算子由K 0~K 7八个方向模板组成,将K0~K7的模板算法分别与图像中的3×3区域乘,选最大一个值,作为中央像素的边缘强度(3)区域分割1 区域生长法 算法描述先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相似性质的像素合并到种子像素所在的区域中。
将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。
2 分裂合并法实际中常先把图像分成任意大小且不重叠的区域,然后再合并或分裂这些区域以满足分割的要求,即分裂合并法.一致性测度可以选择基于灰度统计特征(如同质区域中的方差),假设阈值为T ,则算法步骤为:① 对于任一Ri ,如果 ,则将其分裂成互不重叠的四等分; ② 对相邻区域Ri 和Rj ,如果 ,则将二者合并; ③ 如果进一步的分裂或合并都不可能了,则终止算法。
图像的边缘检测实验报告

图像的边缘检测实验报告
《图像的边缘检测实验报告》
图像的边缘检测是计算机视觉领域中的重要技术之一,它可以帮助我们识别图
像中物体的边缘和轮廓,从而实现图像分割、特征提取和目标识别等应用。
在
本次实验中,我们将对几种常用的边缘检测算法进行比较和分析,以评估它们
在不同场景下的性能和适用性。
首先,我们使用了Sobel算子进行边缘检测。
Sobel算子是一种基于梯度的边缘检测方法,它通过对图像进行卷积操作来寻找像素值变化最大的地方,从而找
到图像中的边缘。
实验结果显示,Sobel算子在一些简单场景下表现良好,但
在复杂背景和噪声干扰较大的情况下效果不佳。
接着,我们尝试了Canny边缘检测算法。
Canny算法是一种多阶段的边缘检测
方法,它通过对图像进行高斯滤波、计算梯度、非极大值抑制和双阈值处理等
步骤来检测图像中的边缘。
实验结果显示,Canny算法在复杂场景下表现出色,能够有效地抑制噪声并找到图像中的真实边缘。
最后,我们还尝试了Laplacian算子和Prewitt算子等其他边缘检测算法,并对
它们的性能进行了比较和分析。
实验结果显示,不同的边缘检测算法在不同场
景下表现出各自的优势和劣势,需要根据具体的应用需求来选择合适的算法。
总的来说,本次实验对图像的边缘检测算法进行了全面的比较和分析,为我们
进一步深入理解和应用这些算法提供了重要的参考和指导。
希望通过这些实验
结果,我们能够更好地利用边缘检测技术来解决实际的图像处理问题,为计算
机视觉领域的发展做出更大的贡献。
图像边缘检测课程设计报告

图像边缘的检测提取设计(陕西理工学院物理与电信工程学院通信1102班,陕西汉中 723003)指导教师:陈莉【摘要】边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而重要的内容。
该课程设计具体考察了五种最常用的边缘检测算子并运用MATLAB进行图像处理比较。
梯度算子简单有效,LOG算法和canny边缘检测器能产生较细的边缘。
【关键字】:MATLAB、边缘检测、图像处理Image edge detection to extract the design(Grade11,Class2,Major of Communication Engineering,School of Physics and telecommunication Engineering of Shaanxi University of Technology, Hanzhong 723003,China)Tutor:chen li[Abstract]the basic features of the image edge, contains useful information in the image recognition, edge detection is a basicand important content of digital image processing. Thecurriculum design of the specific study of the five most commonedge detection operator and the use of MATLAB for comparison of image processing. Gradient operator is simple and effective,the LOG algorithm and the canny edge detector can producethinner edges.[keyword]: MATLAB, edge detection, image processing目录1绪论 (1)1.1边缘检测的背景 (1)1.2边缘检测的定义 (1)1.3图像边缘检测算法的研究内容 (2)1.4边缘检测的发展趋势 (3)2边缘检测的算法分析与描述 (3)2.1 Roberts算子 (3)2.2 Prewitt算子 (4)2.3 Sobel算子 (5)2.4 Laplacian算子 (6)2.5 Canny算子 (7)3算子性能分析比较 (8)4 算法的选择和实现 (9)4.1s sobel算子 (10)4.2sobel算子 (10)4.3prewitt算子 (11)设计总结 (12)致谢 (13)参考资料 (14)1绪论1.1边缘检测的背景在实际图像处理问题中,图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像边缘的检测提取设计(陕西理工学院物理与电信工程学院通信1102班,陕西汉中723003)指导教师:陈莉【摘要】边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而重要的内容。
该课程设计具体考察了五种最常用的边缘检测算子并运用MATLAB进行图像处理比较。
梯度算子简单有效,LOG算法和canny边缘检测器能产生较细的边缘。
【关键字】:MATLAB、边缘检测、图像处理Image edge detection to extract the design(Grade11,Class2,Major of Communication Engineering,School of Physics and telecommunication Engineering of Shaanxi University of Technology, Hanzhong723003,China)Tutor:chen li[Abstract]the basic features of the image edge,contains useful information in the image recognition,edge detection is a basicand important content of digital image processing.Thecurriculum design of the specific study of the five most commonedge detection operator and the use of MATLAB for comparison of image processing.Gradient operator is simple and effective,the LOG algorithm and the canny edge detector can producethinner edges.[keyword]:MATLAB,edge detection,image processing目录1绪论 (1)1.1边缘检测的背景 (1)1.2边缘检测的定义 (1)1.3图像边缘检测算法的研究内容 (2)1.4边缘检测的发展趋势 (3)2边缘检测的算法分析与描述 (3)2.1 Roberts算子 (3)2.2 Prewitt算子 (4)2.3 Sobel算子 (5)2.4 Laplacian算子 (6)2.5 Canny算子 (7)3算子性能分析比较 (8)4 算法的选择和实现 (9)4.1ssobel算子 (10)4.2sobel算子 (10)4.3prewitt算子 (12)设计总结 (12)致谢 (14)参考资料 (15)1绪论1.1边缘检测的背景在实际图像处理问题中,图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。
它在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用,也是它们的基础。
边缘检测是图像处理与分析中最基础的内容之一,也是至今仍没有得到圆满解决的一类问题。
图像的边缘包含了图像的位置、轮廓等特征,是图像的基本特征之一,广泛地应用于特征描述、图像分割、图像增强、图像复原、模式识别、图像压缩等图像分析和处理中。
因此,图像边缘和轮廓特征的检测与提取方法,一直是图像处理与分析技术中的研究热点,新理论、新方法不断涌现。
随着信息技术的不断发展和用户需求的不断增长,嵌入式系统逐渐走进国民生产的方方面面,其应用也日益广泛。
目前国内一个普遍被认同的定义是:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。
嵌入式系统的应用领域也非常广泛。
嵌入式系统几乎包括了生活中的所有电器设备,如掌上PDA 、移动计算设备、手机上网、数字电视、多媒体、汽车、数字相机、电梯、空调、安全系统、自动售货机、工业自动化仪表与医疗仪器等。
而图像边缘检测则是图像处理中非常基础但是及其重要步骤。
边缘是两个不同区域之间的边界。
图像边缘检测是图像处理,图像分析,模式识别等一系列图像处理过程中最重要的步骤。
目前,学界上已经有许多种不同点的方法来实现边缘检测的功能,比如说差分法(Kirsch,1971)和曲线拟合法(Haralick,1984)。
传统的边缘检测方法,比如Sobel、Prewitt、Kirsch算法,通过计算第一阶方向导数来决定边缘的位置。
零点交叉边缘检测法(Bovik,1998)运用了二阶导数和拉普拉斯算符。
而Canny算法(Canny,1986)是目前学界最流行并且应用最广泛的的高斯边缘检测算法。
尽管高斯检测算法(Yuksel,2007)相对来说有更好的性能表现,但是所需要的计算也比传统基于求导的检测算法复杂的多。
近些年来,对于图像处理在许多不同的科学和工程领域应用的研究越来越火热。
在嵌入式系统上实现图像处理能够很好的解决在一般PC或者工控机上实现图像处理的不足之处,比如说便携性差,功耗大,移动性,灵活性不强等。
同时加之以集成度高,与网络的耦合也越来越紧密等特点。
嵌入式系统将是未来工业控制和其他一些行业的主要发展方向。
1.2边缘检测的定义图像边缘是图像最基本的特征,边缘在图像分析中起着重要的用。
所谓边缘(edge)是指图像局部特征的不连续性。
灰度或结构信息的突变称为边缘,例如:灰度级的突变、颜色的突变、纹理结的突变。
边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。
当人们看一个有边缘的物体时,首先感觉到的便是边缘,如一条理想的边缘应该具有如图 2.1(a) 所示模型的特性。
每个像素都处在灰度级跃变的一个垂直的台阶上(例如图形中所示的水平线通过图像的灰度剖面图)。
而实际上,诸如图像采集系统的性能、采样频率和获得图像的照明条件等因素的影响,得到的边缘往往是模糊的,边缘被模拟成具有“斜坡面”的剖面,如图2.1(b) 所示,在这个模型中不再有细线(宽为一个像素的线条),而是出现了边缘的点包含斜坡中任意点的情况。
由此可以看到:模糊的边缘使边缘的“宽度”较大,面清晰的边缘使边缘的宽度较小。
图像的边缘有方向的幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。
边缘上的这种变化可以用微分算子检测出来,通常用一阶导数或二阶导数来检测边缘,不同的是一阶导数认为最大值对应边缘位置,而二阶导数以过零点对应边缘位置。
实际上,对于图像中的任意方向上的边缘都可以进行类似的分析。
图像边缘检测中对任意点的一阶导数可以利用该点梯度的幅度来获得,二阶导数可以用拉普拉斯算子得到。
1.3图像边缘检测算法的研究内容图像边缘检测和分析可定义为应用一系列方法获取、校正、增强、变换、检测或压缩可视图像的技术。
其目的是提高信息的相对质量,以便提取有用信息。
图像边缘检测中的变换属于图像输入-图像输出模式,图像边缘检测是一种超越具体应用的过程,任何为解决某一特殊问题而开发的图像边缘检测新技术或新方法,几乎肯定都能找到其他完全不同的应用领域。
图像边缘检测的主要研究内容包括:(1)图像获得和抽样,其中通过人眼观察的视野获取图像的问题有:最常用的图像获取装置——电视(TV)摄像机问题,对所获得信号进行独立的采样和数字化就可用数字形式表达景物中全部彩色内容;电荷-耦合装置,用作图像传感器,对景物每次扫描一行,或通过平行扫描获得图像;选择正确的分辨力或采样密度,一幅图像实质上是二维空间中的信号,所以适用于信号处理的法则同样适用于图像边缘检测,在放射学中常常需要高分辨力,要求图像至少达到2048像素×2048像素;灰度量化,图像强度也必须进行数字化,通常以256级(按1字节编码)覆盖整个灰度,一般一幅灰度分辨力为8位,空间分辨力为512像素×512像素的图像需0.25兆字节的存贮容量。
(2)图像分割,目的是把一个图像分解成它的构成成分,以便对每一目标进行测量。
图像分割是一个十分困难的过程。
但其测量结果的质量却极大地依赖于图像分割的质量。
有两类不同的图像分割方法。
一种方法是假设图像各成分的强度值是均匀的并利用这种均匀性;另一种方法寻找图像成分之间的边界,因而是利用图像的不均匀性。
主要有直方图分割,区域生长,梯度法等。
(3)边界查索,用于检测图像中线状局部结构,通常是作为图像分割的一个预处理步骤。
大多数图像边缘检测技术应用某种形式的梯度算子,可应用对水平方向、垂直方向或对角线方向的梯度敏感的梯度算子,用它们的复合结果可检测任意方向的边界。
(4)图像增强和复原,用于改进图像的质量。
不同的增强技术可以用于不同的目的,这取决于应用的类型。
如果打算直接观察图像,可以增强对比度。
如果是为了进一步对图像作数字处理,可以选择分割(一种突出各图像成分之间的边界和线状结构的运算)。
该技术可以是整体的或局部的,也可以在某个频域或者空间域中进行。
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
(5)图像分类(识别),图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。
(6)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像边缘检测中也有着广泛而有效的应用。
1.4边缘检测的发展趋势边缘检测的研究多年来一直受到人们的高度重视,从边缘检测研究的历史和现状来看,边缘检测的研究有几个明显的趋势:1)对原有算法的不断改进。
2)新方法、新概念的引入和多种方法的有效综合运用。
3)对特殊图像边缘检测的研究越来越得到重视。
目前有很多针对立体图像、彩色图像、多光谱图像、合成孔径雷达图像、深度图像、纹理图像、超声图像、计算机断层扫描、磁共振图像、共聚焦激光扫描显微镜图像以及运动图像等特殊图像的边缘检测技术的研究。
4)对图像边缘检测评价的研究和对评价系统的研究越来越得到关注。
5)将现有的算法应用于工程实际中。
2边缘检测的算法分析与描述2.1 Roberts算子由Roberts 提出的算子是一种利用局部差分算子寻找边缘的算子,对于边界陡峭且噪比较小的图像检测效果比较好,它在2×2邻域上计算对角导数,[][][]()[][]()22,=,1,11,,1G i j f i j f i j f i j f i j -++++-+(2.1) G [i,j ]又称为Roberts 交叉算子。