纳米材料的主要制备方法
纳米材料制备和应用技术研究

纳米材料制备和应用技术研究一、纳米材料制备技术纳米材料是以纳米尺度为特征尺度的物质,具有晶粒级数、尺寸等特殊性质,广泛应用于能源、材料、环境等领域。
纳米材料制备技术的发展极大地推动了纳米材料的应用。
目前,纳米材料的制备方法主要有几种:1. 物理制备法物理制备法主要包括机械法、蒸发凝聚法、纳米微影技术等。
其中,在机械法制备纳米材料的方法中,超声波震荡折叠技术是最常用的方法之一。
这种方法采用超声波高频震荡、牵引力和折叠等多种力学效应作用于金属,使其在有限次折叠后出现纳米晶粒,从而实现纳米材料制备。
2. 化学制备法化学制备法主要包括溶胶凝胶法、水热法、电化学制备法等。
其中水热法是较为常见的一种方法。
该方法通过控制温度、压力、pH值等参数,使单质或化合物在特定环境条件下热液处理,得到具有纳米特征的材料。
此外,还有微乳液法、胶体化学法、聚合物模板法等化学制备法。
二、纳米材料应用技术纳米材料应用技术在各种领域推动了革命性的变化,下面列举几种纳米材料的应用:1. 纳米催化剂技术纳米材料可以作为催化剂,在能源、环保、新材料等领域中发挥至关重要的作用。
利用纳米催化剂可实现对废水、废气的清洁处理,以及延长催化剂的使用寿命等。
2. 纳米材料在能源领域的应用纳米材料应用于能源领域是目前的研究热点,如纳米材料在生物燃料电池领域的应用、纳米太阳能电池等。
纳米材料大小、形态等方面的特性使其在能源领域具有广泛应用前景。
3. 纳米材料在生物医学领域的应用纳米材料在生物医学领域的应用是热点领域之一,如纳米药物在癌症治疗中的应用。
纳米材料通过其特异性的体内和体外分布,可在小剂量下达到较好的疗效。
4. 纳米传感器技术纳米传感器技术是当前应用前景广泛的领域之一。
纳米材料作为传感器材料,可以实现对环境、食品、化学品等多方面的监测,更好地维护人类的健康和环境的安全。
三、纳米材料市场发展前景随着纳米科技的飞速发展,国内外纳米材料技术研究越来越多,纳米材料的应用领域得到了极大的拓展,其市场发展前景也越来越受到关注。
纳米材料的合成与表征

纳米材料的合成与表征纳米材料是指粒径在1-100纳米(nm)的材料,这种尺度下材料的物理、化学、光学、电子等性质有着独特的变化。
纳米材料的合成和表征是纳米学、材料科学和化学领域中的重要课题之一。
一、纳米材料的合成1. 物理方法物理合成法主要是通过物理手段改变物质形态实现的,比如电子束光刻、激光蒸发和溅射等方法。
其中较为常见的是物理气相沉积技术(PVD)和物理液相沉积技术。
PVD方法简单易行,通常适用于稳定化合物和非氧化物材料的制备。
其优点是可控性好,反应过程无污染,缺点是生产效率低,成本较高。
2. 化学方法化学合成法是通过化学反应实现的,分为溶胶-凝胶法、电化学法、双逆法、热分解法等。
其中,溶胶-凝胶法是近年来应用最广泛的一种纳米材料化学制备方法,其特点是原料易得、反应条件温和、纳米粒子尺寸可控。
但是,该方法的缺点是不能制备规模化的纳米材料。
3. 生物方法生物合成法是利用浸润在微生物体内的金属离子还原成金属纳米颗粒。
这种方法具有生物降解性和生物相容性的优点,可以降低对环境的污染和对生物体的伤害。
二、纳米材料的表征1. 扫描电镜(SEM)SEM可以对样品表面形貌进行高分辨率的观察。
通过SEM观察纳米材料的形貌、粒径分布情况等,得到纳米材料的形貌信息,对纳米材料的结构和性质具有较好的表征作用。
2. 透射电镜(TEM)TEM可以对样品内部结构进行高分辨率的观察。
通过TEM观察纳米材料的晶体结构、晶格常数、晶粒大小等,可以了解纳米材料的晶体结构信息。
3. 稳态荧光光谱法稳态荧光光谱法可以用来表征纳米材料的结构、表面修饰或化学反应的结果、吸附反应的结果等。
通过判断荧光光谱发射峰位置的变化和强度的变化,可以了解纳米材料表面上发生的化学反应或物理吸附的结果。
4. 热重分析法热重分析法使用精确的权衡系统,破坏并排除样品中的物质,通常以热解或热脱附为主要手段。
可以通过测试样品的热重曲线,了解纳米材料的热稳定性、氧化稳定性、吸附性能、结晶状态等信息。
纳米材料的制备方法(液相法)

(2)雾化水解法
将一种盐的超微粒子,由惰性气体载入含有金属 醇盐的蒸气室,金属醇盐蒸气附着在超微粒的 表面,与水蒸气反应分解后形成氢氧化物微粒, 经焙烧后获得氧化物的超细微粒。
这种方法获得的微粒纯度高,分布窄,尺寸可控。 具体尺寸大小主要取决于盐的微粒大小。
例如高纯Al2O3微粒可采用此法制备: 具体过程是将载有氯化银超微粒(868一923K)的 氦气通过铝丁醇盐的蒸气,氦气流速为500— 2000 cm3/min,铝丁醇盐蒸气室的温度为395— 428K,醇盐蒸气压<=1133Pa。在蒸气室形成 以铝丁醇盐、氯化银和氦气组成饱和的混合气 体。经冷凝器冷却后获得了气态溶胶,在水分 解器中与水反应分解成勃母石或水铝石(亚微 米级的微粒)。经热处理可获得从Al2O3的超细 微粒。
• 金刚石粉末的合成
5ml CCl4 和过量的20g金属钠被放到50ml的高压釜中,质量比为Ni:Mn:Co = 70:25:5的Ni-Co合金作为催化剂。在700oC下反应48小时,然后的釜中冷却。 在还原反应开始时,高压釜中存在着高压,随着CCl4被Na还原,压强减少。 制得灰黑色粉末。
(A)TEM image (scale bar, 1 mm) (B) electron diffraction pattern (C) SEM image (scale bar, 60 mm)
§2.2 .1 沉淀法 precipitation method
沉淀法是指包含一种或多种离子的可溶性盐溶液, 当加入沉淀剂(如OH--,CO32-等)后,或在一定 温度下使溶液发生水解,形成不溶性的氢氧化 物、水合氧化物或盐类从溶液中析出,并将溶 剂和溶液中原有的阴离子除去,经热分解或脱 水即得到所需的化合物粉料。
ZrOCl2 2NH 4OH H 2O Zr(OH ) 4 2NH 4Cl
纳米材料的制备方法

纳米材料的制备方法
纳米材料的制备方法主要有几种,其中包括物理法、化学法和生
物技术法。
1. 物理法:物理法的制备方法又可以分为几类,包括电磁熔炼法、湿法分散器等。
例如电磁熔炼法可以通过电磁力场将含有特定成分的
材料加热融化,然后通过冷却和固定,形成小尺度的粒子。
湿法分散
器也可以将混入溶剂中的原料加以研磨并调节粒径,从而获得纳米溶胶。
2. 化学法:化学法中,主要有溶剂热法、溶剂冷法等。
溶剂热法
是使用溶剂作为介质,将原料溶解,然后加入体系内氧化剂进行氧化
聚合,最后用超声处理微粒,形成更小的纳米粒子。
而溶剂冷法则是
将原料溶解后,再加入表面活性剂,使其聚集形成纳米粒子。
3. 生物技术法:生物技术法则是利用微生物的合成能力进行合成,将原料添加到表面活性剂、微生物介质、磷酸肥料等中,以促进微生
物的生长和代谢,最终形成纳米粒子。
以上就是纳米材料的制备方法主要有几种,它们分别是物理法、
化学法和生物技术法。
这些方法都有不同的优点和缺点,需要根据具
体应用场景选择合适的方法,以期获得更高质量的纳米材料粒子。
纳米材料的制备方法及原理 (整理)

7、等离子体加热蒸发法
等离子体的概念及其形成
物质各态变化: 固体→液体→气体→等离子体→反物质(负)+物质(正) (正负电相反,质量相同) 只要使气体中每个粒子的能量超过原子的电离能,电子将 会脱离原子的束缚而成为自由电子,而原子因失去电子成 为带正电的离子(热电子轰击)。这个过程称为电离。当 足够的原子电离后转变另一物态---等离子态。
4
1、气相法制备纳米微粒的生长机理
• 2) 高频感应加热: 电磁感应现象产生的热来加热。 类似于变压器的热损耗。 高频感应加热是利用金属和磁 性材料在高频交变电磁场中存 在涡流损耗和磁滞损耗,因而 实现对金属和铁磁性性材料工 件内部直接加热。
5
1、气相法制备纳米微粒的生长机理
• 3) 激光加热: 将具有很高亮度的激光束经透镜聚焦后,能在焦点附近产生数千
17/372
3、非晶晶化法
原理:先将原料用急冷技术制成非晶薄带或薄膜, 就是把某些金属元素按一定比例高温熔化,然后 将熔化了的合金液体适量连续滴漏到高速转动的 飞轮表面,这些合金液体沿着飞轮表面的切线方 向被甩了出去同时急遽地冷却,成为非晶薄带或 薄膜。然后控制退火条件,如退火时间和退火温 度,使非晶全部或部分晶化,生成的晶粒尺寸可 维持在纳米级。
18/372
4、机械破碎法
是采用高能球磨、超声波或气流粉碎等机械方法,以粉 碎与研磨为主体来实现粉末的纳米化。 其机理主要是产生大量缺陷,位错,发展成交错的位错 墙,将大晶粒切割成纳米晶。 球磨工艺的目的是减小微粒尺寸、固态合金化、混合以 及改变微粒的形状。球磨的动能是它的动能和速度的函 数,致密的材料使用陶瓷球,在连续严重塑性形变中, 位错密度增加,在一定的临界密度下松弛为小角度亚晶 晶格畸变减小,粉末颗粒的内部结构连续地细化到纳米 尺寸
纳米技术和材料的制备方法

纳米技术和材料的制备方法随着科技的不断发展和进步,人们对材料和技术的要求也越来越高。
而纳米技术和纳米材料便因其独特性质和应用前景而备受关注,成为研究热点。
那么,纳米技术和材料又是如何制备的呢?纳米技术制备方法纳米技术是指利用特定的物理、化学及生物学原理和方法,在纳米尺度范围内制备、加工、修饰及调控物质结构、形态、组成、性能和功能的技术及其应用。
纳米技术的制备方法主要包括:1.物理法:利用物理方法对原子、分子进行组装,形成纳米结构。
如气相合成、溅射、凝聚和纳米压印等。
2.化学法:利用化学反应对物质进行合成和修饰,控制粒径和形貌。
如溶胶-凝胶法、水热法、沉淀法、电化学沉积法和微乳法等。
3.生物法:利用生物学原理和生物大分子对原子、分子进行组装,形成纳米结构。
如生物合成法、酶催化法等。
4.机械法:利用机械加工技术对材料进行处理,形成纳米结构。
如球磨法、高能球磨法等。
这些方法各有特点,可以根据不同需要选择合适的方法进行制备。
纳米材料制备方法纳米材料是指在纳米尺度下表现出特殊性质和特殊应用效果的材料。
纳米材料的制备方法主要包括:1.蒸发冷凝法:利用化学气相沉积(CVD)和物理气相沉积(PVD)等方法,将气态的纳米材料沉积在基底上。
2.溶胶凝胶法:利用金属盐或金属有机化合物等化合物制备凝胶或氧化物纳米粒子,然后通过烧结等方式制备纳米材料。
3.切削法:利用机械方式将块状材料切削成纳米级的粉末或片材。
4.电化学沉积法:利用电解液中的离子对电极进行沉积,制备纳米材料。
纳米材料制备的方法和制备的材料种类非常丰富,可以根据不同需要选择合适的方法进行制备。
总结纳米技术和纳米材料的制备方法多种多样,都具有其独特的特点。
在实际应用中,可以根据需要选择不同的制备方法和材料种类,以满足不同的需求。
未来,随着纳米技术和纳米材料的不断发展和进步,其应用范围将会更加广泛,也将为人们带来更多的便利和发展机遇。
典型无机纳米材料制备

典型无机纳米材料制备无机纳米材料是指在纳米尺度范围内具有特殊性质和应用的无机材料。
其制备方法多种多样,包括物理方法、化学方法和生物合成法等。
本文将主要介绍一些典型的无机纳米材料制备方法。
1.物理方法物理方法是通过物理手段来制备无机纳米材料。
最常见的物理方法包括溅射法、蒸发法、磁控溅射法和高能球磨法等。
(1)溅射法:溅射法是利用惰性气体离子轰击固体靶材的表面,使其材料原子或原子团簇从靶表面脱落,并在基底上凝聚成薄膜或纳米结构。
这种方法制备的材料具有较好的薄膜结晶度和纳米晶粒的均匀性。
(2)蒸发法:蒸发法是利用热量将固体材料加热,使其表面原子或离子脱离固体表面,并在基底上沉积成薄膜或纳米结构。
这种方法制备的材料晶粒大小和结晶度较差,但制备过程简单。
(3)磁控溅射法:磁控溅射法是在溅射法基础上加入磁场,使得离子的运动轨迹受到磁场的约束,从而得到具有较高纯度和较好结晶度的材料。
(4)高能球磨法:高能球磨法通过高能冲击和摩擦力将粉末原料进行球磨,使其晶粒尺寸减小到纳米尺度。
这种方法简单易行,但制备的材料晶粒尺寸不均匀。
2.化学方法化学方法是通过化学反应来制备无机纳米材料。
最常见的化学方法包括溶胶-凝胶法、气相沉积法和水热法等。
(1)溶胶-凝胶法:溶胶-凝胶法是将适当的化合物溶解在溶剂中形成溶胶,然后通过化学反应或物理方法使其凝胶。
随后将凝胶加热并干燥,得到无机纳米材料。
这种方法制备的材料具有较好的纯度和较高的孔隙度。
(2)气相沉积法:气相沉积法是将气相中的材料原子或离子通过物理或化学反应沉积在基底上,形成纳米尺度的薄膜或纤维。
这种方法制备的材料薄膜结晶度高,但制备条件较为复杂。
(3)水热法:水热法是在高温高压的水溶液中,通过溶剂热和压力调节来促进反应进行,得到纳米材料。
水热法具有简便、环境友好等优点,适用于制备很多纳米材料。
3.生物合成法生物合成法是利用微生物、植物或其他生物体合成纳米材料。
最常见的生物合成方法包括微生物发酵法和植物提取法等。
纳米材料的制备方法

•
[2]尾崎义治,贺集诚一郎.纳米微粒导论[M].赵修建,张联盟译.武汉:武汉工业大学出版 社,1991.121.
•
• • • • •
[3]曹茂盛.超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1998.33.
[4]王世敏,许祖勋,傅 晶.纳米材料制备技术[M].北京:化学工业出版社,2002.55. [5]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.122. [6]刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002.21. [7] Vossen J L,Kern W. Thin Film ProcessⅡ[M].New York:A-cademic Press,1991.501. [8] Brinker C J,Hurd A J,Schunk P R,et al. Review of sol-gelthin film formation[ J] .Non-crystalline Solids, 1992(147&148):424.
1.1.4 溅射法
• 利用两块金属板分别作阳极和阴极,阴极为蒸发用的材料,在两极内充入氩气 (40~ 250 Pa),两极内施加的电压为0.3~ 1.5 kV。由于两电极间的辉光放电使 氩离子形成,在电场的作用下氩离子冲击阴极靶材表面,使靶材原子从其表面蒸 发出来形成超微粒子,并在附着面上沉积下来。粒子的大小及尺寸分布主要取
• 溶胶-凝胶法是目前应用很多、也比较完善的方法之,近年来再
次引起人们的重视。溶胶-凝胶技术是制备纳米材料的 特殊工艺,可用于制备微粉、薄膜、纤维、体材及复合材 料[8]。在制备过程中无需机械混合,不易掺入杂质,产品 纯度高。由于在溶胶-凝胶过程中,溶胶由溶液制得,化合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业论文学院物理电子工程学院专业物理学年级 2008级姓名贾学伟设计题目纳米材料的主要制备方法指导教师闫海龙职称副教授2012年4月28日目录摘要 (1)Abstract (1)1 引言 (1)1.1纳米材料的定义 (1)1.2纳米材料的研究意义 (2)2 纳米材料的主要制备方法 (3)2.1化学气相沉积法 (3)2.2溶胶-凝胶法 (5)2.3分子束外延法 (6)2.4脉冲激光沉积法 (8)2.5静电纺丝法 (9)2.6磁控溅射法 (11)2.7水热法 (12)2.8其他制备纳米材料的方法 (13)3 总结 (14)参考文献 (14)致谢 (15)纳米材料的主要制备方法学生姓名:贾学伟学号:学院:物理电子工程学院专业:物理学指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。
随着纳米科技的发展,纳米材料的制备方法已日趋成熟。
本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。
在此基础上,分析了现代纳米材料制备方法的发展趋势。
纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。
关键词:纳米;纳米材料;纳米科技;制备方法The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century.Key words:nanometer;na nomaterials;nanotechnology;preparation1 引言1.1纳米材料的定义纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。
通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。
从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。
纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体四类。
其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。
纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。
纳米纤维指直径为纳米尺度而长度较大的线状材料。
纳米膜分为颗粒膜与致密膜。
颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。
致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。
纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。
1.2纳米材料的研究意义纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。
纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。
从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到了前所未有的高度。
我国着名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。
研究纳米生物学可以在纳米尺度上了解生物大分子的精细结构及其与功能的关系,获取生命信息,特别是细胞内的各种信息,利用纳米粒子研制成机器人,注入人体血管内,对人体进行全身健康检查,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物。
研究微器件纳米材料,特别是纳米线,可以使芯片集成度提高,电子元件体积缩小,使半导体技术取得突破性进展,大大提高了计算机的容量和进行速度,对微器件制作起决定性的推动作用。
纳米材料由于其特殊的电子结构与光学性能作为非线性光学材料、特异吸光材料、军事航空中用的吸波隐身材料,以及包括太阳能电池在内的储能及能量转换材料等具有很高的应用价值。
近年来,随着纳米技术的悄然崛起,纳米环保也会迅速来临,拓展人类利用资源和保护环境的能力。
德国科学家正在设计用纳料材料制作一个高温燃烧器,通过电化学反应过程,不经燃烧就把天然气转化为电能。
燃料的利用率要比一般电厂的效率提高20%至30%,而且大大减少了二氧化碳的排气量。
纳米材料由于具有特异的光、电、磁、热、声、力、化学和生物性能,广泛应用工业和民用等领域。
随着纳米材料制备技术的不断开发及应用范围的拓展,工业化生产纳米材料必将对传统的化学工业和其它产业产生重大影响。
纳米科技的研究在短短的数年中取得了巨大的成绩,它在高科技领域的应用也将越来越广,人们正致力于纳米新材料的研制,如:新型光电转换材料,光催化有机物降解材料,保洁抗菌涂层材料,生态建材,新型的磁性液体和磁记录材料,纳米半导体材料等。
这些新纳米材料有着广阔的应用前景,它们的成功研制将给人们的生活带来巨大的变化[3]。
2 纳米材料的主要制备方法纳米材料的制备方法有很多种,而且每种方法的效果不一样,本文简单综述了纳米材料制备中常用的几种方法,包括化学气相沉积法、溶胶-凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。
普通人通过阅读本文可以对纳米材料的制备方法有一个全面的了解。
2.1化学气相沉积法2.1.1化学气相沉积法的原理化学气相沉积是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程。
它利用挥发性的金属化合物的蒸发,通过化学反应生成所需化合物在保护气体环境下快速冷凝,从而制备各类物质的纳米微粒。
图1 化学气相沉积法的原理2.1.2化学气相沉积法的研究现状化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。
化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。
在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。
直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。
化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。
在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。
铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。
此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。
许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显着的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。
催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。
因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。
Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。
Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。
该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。
Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。
2.1.3总结化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。
此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。
因此,化学气相沉积法成为实现可控合成技术的一种有效途径。
化学气相沉积法缺点是衬底温度高。
随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。
化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。
用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。
总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。
2.2溶胶-凝胶法2.2.1溶胶—凝胶法的原理溶胶-凝胶法是用易水解的金属化合物(无机盐或金属盐)在某种溶剂中形成均质溶液,溶质发生水解反应生成纳米级的粒子并形成溶胶,溶胶经蒸发干燥转变为凝胶(该法为低温反应过程,允许掺杂大剂量的无机物和有机物),再经干燥、烧结等后处理得到所需的材料,其基本反应有水解反应和聚合反应。
该法涉及到溶胶和凝胶两个概念。
所谓溶胶是指分散在液相中的固态粒子足够小,以致可以通过布朗运动保持无限期的悬浮;凝胶是一种包含液相组分且具有内部网络结构的固体,此时的液体和固体都呈现一种高度分散的状态。
采用溶胶-凝胶法制备材料的具体技术或工艺过程相当多,但按其产生溶胶-凝胶过程的机制不外乎三种类型,即传统胶体型、无机聚合物型和配合物型[8]。