7年级(上)数学期末试题

合集下载

浙教版七年级上册数学期末考试试题及答案

浙教版七年级上册数学期末考试试题及答案

浙教版七年级上册数学期末考试试题一、单选题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A .|﹣3|B .﹣2C .0D .π2.将13657亿用科学记数法表示为()A .111.365310⨯B .130.1365710⨯C .121.365710⨯D .1113.65710⨯3.下列计算结果正确的是()A .22422x x -=B .235x y xy +=C .22770x y yx -=D .2246x x x +=4.下列结论正确的是()A .2-的倒数是2B .64的平方根是8C .16的立方根为4D .算术平方根是本身的数为0和15.已知432=1849,442=1936,452=2025,462=2116…,若n 为整数,且n <n+1,则n 的值为()A .43B .44C .45D .466.如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为()A .3-B .0C .3D .6-7.下列说法中正确的是()A .33ab -的次数是3次B .有理数与数轴上的点一一对应C .2π是分数D .四舍五入得到的近似数1.75万,精确到百位8.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点...若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后2分钟内,两人相遇的次数为()A .7B .6C .5D .49.如图,将长方形ABCD 分成2个长方形与2个正方形,其中③、④为正方形,记长方形①的周长为1C ,长方形②的周长为2C ,则1C 与2C 的大小为(A .12C C >B .12C C =C .12C C <D .不确定10.如图所示,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠= ,则FOD ∠=()A .35°B .45°C .55°D .125°二、填空题11.如果长江“水位上升20cm ”记作20cm +,那么15cm -表示______.12.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为_____.13.若一个角的补角是其余角的3倍,则这个角的度数为___.14.中国古代数学著作《九章算术》有如下问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是:今有3人坐一辆车,有2辆车是空的;2人坐一辆车,有9个人需要步行.问人与车各多少?若设车有x 辆,则根据题意可以列出关于x 的方程为__________.15.已知5x y =--,2xy =,计算334x y xy +-的值为______.16.将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第10个数为______,第55个数为______.三、解答题17.计算:(1)20221124---(2)()()315224126--⨯-18.解方程:(1)()2113x x -=--(2)4131163x x ---=-19.先化简,再求值:()()22223225x y x xy y ----,其中2x =-,12y =-.20.某长方形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.(1)[规律总结]若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加______块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为______.(用含n 的代数式表示).(3)[问题解决]若一条这样的人行道一共有2022块等腰直角三角形地砖,则这条人行道正方形地砖有多少块?21.如图,OA OB ⊥,60COD ∠=︒.(1)若OC 平分∠AOD ,求∠BOC 的度数.(2)若37BOC AOD ∠=∠,求∠AOD 的度数.22.某玩具生产厂家A 车间原来有30名工人,B 车间原来有20名工人,现将新增25名工人分配到两车间,使A A 车间工人总数是B 车间工人总数的2倍.(1)新分配到A 、B 车间各是多少人?(2)A 车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现要制作一批玩具,若A 车间用一条生产线单独完成任务需要30天,问A 车间新增工人和生产线后比原来提前几天完成任务?23.对于数轴上给定的两点M ,N(M 在N 的左侧),若数轴上存在点P ,使得3MP NP k +=,则称点P 为点M ,N 的“k 和点”.例如,如图1,点M ,N 表示的数分别为0,2,点P 表示的数为1,因为34MP NP +=,所以点P 是点M ,N 的“4和点”.(1)如图2,已知点A 表示的数为2-,点B 表示的数为2.①若点O 表示的数为0,点O 为点A ,B 的“k 和点”,则k 的值______.②若点C 在线段AB 上,且点C 是点A ,B 的“5和点”,则点C 表示的数为______.③若点D 是点A ,B 的“k 和点”,且2AD BD =,求k 的值.(2)数轴上点E 表示的数为a ,点F 在点E 的右侧,4EF =,点T 是点E ,F 的“6和点”,请求出点T 表示的数t 的值(用含a 的代数式表示).24.快车以200km/h 的速度由甲地开往乙地再返回甲地,慢车以75km/h 的速度同时从乙地出发开往甲地,已知快车回到甲地时,慢车距离甲地还有225km ,则(1)甲乙两地相距多少千米?(2)从出发开始,经过多长时间两车相遇?(3)几小时后两车相距100千米?参考答案1.B2.C3.C4.D5.C6.A7.D8.C9.B10.C11.水位下降15cm【详解】解:“正”和“负”相对,∵水位上升20cm记作+20cm,∴﹣15cm表示水位下降15cm.故答案为:水位下降15cm.【点睛】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.两点确定一条直线.【详解】解:用一根钉子钉木条时,木条会来回晃动,数学道理:过一点有无数条直线,用两根钉子钉木条时,木条会被固定不动,数学道理:过两点有且只有一条直线.故答案为过一点有无数条直线,过两点有且只有一条直线.13.45°##45度【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.【详解】解:设这个角的度数是x ,则180°-x=3(90°-x ),解得x=45°.答:这个角的度数是45°.故答案为:45°.【点睛】本题考查了余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法.14.3(x-2)=2x+9【分析】设车为x 辆,根据人数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:设车有x 辆,则人有3(x-2)人,依题意,得:3(x-2)=2x+9.故答案为:3(x-2)=2x+9.【点睛】本题考查了一元一次方程的应用以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.15.23-【分析】将已知式子代入代数式中求解即可.【详解】 5x y=--∴5x y +=-将5x y +=-,2xy =代入334x y xy +-中,可得原式()34x y xy=+-()3542=⨯--⨯158=--23=-故答案为:23-.【点睛】本题考查了代数式的计算问题,掌握代入法是解题的关键.16.1203486【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为(1)2n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第10和55个能被3整除的数所在组为原数列中的个数,代入计算即可.【详解】第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:2(21)32⨯+=,第③个图形中的黑色圆点的个数为:3(31)62⨯+=,第④个图形中的黑色圆点的个数为:4(41)102⨯+=,……第n个图形中的黑色圆点的个数为(1)2n n⨯+,∴这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,∴其中每3个数中,都有2个能被3整除,10÷2=5(组),∴第10个能被3整除的数为原数列中的个数为5×3=15(个),∴15(151)2⨯+=120,∵55÷2=27(组)……1,∴第55个能被3整除的数为原数列中的个数为27×3+2=83(个)∴83(831)2⨯+=3486,故答案为:120,3486【点睛】此题考查了图形类的规律变化,通过归纳与总结,得到其中的规律是解题关键.17.(1)12 2 -(2)10【分析】(1)先分别计算整数指数幂、去绝对值,开根号,再进行有理数的加减混合计算即可;(2)先计算整数指数幂,并将括号内通分化简,再进行约分,最后进行有理数的减法运算即可.(1)202212---+1122=--+122=-(2)()()315224126--⨯-()982412=--⨯-818=-+10=【点睛】本题考查实数的混合运算,掌握相关的运算法则是解答本题的关键.18.(1)=1x -(2)72x =【分析】(1)先去括号,再移项和合并同类项求解即可;(2)先去分母,再移项和合并同类项求解即可.(1)()211321131x x x xx -=---=-+=-解=1x -(2)4131163416262772xx x x x x ---=---+=--=-=解得72x =【点睛】本题考查了解一元一次方程,掌握解一元一次方程的方法是解题的关键.19.2242x y xy ++,7【分析】先去括号,合并同类项,再将未知数的值代入计算.【详解】解:原式=2222362210x y x xy y --++2242x y xy=++当2x =-,12y =-时,原式=()()2211242222⎛⎫⎛⎫-+⨯-+⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=7.【点睛】此题考查了整式加减中的化简求值,正确掌握整式加减法的计算法则是解题的关键.20.(1)2(2)42n+(3)1009块【分析】(1)观察图形1可知:中间的每个正方形都对应了两个等腰直角三角形,即可得出答案;(2)观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1;图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,图3:8=3+2×2+1=4+2×2;图1:4+2n (即2n+4);(3)由于等腰直角三角形地砖块数2n+4是偶数,根据现有2022块等腰直角三角形地砖,可得:2n+4=2022,即可求得答案.(1)解:观察图1可知:中间的每个正方形都对应了两个等腰直角三角形,所以每增加一块正方形地砖,等腰直角三角形地砖就增加2块;故答案为:2;(2)观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1;图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,图3:8=3+2×2+1=4+2×2;归纳得:4+2n (即2n+4);∴若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为2n+4块;故答案为:2n+4;(3)由规律知:等腰直角三角形地砖块数2n+4是偶数,2022正好是偶数.解:设正方形地砖有n 块?则422022n +=,得1009n =答:正方形地砖有1009块【点睛】本题考查了考查规律性问题的解决方法,解题的关键是探究规律要认真观察、仔细思考,善用联想来解决这类问题.21.(1)30°(2)105°【分析】(1)根据角平分线的定义可得∠AOC=60°,根据OA OB ⊥可得∠AOB=90°,根据角的和差关系即可得答案;(2)根据角的和差关系可得90BOD AOD ∠=∠-︒,60BOD BOC ∠=︒-∠,根据37BOC AOD ∠=∠列方程求出∠AOD 的值即可得答案.(1)∵OC 平分∠AOD ,60COD ∠=︒,∴60AOC COD ∠=∠=︒,∵OA OB ⊥,∴∠AOB=90°,∴∠BOC=∠AOB-∠AOC=90°-60°=30°,∴∠BOC 的度数是30°.(2)∵90AOB ∠=︒,∴90BOD AOD AOB AOD ∠=∠-∠=∠-︒,∵60COD ∠=︒,∴60BOD COD BOC BOC ∠=∠-∠=︒-∠,∴60BOC ︒-∠90AOD =∠-︒,∵37BOC AOD ∠=∠,∴3607AOD ︒-∠90AOD =∠-︒,解得:105AOD ∠=︒,∴∠AOD 的度数是105°.22.(1)新分配到A 车间20人,分配到B 车间5人(2)A 车间新增工人和生产线后比原来提前2天完成任务【分析】(1)设新分配到A 车间x 人,则分配到B 车间()25x -人,根据题意列出方程求解即可;(2)分别计算原来完成任务需要的天数,新添工人和生产线后需要的天数,作差即可.(1)解:设新分配到A 车间x 人,则分配到B 车间()25x -人.由题意可得:()3022025x x +=+-,解得20x =∴新分配到A 车间20人,分配到B 车间5人.(2)解:由(1)可得,分配后A 车间共有50人,∵每条生产线配置5名工人∴分配工人前共有6条生产线,分配工人后共有10条生产线;分配前,共需要的天数为5630=÷(天),分配后,共需要的天数为30103÷=(天),∴532-=(天),∴A 车间新增工人和生产线后比原来提前2天完成任务.【点睛】本题考查了一元一次方程的实际应用,掌握一元一次方程的性质以及解法是解题的关键.23.(1)①8;②1.5;③203或20(2)t 的值为3a +或92a +【分析】(1)①根据定义得OA+3OB=k ,计算即可;②设点C 表示的数为c ,根据题意列方程求解;③分两种情况:当点D 在AB 之间,点D 位于点B 右侧,求出AD 、BD ,根据公式即可求出k ;(2)分三种情况:①当点T 位于点E 左侧,②当点T 在线段EF 上时,③当点T 位于点F 右侧,列方程解答.(1)解:①∵点O为点A,B的“k和点”,∴OA+3OB=k,∴点A表示的数为2-,点B表示的数为2.∴OA=2,OB=2,∴k=8,故答案为:8;②设点C表示的数为c,∵点C是点A,B的“5和点”,∴AC+3BC=5,∴c+2+3(2-c)=5,解得c=1.5,故答案为:1.5;③当点D在AB之间,∵2AD BD=,∴14433BD=⨯=,28433AD=⨯=,∴842033333k AD BD=+=+⨯=;点D位于点B右侧,∵2AD BD=,∴4BD AB==,∴248AD=⨯=,∴83420k=+⨯=.故k的值为203或20;(2)解:①当点T位于点E左侧,即t a<时,显然不满足条件.②当点T在线段EF上时,∵4EF=,∴4ET TF +=.又∵点T 是点E ,F 的“6和点”,∴36ET FT +=,∴3ET =,1FT =,∴3t a =+.③当点T 位于点F 右侧时,∵4EF =,∴4ET FT -=,又∵点T 是点E ,F 的“6和点”,∴36ET FT +=,∴12FT =,92ET =,∴92t a =+,综上所述,t 的值为3a +或92a +.24.(1)甲乙两地相距900千米.(2)出发3636115或小时后,两车相遇.(3)3211或4011或6.4或8或2103小时,【分析】(1)设甲乙两地相距x 千米根据题意列出方程222520075x x -=解出x 值即可;(2)分为两种情况:①快车到达乙地之前两车相遇,②快车到达乙地之后返回途中相遇,根据两种情况分别列出方程求出答案即可;(3)分类去讨论:①快车到达乙地之前,且两车相遇前,②快车到达乙地之前,且两车相遇后,③快车到达乙地之后,且返回途中两车相遇前,④快车到达乙地之后,且返回途中两车相遇后,⑤快车到达乙地停止后,并分别求出其时间即可.【详解】解:(1)设:甲乙两地相距x 千米.222520075x x -=解得900x =答:甲乙两地相距900千米.(2)设:从出发开始,经过t 小时两车相遇.①快车到达乙地之前,两车相遇20075900t t+=解得3611 t=②快车到达乙地之后,返回途中两车相遇20075900t t-=解得365 t=答:出发3611小时或365小时后两车相遇.(3)设:从出发开始,t小时后两车相距100千米.①快车到达乙地之前,且两车相遇前,两车相距100千米20075900100t t+=-解得3211 t=②快车到达乙地之前,且两车相遇后,两车相距100千米20075900+100t t+=解得4011 t=③快车到达乙地之后,且返回途中两车相遇前,两车相距100千米200-75900100t t=-解得 6.4t=④快车到达乙地之后,且返回途中两车相遇后,两车相距100千米200-75900+100t t=解得8t=⑤快车到达乙地停止后,两车相距100千米2(1800200)(225100)75=103÷+-÷答:出发3211或4011或6.4或8或2103小时后,两车相距100千米.。

2022-2023学年河南省新乡市七年级(上)期末数学试题及答案解析

2022-2023学年河南省新乡市七年级(上)期末数学试题及答案解析

2022-2023学年河南省新乡市七年级(上)期末数学试卷1. 比−3小的数是( ) A. −3.5B. −2.5C. 0D. 22. 2022年10月12日,“天宫课堂”第三课在中国空间站开讲,3名航天员演示了在微重力环境下毛细效应实验、水球变“懒”实验等,相应视频在某短视频平台的点赞量达到150万次,数据150万用科学记数法表示为( )A. 1.5×105B. 0.15×105C. 1.5×106D. 1.5×1073. 下列说法正确的是( ) A. −3xy 的系数是3 B. xy 2与−2xy 2是同类项 C. −x 3y 2的次数是6D. −x 2y +5x −6是二次三项式4. 已知∠α=35°30′,则它的补角为( ) A. 35°30′B. 54°30′C. 144°30′D. 154°30′5. 下列调查中,最适合采用全面调查的是( ) A. 调查我国初中生的周末阅读时间B. 调查“神舟十五号”飞船各零部件的合格情况C. 调查某品牌汽车的抗撞击能力D. 调查巢湖的水质情况6. 根据等式的性质,下列变形正确的是( ) A. 若ac =bc ,则a =b B. 若x 4+x3=1,则3x +4x =1 C. 若ab =bc ,则a =cD. 若4x =a ,则x =4a7. 如果a ,b 互为相反数,x ,y 互为倒数,m 是最大的负整数,则2023(a +b)+3|m|−3xy的值是( )A. −2B. −1C. 0D. 18. 已知二元一次方程组{x +2y =3x −y =5,则2x +y 的值为( ) A. −2B. 0C. 6D. 89. 如图,未标出原点的数轴上有A ,B ,C ,D ,E ,F 六个点,若相邻两点之间的距离相等,则点D 所表示的数是( )A. 15B. 12C. 11D. 1010. 如图,∠AOB =∠COD =∠EOF =90°,则∠1,∠2,∠3之间的数量关系为( )A. ∠1+∠2+∠3=90°B. ∠1+∠2−∠3=90°C. ∠2+∠3−∠1=90°D. ∠1−∠2+∠3=90°11. 如果电梯上升3层记作+3层,那么下降2层记作______层.12. 已知|x−2|+|y+3|=0,则y2=______.13. 为了解某学校七年级1200名同学的视力情况,调查员从中随机抽取80名同学进行调查,本次调查的样本容量是______.14. 若x取任意值,等式(x−2)4=m0x4+m1x3+m2x2+m3x+m4都成立,则有(1)m4=______.(2)m0+m2+m4=______.15. 计算:−2×5+(−2)3÷4.16. 解方程:6−x=x−(3−x).17. 如图,C是线段AB上一点,P,Q分别是线段AC,BC的中点,若PQ=12,求AB的长.18. 为建设美丽乡村,某村规划修建一个小广场(平面图形如图所示).(1)求该广场的周长C(用含m,n的代数式表示).(2)当m=8米,n=5米时,计算出小广场的面积(图中阴影部分).19. 某口罩生产厂加工一批医用口罩.全厂共78名工人,每人每天可以生产800个口罩面或1000根口罩耳绳,1个口罩面需要配2根口罩耳绳,为使每天生产的口罩面和口罩耳绳刚好配套,问需要安排生产口罩面和口罩耳绳的工人各多少名?20. 下列图形是由面积为1的正方形按一定的规律组成的,请完成下列任务.(1)按此规律,图4中面积为1的正方形将有______个,图n中面积为1的正方形有______个.(用字母n表示)(2)若图n中面积为1的正方形有5004个,求n的值.21. 某校体育设施向社会免费开放,对一周内到校运动健身的市民人数进行了统计,并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题.(1)一周内到校运动健身的市民总人数为多少?(2)补全条形统计图与扇形统计图.(3)为了给运动健身的市民提供更多的便利,你认为学校可以在哪些运动项目的场地加大投入?请结合数据说明理由.22. 某班级布置教室,购买了一些日常用品和修饰品,清单见表(部分信息不全)物品名单价/元数量/个金额/元挂钟30260拖把15小黑板40格言贴a290门垫351b合计8280请完成下列问题:(1)a=______,b=______.(2)求该班级购买的拖把、小黑板的数量.(3)若干天后,该班级再次购买格言贴和拖把两种物品(两种物品都有),共花费105元,则有几种不同的购买方案?请将方案列举出来.23. 如图,两条直线AB,CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕点O 逆时针方向旋转,速度为每秒15°,射线ON(与射线OD重合)绕点O顺时针方向旋转,速度为每秒10°.两射线OM,ON同时运动,运动时间为t秒(本题出现的角均指不大于平角的角).(1)图中一定有______个直角;当t=2,∠MON的度数为______;当t=4,∠MON的度数为______.(2)当0<t<12时,若∠AOM=3∠AON−60°,试求出t的值.(3)当0<t<6时,探究8∠BON−3∠COM的值,在t满足怎样的条件时是定值,在t满足怎样的条∠MON件时不是定值?答案和解析1.【答案】A【解析】解:由图可知,−3.5<−3<−2.5<0<2.故选:A.把各点在数轴上上表示出来,根据数轴的特点即可得出结论.本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解题的关键.2.【答案】C【解析】解:150万=1500000=1.5×106.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A、−3xy的系数是−3,故A不符合题意;B、xy2与−2xy2是同类项,故B符合题意;C、−x3y2的次数是5,故C不符合题意;D、−x2y+5x−6是三次三项式,故D不符合题意;故选B.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项;单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;多项式中次数最高的项的次数叫做多项式的次数,单项式的个数就是多项式的项数,由此即可判断.本题考查单项式,多项式,关键是掌握多项式的次数,项数的概念;单项式的次数,系数的概念.4.【答案】C【解析】解:∵∠A=35°30′,∴∠A的补角=180°−35°30′=144°30′,故选:C.根据补角的定义,进行计算即可解答.本题考查了余角和补角,熟练掌握补角的定义是解题的关键.5.【答案】B【解析】解:A.调查我国初中生的周末阅读时间,适合进行抽样调查,故本选项不合题意;B.调查“神舟十五号”飞船各零部件的合格情况,适合进行普查,故本选项符合题意;C.调查某品牌汽车的抗撞击能力,适合进行抽样调查,故本选项不合题意;D.调查巢湖的水质情况,适合进行抽样调查,故本选项不合题意.故选:B.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【答案】A【解析】解:A.若ac =bc,而c≠0,两边都乘以c可得a=b,因此选项A符合题意;B.若x4+x3=1,两边都乘以12可得3x+4x=12,因此选项B不符合题意;C.当b=0时,就不成立,因此选项C不符合题意;D.若4x=a,则x=a4,因此选项D不符合题意;故选:A.根据等式的性质逐项进行判断即可.本题考查等式的性质,掌握等式的性质是正确解答的前提.7.【答案】C【解析】解:由题意知a+b=0,xy=1,m=−1,则原式=2023×0+3×|−1|−3×1=0+3−3=0,故选:C.由题意知a+b=0,xy=1,m=−1,再代入计算即可.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.8.【答案】D【解析】解:{x+2y=3①x−y=5②,①+②得:2x+y=8.故选:D.把两个方程相加,则可直接求得2x+y的值.本题主要考查解二元一次方程组,解答的关键是对相应的解答方法的掌握.9.【答案】B【解析】解:∵AF=22−(−3)=25,∴AB=BC=CD=DE=EF=15AF=5,∴D表示的数是22−10=12.故选:B.先根据点A、F表示的数求出线段AF的长度,再根据长度相等的线段表示相同的单位长度求出AB、BC、CD、DE、EF的长即可解答.本题考查数轴相关的内容,解题关键是根据相等的线段长度表示相同的单位长度.10.【答案】D【解析】解:∵∠3+∠BOC=∠DOB+∠BOC=90°,∴∠3=∠BOD,∵∠EOD+∠1=90°,∴∠BOD−∠2+∠1=90°,∴∠3−∠2+∠1=90°,故选:D.由∠3+∠BOC=∠DOB+∠BOC=90°,得出∠3=∠BOD,而∠BOD−∠2+∠1=90°,即可得到答案.本题考查互余的概念,关键是掌握余角的性质.11.【答案】−2【解析】解:根据题意,上升3层记作+3层,下降2层记作−2.故答案为:−2.具有相反意义的量,就是规定一个为正,另一个即为负,加上符号即可.本题考查了相反意义的量,掌握规定一个量为正数,则另一个量就是负数是关键.12.【答案】9【解析】解:由题意得,y+3=0,解得y=−3,∴y2=(−3)2=9.故答案为:9.先根据非负数的性质求出y的值,进而可得出结论.本题考查的是非负数的性质,熟知当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0是解题的关键.13.【答案】80【解析】解:为了解某学校七年级1200名同学的视力情况,调查员从中随机抽取80名同学进行调查,本次调查的样本容量是80.故答案为:80.一个样本包括的个体数量叫做样本容量.本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.14.【答案】1641【解析】解:(1)当x=0时:16=m4,故答案为:16;(2)当x=1时:1=m0+m1+m2+m3+m4①,当x=−1时:81=m0−m1+m2−m3+m4②,①+②得:2m0+2m2+2m4=82,∴m0+m2+m4=41,故答案为:41.(1)当x=0时代入求解;(2)分别把x=±1代入化简,进行整体求解.本题考查了代数式求值,整体求解是解题的关键.15.【答案】解:−2×5+(−2)3÷4=−2×5+(−8)÷4=−10+(−2)=−12.【解析】先算乘方,再算乘除法,最后算加法即可.本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.【答案】解:6−x=x−(3−x),6−x=x−3+x,−x−x−x=−3−6,−3x=−9,x=3.【解析】按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答.本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.17.【答案】解:∵C是线段AB上一点,P,Q分别是线段AC,BC的中点,∴PC=12AC,CQ=12CB,∴PQ=PC+CQ=12AB,∵PQ=12,∴AB=2PQ=2×12=24.【解析】利用线段中点的性质计算即可.本题考查了两点间的距离,解题的关键是掌握线段中点的性质.18.【答案】解:(1)c=2(2m+2n)+2n=4m+6n,所以该广场的周长C为4m+6n;(2)小广场的面积为:2m⋅2n−n(2m−m−0.5m)=3.5mn,m=8米,n=5米时,3.5×8×5=140(米 2),所以小广场的面积为140米 2.【解析】(1)利用矩形的周长公式计算求解;(2)利用矩形的面积公式计算求解.本题考查了代数式求值,矩形的周长和面积公式是解题的关键.19.【答案】解:设需要安排x名工人生产口罩面,则(78−x)名工人生产口罩绳,根据题意得2×800x=1000(78−x),解得x=30,所以,78−x=78−30=48,答:需要安排30名工人生产口罩面,48名工人生产口罩绳.【解析】设需要安排x名工人生产口罩面,则(78−x)名工人生产口罩绳,每天生产口罩面800x个,每天生产口罩绳1000(78−x)条,根据口罩绳的条数是口罩面个数的2倍列方程求出x的值,再求出78−x的值即可.此题重点考查一元一次方程的解法、列一元一次方程解应用题等知识与方法,正确地用代数式表示每天生产的口罩面的个数和口罩绳的根数是解题的关键.20.【答案】24(5n+4)【解析】解:(1)根据题意有,第1个图形中,面积为1的正方形的个数为:4+5×1=9,第2个图形中,面积为1的正方形的个数为:4+5×2=14,第3个图形中,面积为1的正方形的个数为:4+5×3=19,第4个图形中,面积为1的正方形的个数为:4+5×4=24,……,第n个图形中,面积为1的正方形的个数为:4+5×n=5n+4.故答案为:24;(5n+4);(2)当5n+4=5004时,解得:n=1000,∴n=1000.(1)根据图形的变化,找出其规律,再计算求值即可;(2)代入求值,求出n即可;本题考查了图形的变化,根据图形的变化找出其规律并求值是解本题的关键,综合性较强,难度适中.21.【答案】解:(1)180=500(人),36%答:一周内学校运动健身总人数有500人.(2)打羽毛球球的人数为500×20%=100(人),×100%=30%,健走的百分比为150500补全如图:(3)根据统计图给出的数据,得出结论合理即可.例如:跑步的占比是总体的36%,在所有运动项目中占比最多,所以我认为跑步项目的场地需要加大投入.【解析】(1)根据其他运动项目人数及其所占百分比可得一周内学校运动健走总人数;(2)根据总人数和羽毛球球的百分比求出羽毛球球的人数,从而补全条形图,根据健走的人数除以总人数求出百分比,从而补全扇形统计图;(3)根据统计图给出的数据,得出结论合理即可.本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】45 35【解析】解:(1)依题意得:2a =90,b =35×1,∴a =45,b =35.故答案为:45;35.(2)设该班级购买拖把x 个,小黑板y 个,根据题意得:{2+x +y +2+1=860+15x +40y +90+35=280, 解得:{x =1y =2. 答:该班级购买拖把1个,小黑板2个.(3)设购买m 个格言贴,n 个拖把,根据题意得:45m +15n =105,∴n =7−3m .又∵m ,n 均为正整数,∴{m =1n =4或{m =2n =1, ∴该班级共有2种购买方案,方案1:购买1个格言贴,4个拖把;方案2:购买2个格言贴,1个拖把.(1)利用总价=单价×数量,即可得出关于a(b)的一元一次方程,解之即可得出a(b)的值;(2)设该班级购买拖把x个,小黑板y个,利用总价=单价×数量,结合表格中的数据,即可得出关于x,y的二元一次方程组,解之即可得出结论;(3)设购买m个格言贴,n个拖把,利用总价=单价×数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数,即可得出各购买方案.本题考查了二元一次方程组的应用、二元一次方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)找准等量关系,正确列出二元一次方程.23.【答案】4140°190°【解析】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=20°,∴∠MON=30°+90°+20°=140°,当t=4时,∠BOM=60°,∠NON=40°,∴∠MON=60°+90°+40°=190°,故答案为:4;140°,190°;(2)当ON与OA重合时,t=90÷10=9(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤9时,∠AON=90°−10t°,∠AOM=180°−15t°,由∠AOM=3∠AON−60°,可得180°−15t°=3(90°−10t°)−60°,解得t=2;如图所示,当9<t<12时,∠AON=10t°−90°,∠AOM=180°−15t°,由∠AOM=3∠AON−60°,可得180°−15t°=3(10t°−90°)−60°,解得t=34;3s;综上所述,当∠AOM=3∠AON−60°时,t的值为2s或343(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+10t°=180°,,解得t=185①如图所示,当0<t≤18时,5∠COM=90°−15t°,∠BON=90°+10t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+10t°,∴8∠BON−3∠COM∠MON=5(定值),②如图所示,当185<t<6时,∠COM=90°−15t°,∠BON=90°+10t°,∠AON=90°−10t°,∠MON=∠COM+∠AOC+∠AON=90°−15t°+90°+90°−10t°=270°−25t°,∴8∠BON−3∠COM∠MON =90°+25t°54∘−5t∘(不是定值),综上所述,当0<t≤185时,8∠BON−3∠COM∠MON的值是定值5,当185<t<6时,8∠BON−3∠COM∠MON的值不是定值.(1)根据两条直线AB,CD相交于点O,∠AOC=∠AOD,可得图中一定有4个直角;当t=2时,根据射线OM,ON的位置,可得∠MON的度数,当t=4时,根据射线OM,ON的位置,可得∠MON的度数;(2)分两种情况进行讨论:当0<t≤9时,当9<t<12时,分别根据∠AOM=3∠AON−60°,列出方程式进行求解,即可得到t的值;(3)先判断当∠MON为平角时t的值,再以此分两种情况讨论:当0<t≤185时,当185<t<6时,分别计算8∠BON−3∠COM∠MON的值,根据结果作出判断即可.本题考查角的计算综合应用,将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论是解题的关键.。

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 2.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1B .410 +415x +=1C .410x + +415=1D .410x + +15x =1 3.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( ) A .1个B .2个C .3个D .4个 4.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .75.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120206.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)7.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .8.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180° 9.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣4 10.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A .不赔不赚B .赚了9元C .赚了18元D .赔了18元 11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚了10元B .赔了10元C .赚了50元D .不赔不赚12.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.若523m x y +与2n x y 的和仍为单项式,则n m =__________.16.写出一个比4大的无理数:____________.17.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.18.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.19.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.20.若α与β互为补角,且α=50°,则β的度数是_____.21.方程x +5=12(x +3)的解是________. 22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.用度、分、秒表示24.29°=_____.24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、解答题25.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x 天可追上弩马.(1)当良马追上驽马时,驽马行了 里(用x 的代数式表示).(2)求x 的值.(3)若两匹马先在A 站,再从A 站出发行往B 站,并停留在B 站,且A 、B 两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?26.计算(﹣1)2019+36×(11-32)﹣3÷(﹣34) 27.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?28.甲乙两站相距450km ,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出,相向而行,那么两车行驶多少小时相遇?(2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?(3)快车先开30min ,两车相向而行,慢车行驶多少小时两车相遇?29.甲队原有工人65人,乙队原有工人40人,现又有30名工人调入这两队,为了使乙队人数是甲队人数的12,应调往甲、乙两队各多少人? 30.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,()1若笑脸气球的单价是x 元,请用含x 的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.四、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积;(3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.33.阅读下列材料,并解决有关问题: 我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x 分钟, 由题意得6x -0.5x =180,解之得x =36011. 故选D. 【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x 天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.3.D解析:D【解析】【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52 +25 x x a x x a=⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x ax a=⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确④方程组解得25-15x a y a=⎧⎨=-⎩由题意得:x-3a=5把25-15x ay a=⎧⎨=-⎩代入得25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键4.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.5.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 -,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.6.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.7.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.8.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.9.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:3x﹣9﹣3=0,解得:x=4,故选:B.【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.10.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.11.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【分析】根据图和题意可得出答案.【详解】解:,A B 表示的数互为相反数,且4AB =,则A 表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.15.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.5【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.18.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,,∴AB=1–(–2)=1+2, 则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.19.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】 解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面20.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.21.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.24.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.三、解答题25.(1)(150x+1800);(2)20;(3)驽马出发3或27或37或47天后与良马相距450里.【解析】【分析】(1)利用路程=速度×时间可用含x的代数式表示出结论;(2)利用两马行的路程相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设驽马出发y天后与良马相距450里,分良马未出发时、良马未追上驽马时、良马追上驽马时及良马到达B站时四种情况考虑,根据两马相距450里,即可得出关于y的一元一次方程,解之即可得出结论.【详解】解:(1)∵150×12=1800(里),∴当良马追上驽马时,驽马行了(150x+1800)里.故答案为:(150x+1800).(2)依题意,得:240x=150x+1800,解得:x=20.答:x的值为20.(3)设驽马出发y天后与良马相距450里.①当良马未出发时,150y=450,解得:y=3;②当良马未追上驽马时,150y﹣240(y﹣12)=450,解得:y=27;③当良马追上驽马时,240(y﹣12)﹣150y=450,解得:y=37;④当良马到达B站时,7500﹣150y=450,解得:y=47.答:驽马出发3或27或37或47天后与良马相距450里.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,利用含x的代数式表示出驽马行的路程;(2)(3)找准等量关系,正确列出一元一次方程.26.-3【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:原式=﹣1+12﹣18+4=﹣3.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.27.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x千克,则乙种水果(140-x)千克,根据进价总数列出方程,求出x的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.28.(1)两车行驶3小时相遇;(2)行驶22.5小时快车追上慢车;(3)慢车行驶163 60小时两车相遇.【解析】【分析】(1)设两车行驶t1小时相遇,根据相遇时两车行驶路程之和为450km建立方程求解;(2)设t2小时快车追上慢车,快车比慢车多行驶450km建立方程求解;(3)设慢车行驶t3小时两车相遇,根据两车行驶路程之和为450km建立方程求解.【详解】解:(1)设两车行驶t1小时相遇,依题意得65t1+85t1=450解得:t1=3因此,那么两车行驶3小时相遇.(2)设t2小时快车追上慢车,依题意得 85t2-65t2=450解得:t2=22.5因此,行驶22.5小时快车追上慢车(3)设慢车行驶t3小时两车相遇,依题意得30分钟=0.5小时85×0.5+85t3+65t3=450解得:t3=163 60因此,慢车行驶16360小时两车相遇. 【点睛】 本题考查了一元一次方程的应用,熟练掌握行程问题中的等量关系是解题的关键.29.应调往甲队25人,乙队5人【解析】【分析】由题意设调往甲队x 人,并根据题意建立一元一次方程与解出一元一次方程即可.【详解】解:设调往甲队x 人,依题意得1(65)40(30)2x x +=+- 解得 25x =∴30255-=(人)答:应调往甲队25人,乙队5人.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤.解决本题的关键是表示出调入后甲乙两队的人数.30.()1(42-8x )元,(28-4x )元;()2笑脸气球的单价是4元,爱心气球的单价是2元【解析】【分析】(1)若笑脸气球的单价是x 元,由第①束气球的总价钱为14元得出爱心气球的单价是(14-3x )元,根据每束气球的总价钱=笑脸气球的价钱+爱心气球的价钱即可求出第②束、第③束气球的总价格;(2)根据第②束气球的总价钱比第③束气球的总价钱少2元列出方程,解方程即可.【详解】解:(1)若笑脸气球的单价是x 元,则爱心气球的单价是(14-3x )元,根据题意得 第②束气球的总价格是:x+3(14-3x )=x+42-9x=42-8x (元);第③束气球的总价格是:2x+2(14-3x )=2x+28-6x=28-4x (元);(2)由题意得42-8x=28-4x-2,解得x=4,14-3x=2.答:笑脸气球的单价是4元,爱心气球的单价是2元.【点睛】本题考查了学生的观察能力和识图能力,列一元一次方程解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.四、压轴题31.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.32.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.33.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值, (2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--, ②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.。

七年级上册数学期末试题及答案解答

七年级上册数学期末试题及答案解答

七年级上册数学期末试题及答案解答一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间()A.30分钟B.35分钟C.42011分钟D.36011分钟2.一个角是这个角的余角的2倍,则这个角的度数是()A.30B.45︒C.60︒D.75︒3.如图,数轴的单位长度为1,点A、B表示的数互为相反数,若数轴上有一点C到点B 的距离为2个单位,则点C表示的数是()A.-1或2 B.-1或5 C.1或2 D.1或54.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+55.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()4a b c﹣23…A.4 B.3 C.0 D.﹣26.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( )A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+17.方程3x+2=8的解是()A.3 B.103C.2 D.128.方程3x﹣1=0的解是()A.x=﹣3 B.x=3 C.x=﹣13D.x=139.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱10.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥11.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+12.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 14.写出一个比4大的无理数:____________.15.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.16.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___17.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 18.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 19.52.42°=_____°___′___″.20.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 21.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.22.若a 、b 是互为倒数,则2ab ﹣5=_____.23.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 24.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________. 三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.27.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.28.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.29.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.30.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.31.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)32.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).3.D解析:D【解析】【分析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C表示的数为m,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,=2,∴3m∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.4.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.5.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),所以,数据从左到右依次为4、-2、b 、4、-2、b , 第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环, ∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2. 故选D. 【点睛】此题考查数字的变化规律,仔细观察排列规律求出a 、b 、c 的值,从而得到其规律是解题的关键.6.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.7.C解析:C 【解析】 【分析】移项、合并后,化系数为1,即可解方程. 【详解】解:移项、合并得,36x =, 化系数为1得:2x =, 故选:C . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.8.D解析:D 【解析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.10.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.11.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.12.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题13.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元).故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 14.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.15.【解析】【分析】根据题意列出含a的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a-【解析】【分析】根据题意列出含a的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a--,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a⎡⎤--+⨯=-⎣⎦故填:60200a-.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 16.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:1214【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据2137SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵2137SS=,即23(3)7aa a=+,∴4a2−9a=0,解得:a 1=0(舍),a 2=94, 则S 3=(10−2a )2=(10−92)2=1214, 故答案为1214. 【点睛】 本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.17.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大18.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 19.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.20.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.21.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.23.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.24.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C-︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.三、压轴题25.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 26.(1)35°;(2)∠AOE﹣∠BOF的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF=(3t+14)°,故3314202t t+=+,解方程即可求出t的值.【详解】解:(1)∵OE平分∠AOC,OF平分∠BOD,∴11AOE AOC11022︒∠=∠=⨯=55°,11AOF BOD402022︒︒∠=∠=⨯=,∴∠AOE﹣∠BOF=55°﹣20°=35°;(2)∠AOE﹣∠BOF的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.27.(1)﹣14,8﹣5t ;(2)2.5或3秒时P 、Q 之间的距离恰好等于2;(3)点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B 点表示的数为8﹣22;点P 表示的数为8﹣5t ;(2)设t 秒时P 、Q 之间的距离恰好等于2.分①点P 、Q 相遇之前和②点P 、Q 相遇之后两种情况求t 值即可;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,根据AC ﹣BC =AB ,列出方程求解即可;(3)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB =22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.29.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.30.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。

七年级(上)期末数学试卷 (含答题卡)

七年级(上)期末数学试卷 (含答题卡)

七年级(上)期末数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)下面有理数比较大小,正确的是()A.0<﹣2B.﹣5<3C.﹣2<﹣3D.1<﹣42.(3分)如图所示的几何体的主视图是()A.B.C.D.3.(3分)代数式a2+b2的意义是()A.a的平方与b的和B.a与b和的平方C.a与b的平方的和D.a的平方与b的平方的和4.(3分)据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为多少平方千米()A.36×107B.3.6×108C.0.36×109D.3.6×109 5.(3分)计算a2+3a2,结果正确的是()A.3a4B.3a2C.4a2D.4a46.(3分)如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是()A.10个B.9个C.8个D.4个7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短8.(3分)空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图9.(3分)如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是()A.AC=AD﹣CD B.AC=AB+BC C.AC=BD﹣AB D.AC=AD﹣AB 10.(3分)已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1B.0C.1D.211.(3分)足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场12.(3分)下列说法正确的是()A.绝对值等于它本身的数是正数B.经过三个点一定可以画三条直线C.若a2=b2,则a=bD.整数和分数统称为有理数二.填空题(共4小题,满分12分,每小题3分)13.(3分)如果x3n y m+4与﹣3x6y2n是同类项,那么mn的值为.14.(3分)数轴上点A表示﹣1,点B表示2,则表示A、B两点间的距离是.15.(3分)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70元和288元,如果小敏把这两次购物改为一次性购物,则应付款元.16.(3分)有一个数值转换器,原理如图,若开始输入x的值是4,可发现第一次输出的结果是2;第二次输入x的值是2,可发现第二次输出的结果是1;…,请你探索第2017次输出的结果是.三.解答题(共7小题,满分53分)17.(15分)计算题(1)﹣14÷(﹣5)2×(﹣)(2)(﹣5)3×(﹣)+32÷(﹣22)×(﹣1).18.(4分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.19.(8分)(1)=(2)x﹣[x﹣(x﹣)]=2.20.(8分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.(0~1表示大于0同时小于等于1,以此类推)请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是多少度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.21.(5分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.22.(5分)A,B两地相距2400米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地.(1)求甲每分钟走多少米?(2)两人出发多少分钟后恰好相距480米?23.(8分)已知,A,B在数轴上对应的数分别用a,b表示,且(ab+100)2+|a ﹣20|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合?七年级(上)期末数学试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)下面有理数比较大小,正确的是()A.0<﹣2B.﹣5<3C.﹣2<﹣3D.1<﹣4【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.2.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.3.(3分)代数式a2+b2的意义是()A.a的平方与b的和B.a与b和的平方C.a与b的平方的和D.a的平方与b的平方的和【解答】解:代数式a2+b2的意义是a与b两数的平方的和.故选:D.4.(3分)据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为多少平方千米()A.36×107B.3.6×108C.0.36×109D.3.6×109【解答】解:将360000000用科学记数法表示为:3.6×108.故选:B.5.(3分)计算a2+3a2,结果正确的是()A.3a4B.3a2C.4a2D.4a4【解答】解:a2+3a2=4a2,故选:C.6.(3分)如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是()A.10个B.9个C.8个D.4个【解答】解:引出5条射线时,以OA为始边的角有4个,以OD为始边的角有3个,以OC为始边的角有2个,以OE为始边的角有1个,故小于平角的角的个数是4+3+2+1=10(个).故选:A.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.8.(3分)空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图【解答】解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:C.9.(3分)如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是()A.AC=AD﹣CD B.AC=AB+BC C.AC=BD﹣AB D.AC=AD﹣AB 【解答】解:∵A、B、C、D四点在一条直线上,AB=CD,∴AC=AD﹣CD=AD﹣AB=AB+BC,故选:C.10.(3分)已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1B.0C.1D.2【解答】解:把x=2代入方程得:2m+2=0,解得:m=﹣1,故选:A.11.(3分)足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场【解答】解:设共胜了x场,则平了(14﹣5﹣x)场,由题意得:3x+(14﹣5﹣x)=19,解得:x=5,即这个队胜了5场.故选:C.12.(3分)下列说法正确的是()A.绝对值等于它本身的数是正数B.经过三个点一定可以画三条直线C.若a2=b2,则a=bD.整数和分数统称为有理数【解答】解:∵绝对值等于它本身的数是正数和零,∴选项A错误;∵经过三个点一定可以画三条直线或一条直线,∴选项B错误;∵若a2=b2,则a=b或a=﹣b,∴选项C错误;∵整数和分数统称为有理数,∴选项D正确;故选:D.二.填空题(共4小题,满分12分,每小题3分)13.(3分)如果x3n y m+4与﹣3x6y2n是同类项,那么mn的值为0.【解答】解:由题意可知:3n=6,m+4=2n,解得:n=2,m=0原式=0,故答案为:014.(3分)数轴上点A表示﹣1,点B表示2,则表示A、B两点间的距离是3.【解答】解:2﹣(﹣1)=3.故表示A、B两点间的距离是3.故答案为:3.15.(3分)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70元和288元,如果小敏把这两次购物改为一次性购物,则应付款312或344元.【解答】解:第一次购物显然没有超过100元,即在第二次消费70元的情况下,小敏的实质购物价值只能是70元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:小敏消费超过100元但不足350元,这时候小敏是按照9折付款的.设第二次实质购物价值为x元,那么依题意有x×0.9=288,解得:x=320.第二种情况:小敏消费不低于350元,这时候小敏是按照8折付款的.设第二次实质购物价值为a元,那么依题意有a×0.8=288,解得:a=360.即在第二次消费288元的情况下,小敏的实际购物价值可能是320元或360元.综上所述,小敏两次购物的实质价值为70+320=390或70+360=430,均超过了350元.因此均可以按照8折付款:390×0.8=312(元),或430×0.8=344(元).故应付款312或344元.故答案为:312或344.16.(3分)有一个数值转换器,原理如图,若开始输入x的值是4,可发现第一次输出的结果是2;第二次输入x的值是2,可发现第二次输出的结果是1;…,请你探索第2017次输出的结果是2.【解答】解:输入x=4,第一次输出的结果为2,输入x=2,第二次输出的结果为1,输入x=1,第三次输出的结果为4,输入x=4,第四次输出的结果为2,输入x=2,第五次输出的结果为1,…从上规律可知,输出的结果是以每3次为一组进行重复,∴2017÷3=672…1,故2017输出的结果为2,故答案为2.三.解答题(共7小题,满分53分)17.(15分)计算题(1)﹣14÷(﹣5)2×(﹣)(2)(﹣5)3×(﹣)+32÷(﹣22)×(﹣1).【解答】解:(1)﹣14÷(﹣5)2×(﹣)=﹣1÷25×(﹣)=﹣1××(﹣)=;(2)(﹣5)3×(﹣)+32÷(﹣22)×(﹣1)=﹣125×(﹣)+32×(﹣)×(﹣)=75+10=85.18.(4分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【解答】解:原式=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.19.(8分)(1)=(2)x﹣[x﹣(x﹣)]=2.【解答】解:(1)方程整理得:﹣1=,去分母得:4﹣8x﹣12=21﹣30x,移项合并得:22x=29,解得:x=;(2)去括号得:x﹣x﹣=2,去分母得:8x﹣2x﹣1=16,移项合并得:6x=17,解得:x=.20.(8分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.(0~1表示大于0同时小于等于1,以此类推)请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是多少度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.【解答】解:(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°因此,本题正确答案是:126°(2)根据题意得:40÷40%=1200(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全条形统计图,如图所示:(0~1表示大于0同时小于等于1,以此类推)(3)根据题意得:1200×64%=768(人),则每周使用手机时间在2小时以下(不含2小时)的人数约有768人.21.(5分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB,∴∠BOE=∠AOB=45°,∵∠EOF=60°,∴∠BOF=∠EOF﹣∠BOE=15°,∵OF平分∠BOC,∴∠BOC=2∠BOF=30°,∴∠AOC=∠AOB+∠BOC=120°.22.(5分)A,B两地相距2400米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地.(1)求甲每分钟走多少米?(2)两人出发多少分钟后恰好相距480米?【解答】解:(1)设甲每分钟走x米,则乙每分钟走2x米,根据题意得:﹣=15,解得:x=80,经检验,x=80是原分式方程的解,且符合题意.答:甲每分钟走80米.(2)设两人出发y分钟后恰好相距480米,根据题意得:|2400﹣80y﹣160y|=480,解得:y1=8,y2=12.答:两人出发8或12分钟后恰好相距480米.23.(8分)已知,A,B在数轴上对应的数分别用a,b表示,且(ab+100)2+|a ﹣20|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合?【解答】解:(1)∵(ab+100)2+|a﹣20|=0,∴ab+100=0,a﹣20=0,∴a=20,b=﹣10,∴AB=20﹣(﹣10)=30,数轴上标出A、B得:(2)∵|BC|=6且C在线段OB上,∴x C﹣(﹣10)=6,∴x C=﹣4,∵PB=2PC,当P在点B左侧时PB<PC,此种情况不成立,当P在线段BC上时,x P﹣x B=2(x c﹣x p),∴x p+10=2(﹣4﹣x p),解得:x p=﹣6;当P在点C右侧时,x p﹣x B=2(x p﹣x c),x p+10=2x p+8,x p=2.综上所述P点对应的数为﹣6或2.(3)第一次点P表示﹣1,第二次点P表示2,依次﹣3,4,﹣5,6…则第n次为(﹣1)n•n,点A表示20,则第20次P与A重合;点B表示﹣10,点P与点B不重合.七年级(上)期末数学试卷答题卡一.选择题(共12小题,满分36分,每小题3分)(请用2B铅笔填涂)二.填空题(共4小题,满分12分,每小题3分)(请在各试题的答题区内作答)三.解答题(共7小题,满分53分)(请在各试题的答题区内作答)。

山东省济南市七年级(上)期末数学试卷(含解析)

山东省济南市七年级(上)期末数学试卷一、选择题(本大题共12个小照,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,最小的数是()A.﹣2B.0C.D.﹣π2.如图,几何体的左视图是()A.B.C.D.3.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四4.下列选项中,表示点P在点O十点钟方向正确的是()A.B.C.D.5.下列说法中正确的是()A.0不是单项式B.6πx3的系数为6C.3x﹣6y+5不是多项式D.2ah的次数26.已知如图,则下列叙述不正确的是()A.点O不在直线AC上B.射线AB与射线BC是指同一条射线C.图中共有5条线段D.直线AB与直线CA是指同一条直线7.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+48.“享受光影文化,感受城市魅力”,2018年4月15~22日第八届北京国际电影节顺利举办.如面的统计图反映了北京国际电影节参展影片的有关情况:悬疑剧情爱情喜剧科幻动作古装动画其他影片类型届第七届8.70%25.30%17.80%12.20%13.00%7.80%0 3.80%11.40%第八届21.33%19.94%18.70%15.37%10.66%7.48% 4.02% 1.39% 1.11%根据统计图提供的信息,下列推断合理的是()A.两届相比较,所占比例最稳定的是动作类影片B.两届相比较,所占比例增长最多的是剧情类影片C.第八届悬疑类影片数量比第七届的2倍还多D.在第七届中,所占比例居前三位的类型是悬疑类、剧情类和爱情类9.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为()A.100﹣x=2(68+x)B.2(100﹣x)=68+xC.100+x=2(68﹣x)D.2(100+x)=68﹣x10.如图,线段AB=20,C为AB的中点,D为CB上一点,E为DB的中点,且EB=3,则CD等于()A.10B.6C.4D.211.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a >b),则a﹣b的值为()A.6B.8C.9D.1212.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动、那么数轴上的﹣2019所对应的点与圆周上字母()所对应的点重合.A.A B.B C.C D.D二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:|﹣3|﹣1=.14.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是.15.若x+2与﹣5互为相反数,则x的值为.16.如图,是一种数值转换机的运算程序.若输入的数为5,则第100次输出的数是.17.在直线l上有四个点A、B、C、D,已知AB=24,AC=6,点D是BC的中点,则线段AD=.18.如图,甲、乙两动点分别从正方形ABCD的顶点,A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在边上(填AB,BC,CD或AD).三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(1)8+(﹣3)2×(﹣2);(2)﹣×(﹣+).20.(6分)解方程:(1)﹣2x+4=0;(2)6﹣3(x+)=.21.(6分)(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.22.(8分)如图,在一张边长为10的正方形的纸片上,剪去两个完全一样的小直角三角形和一个长方形,得到一个形如“囧”字的图案(阴影部分),其面积是S.设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示S,并将结果化简;(2)当x=3,y=2时,求S的值.23.(8分)若“ω”是新规定的某种运算符号,设aωb=3a﹣2b,(1)计算:(x2+y)ω(x2﹣y)(2)若x=﹣2,y=2,求出(x2+y)ω(x2﹣y)的值.24.(10分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?25.(10分)计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值(2)求x﹣y的最大值26.(12分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?27.(12分)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.参考答案与试题解析一、选择题(本大题共12个小照,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,最小的数是()A.﹣2B.0C.D.﹣π【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:|﹣|=,则|﹣|>0>﹣2>﹣π,故最小的数是:﹣π.故选:D.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.3.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四【分析】根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.【解答】解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.故选:D.【点评】此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.4.下列选项中,表示点P在点O十点钟方向正确的是()A.B.C.D.【分析】根据点P在点O十点钟方向,而10点与12点相隔2格,每格30°即可得.【解答】解:∵点P在点O十点钟方向,而10点与12点相隔2格,每格30°,∴表示点P在点O十点钟方向的图形为:故选:B.【点评】本题主要考查方向角,解题的关键是熟练掌握方向角的定义.5.下列说法中正确的是()A.0不是单项式B.6πx3的系数为6C.3x﹣6y+5不是多项式D.2ah的次数2【分析】根据单项式与多项式的概念即可求出答案.【解答】解:(A)0是单项式,故A错误;(B)6πx3的系数为6π,故B错误;(C)3x﹣6y+5是多项式,故C错误;故选:D.【点评】本题考查整式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.已知如图,则下列叙述不正确的是()A.点O不在直线AC上B.射线AB与射线BC是指同一条射线C.图中共有5条线段D.直线AB与直线CA是指同一条直线【分析】根据点与直线的关系可知点O不在直线AC上,故A说法正确,不符合题意;射线表示方法是端点字母在前,故B错误,符合题意;图中有线段AB、AC、BC、OB、OC,共5条,故C说法正确,不符合题意;直线表示方法是用直线上两个点表示,没有先后顺序,故D正确,不符合题意.【解答】解:A、点O不在直线AC上,故A说法正确,不符合题意;B、射线AB与射线BC不是指同一条射线,故B错误,符合题意;C、图中有线段AB、AC、BC、OB、OC,共5条,故C说法正确,不符合题意;D、直线AB与直线CA是指同一条直线,故D正确,不符合题意.故选:B.【点评】此题主要考查了直线、射线、线段,以及点与直线的位置关系,关键是掌握三线的表示方法.7.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【分析】根据去括号法则逐个判断即可.【解答】解:A、﹣3(m+n)﹣mn=﹣3m﹣3n﹣mn,错误,故本选项不符合题意;B、﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2,正确,故本选项符合题意;C、ab﹣5(﹣a+3)=ab+5a﹣15,错误,故本选项不符合题意;D、x2﹣2(2x﹣y+2)=x2﹣4x+2y﹣4,错误,故本选项不符合题意;故选:B.【点评】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.8.“享受光影文化,感受城市魅力”,2018年4月15~22日第八届北京国际电影节顺利举办.如面的统计图反映了北京国际电影节参展影片的有关情况:影片类型悬疑剧情爱情喜剧科幻动作古装动画其他届第七届8.70%25.30%17.80%12.20%13.00%7.80%0 3.80%11.40%第八届21.33%19.94%18.70%15.37%10.66%7.48% 4.02% 1.39% 1.11%根据统计图提供的信息,下列推断合理的是()A.两届相比较,所占比例最稳定的是动作类影片B.两届相比较,所占比例增长最多的是剧情类影片C.第八届悬疑类影片数量比第七届的2倍还多D.在第七届中,所占比例居前三位的类型是悬疑类、剧情类和爱情类【分析】根据表格中的数据可以判断各个选项中的说法是否合理,本题得以解决.【解答】解:两届相比较,所占比例最稳定的是动作类影片,故选项A合理,两届相比较,所占比例增长最多的是悬疑类,故选项B不合理,第八届悬疑类影片所占的比例比第七届的2倍还多,故选项C不合理,在第七届中,所占比例居前三位的类型是剧情类、爱情类、科幻类,故选项D不合理,故选:A.【点评】本题考查统计表,解答本题的关键是明确题意,可以判断出各个选项中的说法是否合理.9.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为()A.100﹣x=2(68+x)B.2(100﹣x)=68+xC.100+x=2(68﹣x)D.2(100+x)=68﹣x【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆﹣调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【解答】解:设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68﹣x),故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.10.如图,线段AB=20,C为AB的中点,D为CB上一点,E为DB的中点,且EB=3,则CD等于()A.10B.6C.4D.2【分析】由线段的中点定义可得BD=6,BC=10,由线段的和差关系可求CD的长.【解答】解:∵E为DB的中点,且EB=3,∴BD=2BE=6,∵线段AB=20,C为AB的中点,∴CB=AC=10,∵CD=BC﹣BD∴CD=4故选:C.【点评】本题考查了两点间的距离,线段中点的定义,利用线段的和差关系求线段的长度是本题的关键.11.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a >b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.12.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动、那么数轴上的﹣2019所对应的点与圆周上字母()所对应的点重合.A.A B.B C.C D.D【分析】圆每转动一周,A、B、C、D循环一次,﹣2019与1之间有2020个单位长度,即转动2020÷4=505(周),据此可得.【解答】解:1﹣(﹣2019)=2020,2020÷4=505(周),所以应该与字母A所对应的点重合.故选:A.【点评】此题考查数轴,以及循环的有关知识,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:|﹣3|﹣1=2.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是﹣2b3+3ab2+4a2b+a3.【分析】根据多项式的项的定义,可知本多项式的项为4a2b,3ab2,﹣2b2,a3,再由加法的交换律及多项式的升幂排列得出结果.【解答】解:多项式4a2b+3ab2﹣2b2+a3的各项为4a2b,3ab2,﹣2b2,a3.按字母a升幂排列为:﹣2b3+3ab2+4a2b+a3.故答案为:﹣2b3+3ab2+4a2b+a3.【点评】本题考查了多项式升幂排列的定义.把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.15.若x+2与﹣5互为相反数,则x的值为3.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意可得:x+2=5,解得:x=3,故答案为;3【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.16.如图,是一种数值转换机的运算程序.若输入的数为5,则第100次输出的数是1.【分析】根据数值转换机中的运算程序判断即可.【解答】解:当第1次输入的数为x=5时,第一次输出5+3=8,第二次输出8×=4,第三次输出4×=2,第四次输出2×=1,第五次输出1+3=4,除去前1次,以4,2,1循环,三个一循环,则第100次输出的数为1;故答案为:1.【点评】此题考查了代数式求值,弄清题中的规律是解本题的关键.17.在直线l上有四个点A、B、C、D,已知AB=24,AC=6,点D是BC的中点,则线段AD=9或15.【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【解答】解:如图1,当C在线段AB的反向延长向上时,由线段的和差,得BC=AB+AC =24+6=30,由线段中点的性质,得CD=BC=×30=15,AD=CD﹣AC15﹣6=9;如图2,当C在线段AB上时,由线段的和差,得BC=AB﹣AC=24﹣6=18,由线段中点的性质,得CD=BC=×18=9,AD=AC+CD=6+9=15.故答案为:9或15.【点评】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.18.如图,甲、乙两动点分别从正方形ABCD的顶点,A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在BC边上(填AB,BC,CD或AD).【分析】因为乙的速度是甲的速度的4倍,所以第1次相遇,甲走了正方形周长的×=;从第2次相遇起,每次甲走了正方形周长的,从第2次相遇起,5次一个循环,从而不难求得它们第2019次相遇位置.【解答】解:根据题意分析可得:乙的速度是甲的速度的4倍,故第1次相遇,甲走了正方形周长的×=;从第2次相遇起,每次甲走了正方形周长的,从第2次相遇起,5次一个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.(2019﹣1)÷5=403…3,故它们第2019次相遇位置与第三次相同,在边BC上.故答案为BC.【点评】此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律是解题关键.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(1)8+(﹣3)2×(﹣2);(2)﹣×(﹣+).【分析】(1)先计算乘方,再计算乘法,最后计算加减可得;(2)先利用乘法分配律计算,再计算乘法,最后计算加减可得.【解答】解:(1)原式=8+9×(﹣2)=8﹣18=﹣10;(2)原式=﹣×+×﹣×=﹣4+3﹣2=﹣2.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.(6分)解方程:(1)﹣2x+4=0;(2)6﹣3(x+)=.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:﹣2x=﹣4,解得:x=2;(2)去括号得:6﹣3x﹣2=,去分母得:18﹣9x﹣6=2,移项合并得:﹣9x=﹣10,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(6分)(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.【分析】(1)利用利用线段的定义得出即可;利用射线的定义得出即可;直线的定义得出即可;(2)根据点在直线上,点在直线外,即可解答.【解答】解:(1)如图所示:(2)点A在直线l上,点P在直线l外.【点评】此题主要考查了基本作图,熟练根据相关定义得出是解题关键.22.(8分)如图,在一张边长为10的正方形的纸片上,剪去两个完全一样的小直角三角形和一个长方形,得到一个形如“囧”字的图案(阴影部分),其面积是S.设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示S,并将结果化简;(2)当x=3,y=2时,求S的值.【分析】(1)用正方形的面积减去两个三角形,一个小正方形面积,表示出S即可;(2)把x与y的值代入计算即可求出值.【解答】解:(1)根据题意得:S=100﹣xy﹣xy﹣xy=100﹣2xy;(2)当x=3,y=2时,原式=100﹣12=88.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.23.(8分)若“ω”是新规定的某种运算符号,设aωb=3a﹣2b,(1)计算:(x2+y)ω(x2﹣y)(2)若x=﹣2,y=2,求出(x2+y)ω(x2﹣y)的值.【分析】(1)先依据定理列出代数式,然后依据整式的运算法则进行计算即可;(2)将x=﹣2,y=2代入(1)的化简结果进行计算即可.【解答】解:(x2+y)ω(x2﹣y)=3(x2+y)﹣2(x2﹣y)=3x2+3y﹣2x2+2y=x2+5y;(2)将x=﹣2,y=2代入得:原式=(﹣2)2+5×2=2+20=14.【点评】本题主要考查的是整式的加减和求代数式的值,掌握整式的加减法则是解题的关键.24.(10分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.【点评】此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(10分)计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值(2)求x﹣y的最大值【分析】(1)由题意x=±3,y=±2,由于xy<0,x=3,y=﹣2或x=﹣3,y=2,代入x+y即可求出答案.(2)由题意x=±3,y=±2,根据几种情况得出x﹣y的值,进而比较即可.【解答】解:由题意知:x=±3,y=±2,(1)∵xy<0,∴x=3,y=﹣2或x=﹣3,y=2,∴x+y=±1,(2)当x=3,y=2时,x﹣y=3﹣2=1;当x=3,y=﹣2时,x﹣y=3﹣(﹣2)=5;当x=﹣3,y=2时,x﹣y=﹣3﹣2=﹣5;当x=﹣3,y=﹣2时,x﹣y=﹣3﹣(﹣2)=﹣1,所以x﹣y的最大值是5【点评】本题考查绝对值的性质,涉及代入求值,分类讨论的思想,属于基础题型.26.(12分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?【分析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)根据题意可以列出相应的一元一次方程,从而可以解答本题;(3)根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:(1)设经过x小时两人相遇,15x+20x=70,解得,x=2,答:经过2小时两人相遇;(2)设经过a小时,乙超过甲10千米,20a=15a+70+10,解得,a=16,答:经过16小时,乙超过甲10千米;(3)设b小时后两人相距10千米,|15b+20b﹣70|=10,解得,b1=,b2=,答:小时或小时后两人相距10千米.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.27.(12分)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为40°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.【分析】(1)(2)根据角平分线定义得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC+∠BOC)=AOB,即可得出答案;(3)根据角平分线定义得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC﹣∠BOC)=AOB,即可得出答案;(4)根据角平分线定义即可求解.【解答】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOC,∠EOC=∠BOC,∴∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=∠AOC+∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=∠AOC,∠EOC=∠BOC,∠DOE=∠COD﹣∠EOC,=∠AOC﹣∠BOC,=∠AOD﹣∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.【点评】本题考查了角的有关计算和角平分线定义,能够求出∠DOE=∠AOB是解此题的关键,求解过程类似.。

七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列是一元一次方程的是()A.x+1B.x+1=y C.2x+1=﹣1D.x+1=x22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.已知a=b,下列变形不一定成立的是()A.a﹣n=b﹣n B.an=bn C.a2=b2D.=14.已知x=1是关于x的一元一次方程2x﹣a=0的解,则a的值为()A.﹣1B.﹣2C.1D.25.下列运算正确的是()A.﹣2(a﹣b)=﹣2a﹣b B.﹣2(a﹣b)=﹣2a+bC.﹣2(a﹣b)=﹣2a﹣2b D.﹣2(a﹣b)=﹣2a+2b6.如图是正方体的一个平面展开图,则原正方体上与“周”相对的面上的字是()A.七B.十C.华D.诞7.某车间28名工人生产螺栓螺母,每人每天平均生产螺栓12个或螺母18个.现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:2配套,为求x列的方程是()A.12x=18(28﹣x)B.12x=2×18(28﹣x)C.2×18x=18(28﹣x)D.2×12x=18(28﹣x)8.如图,一直线段AB:BC:CD=3:2:4,点E、F分别是AB、CD的中点,且EF=22cm,则线段BC的长为()cm.A.8B.9C.11D.129.不相等的有理数a,b,c在数轴上的对应点分别是A、B、C,如果|a﹣b|+|b﹣c|=|a﹣c|,那么点B()A.在A、C点的左边B.在A、C点的右边C.在A、C点之间D.上述三种均可能10.如图,射线OB、OC在∠AOD的内部,下列说法:①若∠AOC=∠BOD=90°,则与∠BOC互余的角有2个;②若∠AOD+∠BOC=180°,则∠AOC+∠BOD=180°;③若OM、ON分别平分∠AOD,∠BOD,则∠MON=∠AOB;④若∠AOD=150°、∠BOC=30°,作∠AOP=∠AOB、∠DOQ=∠COD,则∠POQ=90°其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.若|a|=2,则a=.12.一个角的补角是它本身的3倍,则这个角的度数为.13.在同一平面内,三条直线两两相交,交点的个数为.14.若关于x的方程mx|m+1|﹣2=0是一元一次方程,则m=.15.一文具店在某一时间以每件30元的价格卖出两个笔袋,其中一个盈利25%,另一个亏损25%.卖这两个笔袋总的盈亏情况是元(填盈利或亏损多少)16.如图,数轴上线段AB及可移动的线段CD(点A在点B的左侧,点C在点D的左侧),已知线段AB覆盖8个整数点(数轴上对应整数的点),线段CD覆盖2个整数点,点M,点N分别为AC、BD的中点,则线段MN覆盖个整数点.三、解答题(共8题,共72分)17.(8分)计算:(1)48°39′+67°31′(2)18.(8分)解方程:19.(8分)先化简,再求值:,其中x=﹣3,y=2.20.(8分)整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?21.(8分)已知a、b、c在数轴上对应的点如图所示,(1)化简:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;(2)若(c+4)2与|a+c+10|互为相反数,且b=|a﹣c|,求(1)中式子的值.22.(10分)为了支持囤货,大智路某手机卖场本月计划用9万元购进某国产品牌手机,从卖场获知该品牌3中不同型号的国产手机的进价及售价如下表:若该手机卖场同时购进两种不同型号的手机共50台,9万元刚好用完.(1)请你确定该手机卖场的进货方案,并说明理由;(2)该卖场老板准备把这批手机销售的利润的50%捐给公益组织,在同时购进两种不同型号的手机方案中,为了使捐款最多,你选择哪种方案?23.(10分)已知,直线l上线段AB=8、线段CD=4(点A在点B的左侧,点C在点D的左侧)(1)若线段BC=2,则线段AD=;(2)如图2,点P、Q分别为AD、BC的中点,求线段PQ的长度;(3)若线段CD从点B开始以1个单位/秒的速度向右运动,同时,点M从点A开始以2个单位/秒的速度向右运动,点N是线段BD的中点,若MN=2DN,求线段CD运动的时间.24.(12分)已知∠AOB、∠COD,射线OE平分∠AOD(1)如图1,已知∠AOB=180°、∠COD=90°,若∠DOB=40°,则∠COE=度;(2)∠AOB、∠COD的位置如图所示,已知∠AOB=2∠COD,求的值;(3)射线OC、OD在直线OA的右侧按顺时针方向分布,已知∠COD=30°,OF为∠AOD的三等分线且靠近射线OD,设∠COF=α,将∠COD绕点O顺时针旋转,满足45°<∠AOD<135°且∠AOD≠90°,若∠BOD=3α,求∠AOB(可用α表示)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】依次分析各个选项,选出符合一元一次方程定义的选项即可.【解答】解:A.属于整式,不符合一元一次方程的定义,即A项错误,B.属于二元一次方程,不符合一元一次方程的定义,即B项错误,C.符合一元一次方程的定义,是一元一次方程,即C项正确,D.属于一元二次方程,不符合一元一次方程的定义,即D项错误,故选:C.【点评】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】分别利用等式的基本性质判断得出即可.【解答】解:由等式a=b,可得:a﹣n=b﹣n,an=bn,a2=b2,但b=0时,无意义,故选:D.【点评】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.4.【分析】把x=1代入方程2x﹣a=0得到关于a的一元一次方程,解之即可.【解答】解:把x=1代入方程2x﹣a=0得:2﹣a=0,解得:a=2,故选:D.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.【分析】分别根据去括号法则整理得出判断即可.【解答】解:A、﹣2(a﹣b)=﹣2a+2b,故此选项错误;B、﹣2(a﹣b)=﹣2a+2b,故此选项错误;C、﹣2(a﹣b)=﹣2a+2b,故此选项错误;D、﹣2(a﹣b)=﹣2a+2b,故此选项正确.故选:D.【点评】此题主要考查了去括号法则,正确去括号得出是解题关键.6.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“十”与“年”是相对面,“七”与“诞”是相对面,“周”与“华”是相对面.故原正方体上与“周”相对的面上的字是华.故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【分析】要列方程首先要根据题意找出题中存在的等量关系:每天生产的螺母=每天生产的螺栓的2倍,从而列出方程.【解答】解:设x名工人生产螺栓,则生产螺母的工人为28﹣x名.每天生产螺栓12x个,生产螺母18×(28﹣x);根据“恰好每天生产的螺栓和螺母按1:2配套”,得出方程:2×12x=18(28﹣x)故选:D.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.【分析】设AB=3x,BC=2x,CD=4x,由线段和差关系列出方程,可求解.【解答】解:∵AB:BC:CD=3:2:4,∴设AB=3x,BC=2x,CD=4x,∵点E、F分别是AB、CD的中点,∴BE=AB=x,CF=CD=2x,∵EF=BE+BC+CF=x+2x+2x=22cm∴x=4cm∴BC=2x=8cm故选:A.【点评】本题考查了两点间距离,线段中点的定义,熟练运用线段和差关系求线段的长度是本题的关键.9.【分析】根据|a﹣b|+|b﹣c|表示数b的点到a与c两点的距离的和,|a﹣c|表示数a与c两点的距离即可求解.【解答】解:∵|a﹣b|+|b﹣c|=|a﹣c|,∴点B在A、C点之间.故选:C.【点评】本题主要考查了绝对值的定义,就是表示两点之间的距离.10.【分析】根据余角和补角的定义和角平分线的定义即可得到结论.【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴与∠BOC互余的角有2个;正确;②∵∠AOD+∠BOC=∠AOB+∠BOC+∠COD+∠BCO=∠AOC+∠BOD=180°,∴∠AOC+∠BOD=180°;故正确;③如图1,∵OM、ON分别平分∠AOD,∠BOD,∴∠DOM=∠AOD,∠DON=∠BOD,∴∠MON=∠DOM﹣∠DON=(∠AOD﹣∠BOD)=∠AOB,故正确;④如图2,∵∠AOD=150°、∠BOC=30°,∴∠AOB+∠COD=150°﹣30°=120°,∵∠AOP=∠AOB、∠DOQ=∠COD,∴∠AOP+∠DOQ=(∠AOB+∠COD)=60°,∴∠POQ=150°﹣60°=90°,如图3,∵∠AOD=150°、∠BOC=30°,∴∠AOB+∠COD=150°﹣30°=120°,∵∠AOP=∠AOB、∠DOQ=∠COD,∴∠AOP+∠DOQ=(∠AOB+∠COD)=60°,∴∠POQ=150°+60°=210°,综上所述,∠POQ=90°或210°,故错误.故选:C.【点评】本题考查了余角和补角,角平分线的定义,正确的识别图形是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】理解绝对值的意义:一个数的绝对值表示在数轴上表示这个数的点到原点的距离.显然根据绝对值的意义,绝对值等于2的数有两个,为2或﹣2.【解答】解:∵|a|=2,∴a=±2.故本题的答案是±2.【点评】理解绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.【分析】首先根据补角的定义,设这个角为x°,则它的补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的补角为(180°﹣x),依题意,得180°﹣x=3x,解得x=45°答:这个角的度数为45°.故答案为:45°.【点评】本题考查的是余角和补角的定义,如果两个角的和是一个直角,那么称这两个角互为余角.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.13.【分析】分三点共线和三点不共线两种情况作出图形即可.【解答】解:如图,三条不同的直线两两相交交点个数有1或3个.故答案为:1或3个【点评】本题考查了直线、射线、线段,作出图形,利用数形结合的思想求解更加简便.14.【分析】根据一元一次方程的定义,得到关于m的方程,结合m≠0,即可得到答案.【解答】解:根据题意得:|m+1|=1,即m+1=1或m+1=﹣1,解得:m=0或﹣2,∵m≠0,∴m=﹣2,故答案为:﹣2.【点评】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.15.【分析】尽管是同样的价格卖出,但是由于两个笔袋的成本不一样,所以这是解决问题的出发点,于是分别设两个笔袋的成本来列式计算,求出成本即可.【解答】解:设两个笔袋的成本分别为a元、b元,由题意可知a(1+25%)=30,b(1﹣25%)=30解得a=24,b=40∴30×2﹣(24+40)=﹣4故答案为亏损了4元.【点评】本题考查的是一元一次方程在利润计算上的应用,计算利润问题抓住成本是关键,此题应该注意盈利25%与亏损25%的基数不一样.16.【分析】分析AB,CD,MN三者之间的关系,在通过长度推算整点的个数的范围【解答】解:MN=CB﹣CM﹣BN=CB﹣CA﹣BD=(2BC﹣CA﹣BD)=(CD+AB)∵线段AB覆盖8个整数点,7≤AB<9,∵线段CD覆盖2个整数点,1≤CD<3,4≤(CD+AB)<6,则线段MN覆盖个整数点为4,5,6故答案:4,5,6【点评】这题的难度较大,综合考察了线段的运算和线段覆盖的整点问题,一个典型的压轴题三、解答题(共8题,共72分)17.【分析】(1)根据角度的计算方法计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=115°70′=116°10′;(2)原式=×(﹣)×÷=﹣×=﹣.【点评】本题主要考查角度的计算和有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.【分析】依次去分母、去括号、移项、合并同类项、系数化为1即可得.【解答】解:2(x﹣1)﹣4=x+1,2x﹣2﹣4=x+1,2x﹣x=1+2+4,x=7.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.19.【分析】首先计算乘除,再合并同类项,将整式化为最简形式,然后把x的值代入即可.【解答】解:原式=x﹣=x+3,当x=﹣3时,原式=×(﹣3)+3=.【点评】本题考查了整式的混合运算﹣化简求值.先按运算顺序把整式化简,再把对应字母的值代入求整式的值.20.【分析】由一个人做要40小时完成,即一个人一小时能完成全部工作的,就是已知工作的速度.本题中存在的相等关系是:这部分人4小时的工作+增加2人后8小时的工作=全部工作.设全部工作是1,这部分共有x人,就可以列出方程.【解答】解:设应先安排x人工作,根据题意得:解得:x=2,答:应先安排2人工作.【点评】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的,这一个关系是解题的关键.21.【分析】(1)通过数轴判断a,c,b的相对大小,从而确定绝对值里代数式的值的符号,再去掉绝对值,最后实现化简;(2)两个非负数互为相反数,只能各自为零.求出a、b、c的值再计算代数式的值.【解答】(1)解:观察数轴可知a<c<0<b,且|a|>|c|>|b|∴b﹣c>0,b+c<0,a﹣c<0a﹣b<0∴原式=2(b﹣c)+(b+c)+(c﹣a)+(a﹣b)=2b故化简结果为2b.(2)解:∵(c+4)2与|a+c+10|互为相反数,∴(c+4)2+|a+c+10|=0∴c+4=0,a+c+10=0∴c=﹣4,a=﹣6而b=|a﹣c|,∴b=2∴2b=4故(1)式的值为4.【点评】本题考查的是利用数轴比较数的大小,并进行化简,利用数轴判断绝对值内代数式的符号是解题关键.22.【分析】(1)分成三种分案进行讨论,列出一元一次方程组,即可求出方案;(2)根据(1)的方案算出每一种方案的利润,然后计算出捐出给工艺的钱,即可求出方案.【解答】解:(1)①当购进A和B两种品牌手机时,设买进A品牌手机a台时,则买进B品牌手机(50﹣a)台时,根据题意:1500a+2100(50﹣a)=90000,解得a=25,故可购进A品牌手机25台时,则买进B品牌手机25台.②当购进B和C两种品牌手机时,设买进B品牌手机b台时,则买进C品牌手机(50﹣b)台时,根据题意:2100b+2500(50﹣b)=90000,解得b=87.5>50,故舍去;③当购进A和C两种品牌手机时,设买进C品牌手机c台时,则买进A品牌手机(50﹣c)台时,根据题意:1500(50﹣c)+2500c=90000,解得c=15,故可购进C品牌手机15台时,则买进A品牌手机35台.故有两种进货方案,方案一:可购进A品牌手机25台时,则买进B品牌手机25台;方案二:可购进C品牌手机15台时,则买进A品牌手机35台.(2)方案一的利润:25(1650﹣1500)+25(2300﹣2100)=8750元,捐款数额:8750×50%=4375元;方案二的利润:15(2750﹣2500)+35(1650﹣1500)=9000元,捐款数额:9000×50%=4500元;故选择方案二,即可购进C品牌手机15台时,则买进A品牌手机35台.【点评】本题考查了一元一次方程的应用题,根据已知问题,列出一元一次方程使解答此题的关键.23.【分析】(1)①当点C在点B的左侧时,②当点C在点B的右侧时,根据线段的和差即可得到结论;(2)设BC=x,则AD=AB+BC+CD=12+x,根据线段中点的定义得到PD=AD=6+x,CQ=x,于是得到结论;(3)线段CD运动的时间为t,则AM=2t,BC=t,列方程即可得到结论.【解答】解:(1)①当点C在点B的左侧时,∵AB=8,BC=2,CD=4,∴AC=6,∴AD=AC+CD=10,②当点C在点B的右侧时,∵AB=8,BC=2,CD=4,∴AD=AB+BC+CD=14,故线段AD=10或14;故答案为:10或14;(2)设BC=x,则AD=AB+BC+CD=12+x,∵点P、Q分别为AD、BC的中点,∴PD=AD=6+x,CQ=x,∴PQ=PD﹣CD﹣CQ=6+x﹣4﹣x=2;(3)线段CD运动的时间为t,则AM=2t,BC=t,∴BM=AB﹣AM=8﹣2t,BD=BC+CD=t+4,∵点N是线段BD的中点,∴DN=BN=BD=t+2,∵MN=2DN,∴8﹣2t+t+2=2(t+2),解得:t=,故线段CD运动的时间为s.【点评】本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.24.【分析】(1)先求出∠AOD,然后计算出∴∠DOE,即可求出∠COE=∠COD﹣∠DOE;(2)通过设出已知角∠COD,∠BOC,然后根据题意,表示出∠COE和∠DOB;(3)分情况讨论,当OB在OD下方和OB在OD上方,进行计算.【解答】解:(1)∵∠AOB=180°,∠DOB=40°,∴∠AOD=140°,∵射线OE平分∠AOD,∴∠DOE=∠AOD=70°,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=20°,故答案为:20;(2)∵∠AOB=2∠COD,∴设∠COD=x,∠BOC=y,则∠AOB=2x,∴∠BOD=x﹣y,∠AOD=3x﹣y,∵射线OE平分∠AOD,∴∠DOE=∠AOD=(3x﹣y),∴∠COE=∠DOE﹣∠COD=(3x﹣y)﹣x=(x﹣y),∴==;(3)由题意可知:∠DOF=30°﹣α,=20,此时,当OB在OD下方时,此时;当OB在OD上方时,此时.【点评】本题主要考查学生在学习过程中对角度关系及运算的灵活运用和掌握.此类题目的练习有利于学生更好的对角的理解.。

七年级数学(上)期末试卷(含答案)

七年级数学(上)期末试卷(含答案)一、选择题(共10小题,满分40分)1.一个数的相反数是﹣,则这个数是()A.B.2C.﹣D.﹣22.第七次全国人口普查显示,我国人口已达到141178万.把这个数据用科学记数法表示为()A.1.41178×107B.1.41178×108C.1.41178×109D.1.41178×10103.下列各组单项式中,不是同类项的是()A.﹣a2b与ab2B.7与2.1C.2xy与﹣5yx D.mn2与3n2m 4.当x=1时,代数式ax2﹣2bx+1的值为3,那么5﹣2a+4b的值是()A.1B.2C.3D.45.为了了解我市七年级学生每天用于学习的时间,对其中500名学生进行了调查,则下列说法错误的是()A.总体是我市七年级学生每天用于学习的时间B.其中500名学生每天用于学习的时间是总体的一个样本C.样本容量是500名D.个体是其中每名学生每天用于学习的时间6.下列等式变形正确的是()A.若4x=﹣5,则B.若ax=bx,则a=bC.若a2=b2,则a=b D.若,则x=y7.如图,O为直线AB上的一点,∠AOC=90°,∠DOE=90°,则图中∠BOE的余角共有()A.1个B.2个C.3个D.4个8.如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点.若线段MN的长为4,则线段BC的长度是()A.4B.6C.8D.109.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”形的图案,如图②所示,则这个“”形的图案的周长可以表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b10.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2021的值为()A.﹣2018B.﹣1010C.﹣1009D.﹣1008二、填空题(共5小题,满分25分)11.比较大小:﹣﹣.12.已知关于x,y的二元一次方程组的解满足x+y=﹣5,则m的值是.13.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为元.14.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.15.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+5|+(b﹣3)2=0.点P在数轴上,且满足AP=2PB,则点P对应的数为.三、解答题(共85分)16.计算:(1)5+2×(﹣6)﹣|﹣9|;(2).17.先化简,再求值:2(x2y﹣5x2+4y)﹣3(x2y﹣x2+y)+7x2,其中,y=3.18.解方程(组):(1);(2).19.(1)已知∠α,∠AOB,在图2中,求作:以OB为边,在∠AOB内部作∠BOC=∠α(要求:用直尺和圆规作图,不写作法,保留作图痕迹).(2)若∠AOB=50°,∠BOC=30°,OD平分∠AOC.求∠BOD的度数.20.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买羊,人出五,不足四十五;人出七,不足三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差四十五钱;若每人出七钱,还差三钱.问合伙人数和羊价各是多少?21.为了了解某中学学生体质健康达标情况,该校九年级兴趣小组随机抽查了本校若干名学生的体质健康达标情况(A.优秀:B.良好;C.合格;D.待合格),并将调查结果绘制成条形统计图和扇形统计图(不完整)请你根据图中提供的信息,解答下列问题:(1)此次调查的学生有人;(2)将两幅统计图补充完整;(3)根据抽样调查结果,请你估计该校2600名学生中,达到优良等级的学生共有多少人?22.某医疗器械厂计划用600万元资金采购一批口罩生产机器,其中甲型机器每台的售价为10万元,乙型机器每台的售价为45万元.(1)设购入甲型机器x台,完成下列表格.型号单价(万元)数量(台)总价(万元)甲10x乙45(2)在(1)的条件下,若购买甲型机器的数量是乙型机器数量的5倍还多3台,则甲、乙两种机器分别购入多少台?23.将1到2021之间的所有奇数按顺序排成下表:记P mn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=;(2)若P mn=2021,则m=,n=;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200?若能,求出4个数中的最大数;若不能,请说明理由.参考答案一、选择题(共10小题,满分40分)1.一个数的相反数是﹣,则这个数是()A.B.2C.﹣D.﹣2【分析】根据只有符号不同的两个数叫做互为相反数解答.解:的相反数是﹣.故选:A.2.第七次全国人口普查显示,我国人口已达到141178万.把这个数据用科学记数法表示为()A.1.41178×107B.1.41178×108C.1.41178×109D.1.41178×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:141178万=1411780000=1.41178×109,故选:C.3.下列各组单项式中,不是同类项的是()A.﹣a2b与ab2B.7与2.1C.2xy与﹣5yx D.mn2与3n2m 【分析】根据同类项的意义判断即可.解:A.﹣a2b与ab2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;B.7与2.1是同类项,故本选项不合题意;C.2xy与﹣5yx所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;D.mn2与3n2m所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;故选:A.4.当x=1时,代数式ax2﹣2bx+1的值为3,那么5﹣2a+4b的值是()A.1B.2C.3D.4【分析】由已知条件得出a﹣2b=2,将原式后两项提取﹣2,代入计算即可.解:根据题意,将x=1代入ax2﹣2bx+1=3,得:a﹣2b=2,则5﹣2a+4b=﹣2(a﹣2b)+5=﹣2×2+5=﹣4+5=1.故选:A.5.为了了解我市七年级学生每天用于学习的时间,对其中500名学生进行了调查,则下列说法错误的是()A.总体是我市七年级学生每天用于学习的时间B.其中500名学生每天用于学习的时间是总体的一个样本C.样本容量是500名D.个体是其中每名学生每天用于学习的时间【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:本题考查的是总体、个体和样本的概念.其中选项A、B、D都正确,而C中,样本容量是样本中包含的个体的数目,不能带单位,所以错误.故选:C.6.下列等式变形正确的是()A.若4x=﹣5,则B.若ax=bx,则a=bC.若a2=b2,则a=b D.若,则x=y【分析】根据等式的基本性质逐一判断即可.解:A.若4x=﹣5,则x=﹣,故A不符合题意;B.若ax=bx(x≠0),则a=b,故B不符合题意;C.若a2=b2,则a=±b,故C不符合题意;D.若,则x=y,故D符合题意;故选:D.7.如图,O为直线AB上的一点,∠AOC=90°,∠DOE=90°,则图中∠BOE的余角共有()A.1个B.2个C.3个D.4个【分析】根据余角的和等于90°,结合图形找出构成直角的两个角,然后再计算对数.解:∵∠AOC=∠DOE=90°,∴∠AOD+∠BOE=90°,∠COE+∠BOE=90°.∴∠BOE的余角共有2个.故选:B.8.如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点.若线段MN的长为4,则线段BC的长度是()A.4B.6C.8D.10【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:MN=AM﹣AN=AB﹣AC=(AC﹣BC)=BC,继而即可得出答案.解:∵点M是线段AB的中点,点N是线段AC的中点,MN=AM﹣AN=AB﹣AC=(AC﹣BC)=BC,∵MN=4,∴BC=8.故选:C.9.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”形的图案,如图②所示,则这个“”形的图案的周长可以表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b【分析】根据图形和题意,可以得到这个“”形的图案的周长为4a+4(a﹣b),然后去括号,合并同类项即可.解:由图②可得,这个“”形的图案的周长可以表示为:4a+4(a﹣b)=4a+4a﹣4b=8a﹣4b,故选:B.10.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2021的值为()A.﹣2018B.﹣1010C.﹣1009D.﹣1008【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值a2n=﹣n,序数为奇数时,其最后的数值a2n+1=﹣+1,从而得到答案.解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,序数为奇数时,其最后的数值a2n+1=﹣+1,则a2021=﹣+1=﹣1011+1=﹣1010,故选:B.二、填空题(共5小题,满分25分)11.比较大小:﹣<﹣.【分析】根据负有理数比较大小的方法比较(绝对值大的反而小).解:根据两个负数,绝对值大的反而小的规律得出:﹣<﹣.12.已知关于x,y的二元一次方程组的解满足x+y=﹣5,则m的值是﹣24.【分析】把两个方程相加即可求出x+y=,再根据x+y=﹣5,即可=﹣5,然后进行计算即可.解:,①+②得:5x+5y=m﹣1,∴x+y=,∵x+y=﹣5,∴=﹣5,∴m﹣1=﹣25,∴m=﹣24,故答案为:﹣24.13.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为62.5元.【分析】设该商品标价为x元,利用利润=售价﹣成本价,即可得出关于x的一元一次方程,解之即可得出该商品的标价.解:设该商品标价为x元,依题意得:80%x﹣40=40×25%,解得:x=62.5.故答案为:62.5.14.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为110°.【分析】根据角平分线的意义,设∠DOE=x,根据∠AOB=150°,∠COD=40°,分别表示出图中的各个角,然后再计算2∠BOE﹣∠BOD的值即可.解:如图:∵OE平分∠AOC,∴∠AOE=∠COE,设∠DOE=x,∵∠COD=40°,∴∠AOE=∠COE=x+40°,∴∠BOC=∠AOB﹣∠AOC=150°﹣2(x+40°)=70°﹣2x,∴2∠BOE﹣∠BOD=2(70°﹣2x+40°+x)﹣(70°﹣2x+40°)=140°﹣4x+80°+2x﹣70°+2x﹣40°=110°,当角AOC小于80度时,OD在OE左侧,同法可得,2∠BOE﹣∠BOD=110°当OD和OE重合时,同法可得,2∠BOE﹣∠BOD=110°故答案为:110.15.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+5|+(b﹣3)2=0.点P在数轴上,且满足AP=2PB,则点P对应的数为或11.【分析】根据|a+5|+(b﹣3)2=0,可以先求出a、b的值,然后根据AP=2PB,利用分类讨论的方法,列出相应的方程,然后求解.解:∵|a+5|+(b﹣3)2=0,∴a+5=0,b﹣3=0,解得a=﹣5,b=3,∴点A表示的数为﹣5,点B表示的数为3,设点P表示的数为x,∵AP=2PB,∴当点P在点A和点B之间时,x﹣(﹣5)=2(3﹣x),解得x=;当点P在点B的右侧时,x﹣(﹣5)=2(x﹣3),解得x=11;当点P在点A的左侧时,(﹣5)﹣x=2(3﹣x),解得x=11(不合题意,舍去);由上可得,点P对应的数为或11,故答案为:或11.三、解答题(共85分)16.计算:(1)5+2×(﹣6)﹣|﹣9|;(2).【分析】(1)先算乘法和去绝对值,然后算加减法即可;(2)先算乘方和去括号,然后算乘除法、最后算加减法.解:(1)5+2×(﹣6)﹣|﹣9|=5+(﹣12)﹣9=﹣7﹣9=﹣16;(2)=﹣1﹣4×()+3÷(﹣9)=﹣1﹣4×(﹣)+3×(﹣)=﹣1++(﹣)=﹣1.17.先化简,再求值:2(x2y﹣5x2+4y)﹣3(x2y﹣x2+y)+7x2,其中,y=3.【分析】先去括号、合并同类项化简原式,再将x和y的值代入计算可得.解:原式=2x2y﹣10x2+8y﹣3x2y+3x2﹣3y+7x2=﹣x2y+5y,当x=﹣,y=3时,原式=+5×3=﹣+15=.18.解方程(组):(1);(2).【分析】(1)方程去分母、去括号、移项、合并同类项、系数化为1即可;(2)方程组利用加减消元法解答即可.解:(1),去分母,得4(x+2)﹣3(2x﹣1)=12,去括号,得4x+8﹣6x+3=12,移项,得4x﹣6x=12﹣8﹣3,合并同类项,得﹣2x=1,系数化为1,得x=﹣;(2),①﹣②×2,得2y=3,解得y=,把y=代入②,得x=,故方程组的解为.19.(1)已知∠α,∠AOB,在图2中,求作:以OB为边,在∠AOB内部作∠BOC=∠α(要求:用直尺和圆规作图,不写作法,保留作图痕迹).(2)若∠AOB=50°,∠BOC=30°,OD平分∠AOC.求∠BOD的度数.【分析】(1)根据画一个角等于已知角的方法即可在∠AOB内部作∠BOC=∠α;(2)结合(1)根据角平分线定义即可解决问题.解:(1)如图,∠BOC即为所求;(2)∵∠AOB=50°,∠BOC=30°,∴∠AOC=∠AOB﹣∠BOC=20°,∵OD平分∠AOC.∴∠COD=AOC=10°,∴∠BOD=∠BOC+∠COD=40°.20.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买羊,人出五,不足四十五;人出七,不足三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差四十五钱;若每人出七钱,还差三钱.问合伙人数和羊价各是多少?【分析】设合伙人数为x,根据“若每人出五钱,还差四十五钱;若每人出七钱,还差三钱”,即可得出关于x的一元一次方程,解之即可求出合伙人数,再将其代入(5x+45)中即可求出羊价.解:设合伙人数为x,依题意得:5x+45=7x+3,解得:x=21,∴5x+45=5×21+45=150.答:合伙人数为21,羊价为150钱.21.为了了解某中学学生体质健康达标情况,该校九年级兴趣小组随机抽查了本校若干名学生的体质健康达标情况(A.优秀:B.良好;C.合格;D.待合格),并将调查结果绘制成条形统计图和扇形统计图(不完整)请你根据图中提供的信息,解答下列问题:(1)此次调查的学生有120人;(2)将两幅统计图补充完整;(3)根据抽样调查结果,请你估计该校2600名学生中,达到优良等级的学生共有多少人?【分析】(1)用A类人数除以它所占的百分比即可得到调查的总人数;(2)先计算出C类人数,进而得出D类人数,然后补全条形统计图;(3)利用样本估算总体即可.解:(1)此次调查的学生有:24÷20%=120(人);故答案为:120;(2)C类人数有:120×30%=36(人),D类人数有:120﹣24﹣36﹣48=12(人),补全统计图如下:(3)2600×=1560(人),答:估计该校2600名学生中,达到优良等级的学生共有1560人.22.某医疗器械厂计划用600万元资金采购一批口罩生产机器,其中甲型机器每台的售价为10万元,乙型机器每台的售价为45万元.(1)设购入甲型机器x台,完成下列表格.型号单价(万元)数量(台)总价(万元)甲10x10x乙45(600﹣10x)(2)在(1)的条件下,若购买甲型机器的数量是乙型机器数量的5倍还多3台,则甲、乙两种机器分别购入多少台?【分析】(1)设购入甲型机器x台,则购入甲型机器所需总价为10x万元,购入乙型机器所需总价为(600﹣10x)万元,购入乙型机器台;(2)根据购买甲型机器的数量是乙型机器数量的5倍还多3台,即可得出关于x的一元一次方程,解之即可得出结论.解:(1)设购入甲型机器x台,则购入甲型机器所需总价为10x万元,购入乙型机器所需总价为(600﹣10x)万元,购入乙型机器台.故答案为:10x,,(600﹣10x);(2)依题意得:x=5×+3,解得:x=33,=6(台),答:购入甲型机器33台,乙型机器6台.23.将1到2021之间的所有奇数按顺序排成下表:记P mn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=45;(2)若P mn=2021,则m=169,n=3;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200?若能,求出4个数中的最大数;若不能,请说明理由.【分析】(1)根据题意可知P45表示第4行第5个数,每行都有6个数,所有的数字都是奇数,然后即可计算出相应的值;(2)根据题意,可以得到2[6(m﹣1)+n]﹣1=2021,然后m为整数,1≤n≤6,即可得到m、n的值;(3)先判断,然后设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,即可列出相应的方程,然后求解即可说明理由.解:(1)由题意可得,P45=2×(6×3+5)﹣1=45,故答案为:45;(2)∵P mn=2021,∴2[6(m﹣1)+n]﹣1=2021,∴12m+2n﹣13=2021,∵m为正整数,1≤n≤6,∴m=169,n=3,故答案为:169,3;(3)所覆盖的4个数之和能等于200,理由:设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,由题意可得(2n﹣3)+(2n﹣1)+(2n+1)+(2n+11)=200,解得:n=24,∴所覆盖的4个数之和能等于200。

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分: 120分考试时间: 120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数: 0 −5 −(−7) −|−8| (−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+a<0 aa<0 则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6a时水位变化记为+6a 那么水位下降6a时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1 −2 0 3中最小的数是()A.−1B.−2C.0D.37. 若a和a都是4次多项式则a+a一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段aa 则aa盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()/A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a a的点在数轴上的位置如图所示下列结论错误的是()/A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −112的倒数是________ ________的绝对值是1 ________的立方是8.12. 在月球表面白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a.则月球表面昼夜的温差为________∘a.13. 若|a|=5 a=−2 且aa>0 则a+a=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负): (+4, −8) (−5, +6) (−3, +2) (+1, −7) 则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下: +8 −3 +12 −7 −10 −3 −8 +1 0 +10.1这10名同学中最高分数是多少?最低分数是多少?2这10名同学的平均成绩是多少.(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆3本周实际销售总量达到了计划数量没有?4该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为: (单位: 海里)+80 −40 +60 +75 −65 −80 此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18.(10分)请画一条数轴然后在数轴上把下列各数表示出来: 312−4 −2120 −1 1 并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20.(10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位: 元)分别为+2 −3 +2 +1 −2 −1 0 −2. 当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线aa分别交a轴a轴于点aa,0和点a0,a且a a满足a2+4a+4+|2a+a|=0./(1)a=________ a=________.(2)点a在直线aa的右侧且∠aaa=45∘:①若点a在a轴上则点a的坐标为_________②若△aaa为直角三角形求点a的坐标.22.(10分)问: 该服装店在售完这30件a恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解: ∵0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∴负数共有2个.故选a.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据aa<0 结合乘法法则易知a a异号而a+a<0 根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解: ∵aa<0a a b异号又a a+b<0∴负数的绝对值大于正数的绝对值.故选a.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解: 1958000用科学记数法可表示为1.958×106.故选a.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6a时水位变化记作−6a.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2 a正确3的倒数是3a正确(−3)−(−5)=−3+5=2 a正确−11 0 4这三个数中最小的数是−11 a错误.故选a.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1 |−2|=2 根据负数的绝对值越大这个数就越小得到−2<−1 而0大于任何负数小于任何正数则有理数−1 −2 0 3的大小关系为−2<−1<0<3.【解答】解: ∵|−1|=1 |−2|=2a −2<−1∴有理数−1 −2 0 3的大小关系为−2<−1<0<3.故选a.7.【答案】C【考点】多项式的项与次数【解析】若a和a都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解: 若a和a都是4次多项式则a+a的结果的次数一定是次数不高于4次的整式.故选a.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段aa 则线段aa盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段aa起点在整点时覆盖16个数②当线段aa起点不在整点即在两个整点之间时覆盖15个数.故选a.9.【答案】C【考点】有理数大小比较数轴【解析】根据a a两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解: ∵a a两点在数轴上的位置可知: −1<a<0 a>1 |a|<|a|a a−b<0a+b>0b−1>0故a a a错误故a正确.故选a.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a −1 0 1 a的大小关系然后根据正实数都大于0 负实数都小于0 正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解: 根据实数a a在数轴上的位置可得a<−1<0<1<aa 1<|a|<|b|a 选项A错误a 1<−a<ba 选项B正确a 1<|a|<ba 选项C正确a −b<a<−1∴选项D正确.故选D.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−2,±1,23【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解. 【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解: 白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a所以月球表面昼夜的温差为:127∘a−(−183∘a)=310∘a.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5 a=−2 且aa>0 可知a=−5 代入原式计算即可.【解答】解: ∵|a|=5 a=−2 且aa>0∴a+a=−5−2=−7.故答案为: −7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解: 由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为: 12.三解答题(本题共计8 小题共计78分)15.【答案】解:1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:14−3−5+300=296.故答案为: 296.221+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解: 如图:/用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:/用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解: (1)原式=0.75+0.25+18+78=1+1=2. (2)原式=−8+6+2+15=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解: (1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解: (+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法: 同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值. 相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质: 偶次方非负数的性质: 绝对值【解析】解: (1)由题意得得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+a=0解得a=−2 a=4. 故答案为:−2 4.【解答】解:(1)由题意得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+b=0解得a=−2 a=4.故答案为: −2 4.(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).22.【答案】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答: 该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7年级(上)数学期末试题
一.选择题(共10小题)
C.D


.D.
.B.
C

2
.C.D.
D.




10.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为130元,
二.填空题(共10小题)
11.如图,若点P是线段MN的中点,则MN=_________PM.PN=_________MN,MP_________PN,若MP=NP,则点P是线段MN的_________.
12.把15°30′化成度的形式,则15°30′=_________度.
13.若∠α=70°,则∠α的补角为_________°.
14.在同一平面内,若直线a∥c,b∥c,则a_________b.
15.如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为_________°.
16.如图,在九年级学生的志愿填报扇形统计图中,报考了普通高中的人数的部分的圆心角是270°,则报考了普通高中的人数占总人数的百分比为_________.
17.计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣)=_________.
18.在数据﹣π,,中无理数的个数是_________个.
19.我校学生在“爱心传递”活动中,共捐款37400元,请你将数字37400用科学记数法并保留两个有效数字表示为_________.
20.单项式的系数为_________,次数为_________.
三.解答题(共5小题)
21.计算:|﹣|÷()﹣.
22.甲组有37人,乙组27人,现在要从甲、乙两组调出相同数量的人去做其他工作,使甲组剩下的人数为乙组剩下的人数的两倍,则从甲乙两组各调多少人?
23.如图所示,已知DO⊥CO,∠1=36°,∠3=36°.
(1)求∠2的度数;
(2)AO与BO垂直吗?说明理由.
24.化简,求值:3{4a2b﹣[2ab﹣(3a2b﹣4ab)+6a2b]}﹣4ab,其中a=﹣1,b=.
25.直线上有两点A,B,再在该直线上取点C,使BC=AB,D是AC的中点,若BD=6cm,求线段AB的长.。

相关文档
最新文档