内蒙古呼和浩特市2015年中考数学试题(含详解)

合集下载

内蒙古呼和浩特市2015届中考第一次模拟考试数学试题及答案(扫描版)

内蒙古呼和浩特市2015届中考第一次模拟考试数学试题及答案(扫描版)

2015年呼和浩特市初三年级质量普查调研考试数学试题参考答案及评分标准一、选择题1.B2.A3.D4.B5.C6.A7.A8.D9.D 10.D二、填空题11. 2≠x 12. 31 13. 7 14.)2)(2(2-+a a a 15.43 16. 8 三、解答题 分所以方程组得解为得代入把分两式相减得:分)原方程组可化为分)解:(5...........................32.31224...................................2,842....................81612110(17⎩⎨⎧====-===⎩⎨⎧=--=-y x y y x x x x y x y x (2)分)分(每对一个给原式13 (93)33-1+⋅= 分分5................................................................................94.......................................................................91-1=+= 18(7分)(1)证明:∵CE ∥BF ,∴∠CED=∠BFD ,............2分∵D 是BC 边的中点,∴BD=DC ,.........................3分在△BDF 和△CDE 中,∴△BDF ≌△CDE (AAS );..................5分(2)四边形BFCE 是矩形.......................7分.分两个正整数时不等式组的解集包含由数轴可以看出当分)得:解不等式(分)得:分)解:解不等式(5..........543.............................22.. (2)51.(519<≤≤>a a x x 20. (6分)解:在Rt △ADC 中,∠ADC=90°,∠CAD=30°,AC=200.CD=100..............................................................................1分AD=AC •cos ∠CAD ≈200×23=1003.......................2分在Rt △ADB 中,∠ADB=90°,∠BAD=40°,AD=1003.BD=AD •tan ∠BAD=1003 40tan .............................4分∴BC=BD ﹣CD=1003 40tan -100(米)..........6分21. 解:设原计划有x 人参加植树活动,则实际参加人数为1.5x 人...................1分 根据题意得:=2.......................................................................................3分 解得 x=30........................................................................................................................4分 经检验:x=30是方程的解所以x=30.......................................................................................................................5分 则1.5x=45.答:实际有45人参加了这次植树活动.......................................................................6分 22.(10分 ) 解:(1)∵B 、E 两组发言人数的比为5:2,E 组发言人数占8%,∴B 组发言的人数占20%,由直方图可知B 组人数为10人,所以,被抽查的学生人数为:10÷20%=50人,∴样本容量为50人. ..........................................................2分F 组人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%),=50×(1﹣90%),=50×10%,=5人........................................................................................4分C 组人数为:50×30%=15人,A 组人数为:50×6%=3人D 组人数为:5026 %=13人E 组人数为:50×8%=4人补全的直方图如图(标注人数略,如果已经前面算了各组人数,图中只标注了C ,F 的人数也可给分) ................................................................................................................................6分(2)发言次数的中位数在C 组......................................................................8分(3)F 组发言的人数所占的百分比为:10%,所以,估计全年级在这天里发言次数不少于12次的人数为:500×(8%+10%)=90人; .........................................................................................................................................10分23.(7分) 解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE ⊥x 轴于点E .tan ∠ABO=.∴CE=3.(1分)∴点C 的坐标为C (﹣2,3)........................ 1分设反比例函数的解析式为y= ,(m ≠0)将点C 的坐标代入,得3= .∴m=﹣6.∴该反比例函数的解析式为y=﹣............ 2分(2)∵OB=4,∴B (4,0)..........................设直线AB 的解析式为y=kx+b (k ≠0),将点A 、B 的坐标分别代入,得 解得.∴直线AB 的解析式为y=﹣x+2.............................4分 解方程组⎪⎪⎩⎪⎪⎨⎧-=+-=xy x y 6221求得D 点的坐标为(6,-1)..............6分所以21421=⨯⨯=∆BOD S ............................................................7分24.(9分)(1)证明:连接OA............1分902..........................=∠+∠∴⊥∴DAP OAD AP OA PA 分是切线分又分是直径4................................3...................90PAD ACB OAC ACB OAC OAD BC ∠=∠∴∠=∠=∠+∠∴(2)ACB PAD ∠=∠知由)1(分又分6............................................905..........................90P COA P AOP AOP COA BCOP ∠=∠∴=∠+∠=∠+∠∴⊥∴△ADP ∽△CAO.......................7分 分9...............................OC AD AP AC ⋅=⋅∴25.(12分)解:(1)与x 轴的两个交点的坐标为(1,0),(3,0)............................2分 与y 轴的两个交点坐标为(0,3)..........................................................................3分(2)2342=+-=x k kx kx y 的对称轴为抛物线 ....................4分分此时时,当分此时时,当分)),(轴两个交点为(取何值抛物线与无论7.................................................2,06...............................................0,305..............0,30,1max max =-=<==>∴x k y k x k y k x k (3)两点与二次函数的图象交于直线F E AB , ),(),,(21y x F y x E 设分无关,总等于的长度与分(解出两根也可得分)分得代入将分则12...........................................3211..........................................324)(10...........................................................1,4043428.................................................................2122121212221k EF x x x x EF x x x x k kx kx k kx kx y k y x x EF ∴=-+=∴==+∴=+-+-==-=。

最新内蒙古呼和浩特市中考数学试题(word版,含答案)

最新内蒙古呼和浩特市中考数学试题(word版,含答案)

2015年呼和浩特市中考试卷数学注意事项:1.考生务必将自己的姓名、准考证号填在试卷和答题卡的规定位置。

2.考生要将答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分。

考试时间120分钟。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是A.-3℃B.15℃C.-10℃D.-1℃2.下列图形中,既是轴对称图形,又是中心对称图形的是A.B. C. D.3.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为A. 70°B. 100°C. 110°D. 120°4.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为A. 12B.13C.14D.165.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是A. -3≤y≤3B. 0≤y≤2C . 1≤y ≤3D . 0≤y ≤36.下列运算,结果正确的是A . 224m m m +=B . 22211( )m m m m +=+ C . 2224(3)6mn m n = D . 2222mm n mn n÷=7.如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为 A . 12 B . 98C . 2D . 4 8.以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额9.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为A . 236πB . 136πC . 132πD . 120π10.函数xx x y 22+=的图象为各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题卡规定的横线上,不需要解答过程)11.某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为__________元. 12.分解因式:x 3-x =__________.13.如图,四边形 ABCD 是菱形, E 、F 、G 、H 分别是各边的中点,随机地向菱形ABCD 内掷一粒米,则米粒落到阴影区域内的概率是__________.14.一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为__________. 15.若实数a 、b 满足(4a +4b ) (4a +4b -2)-8=0,则a +b=__________. 16.以下四个命题:①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补. ②边数相等的两个正多边形一定相似.③等腰三角形ABC 中, D 是底边BC 上一点, E 是一腰AC 上的一点,若∠BAD =60°且AD =AE , 则∠EDC =30°.④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点. 其中正确命题的序号为__________.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤)17.(10分)计算(1) (5分)计算3-11()3-+24(2) (5分)先化简,再求值:2232237()5102a b a b ab a b +÷,其中a = 52,b =-12GHFAC BDE18.(6分)如图,的对角线AC 、BD 相交于点O ,AE =CF .(1)求证:△BOE≌△DOF ;(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,无需说明理由.19.(6分)如图,热气球的探测器显示,从热气球A 处看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为65°,热气球与高楼的水平距离AD 为120m .求这栋高楼的高度. (结果用含非特殊角的三角函数及根式表示即可)20.(6分)若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x + y >-32,求出满足条件的m 的所有正整数值.21.(7分)某玉米种子的价格为a 元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象.以下是该科技人员绘制的图象和表格的不完整资料,已知点A 的坐标为(2,10).请你结合表格和图象:(1)指出付款金额和购买量哪个变量是函数的自变量x ,并写出表中a 、b 的值; (2)求出当x>2时,y 关于x 的函数解析式;(3)甲农户将8.8元钱全部用于购买该玉米种子,乙农户购买了4165克该玉米种子,分别计算他们的购买量和付款金额.AD BFE O22.(9分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁; (2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.23.(7分)如图,在平面直角坐标系中A 点的坐标为(8,y ) ,AB ⊥x 轴于点B , sin ∠OAB = 45 ,反比例函数y= kx 的图象的一支经过AO 的中点C ,且与AB 交于点D. (1)求反比例函数解析式;(2)若函数y = 3x 与y = kx 的图象的另一支交于点M ,求三角形OMB 与四边形OCDB 的面积的比.24.(9分)如图,⊙O 是△ABC 的外接圆,P 是⊙O 外的一点,AM 是⊙O 的直径,∠P AC =∠ABC (1) 求证:P A 是⊙O 的切线;(2) 连接PB 与AC 交于点D ,与⊙O 交于点E ,F 为BD 上的一点,若M 为BC ⌒的中点,且∠DCF =∠P ,求证:BD PD = FD ED = CD AD .25.(12分)已知:抛物线y = x2+(2m-1)x + m2-1经过坐标原点,且当x < 0时,y随x的增大而减小.(1)求抛物线的解析式,并写出y < 0时,对应x的取值范围;(2)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.①当BC=1时,直接写出矩形ABCD的周长;②设动点A的坐标为(a,b),将矩形ABCD的周长L表示为a的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A的坐标;如果不存在,请说明理由.2015年 呼 和 浩 特 市 中 考 试 卷数学参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)C二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共9小题,满分72分)17.(10分) (1) (5分)解:原式=3-6-3+26 ……………3分 = 6 …………………………5分(2) (5分)解:原式=32232()5107a b ab ab +⨯=3232223257107a b a b ab ab ⨯+⨯=22433535a b a b+=25a b…………………………………………3分 当a =52,b =-12时,原式=-18…………………5分 18、(6分) (1)∴BO=DO,AO=OC∵AE=CF∴AO -AE=OC -CF 即:OE=OF在△BOE 和△DOF 中,OB ODBOE DOF OE OF =⎧⎪∠=∠⎨⎪=⎩∴△BOE ≌△DOF (SAS ) ……………………4分 (2)矩形 ………………………………………6分19. (6分) 在Rt △ABD 中,∵tan 30°=BDADAD BCFE O∴BD = AD·tan 30°=120×33 = 40 3 ………………………………………2分在Rt △ACD 中, ∵tan 65°=CDAD∴CD =120·tan 65° ……………………………………………………4分 ∴BC =BD +CD =403+120·tan 65°答:这栋高楼的高度为(403+120·tan65°)米……………………………6分 20. (6分)解:解:23224x y m x y +=-+⎧⎨+=⎩①②①+②得:3(x +y )=-3m +6 ∴x +y =-m +2 ∵x +y >-32 ……………………………………2分∴-m +2>-32∴m <72…………………………………………………………………………4分∵m 为正整数∴m =1、2或3…………………………………………………………………6分 21. (7分)解:(1) 购买量是函数中的自变量x …………1分a =5 …………2分b=14 …………3分(2) 当x >2时,设y 与x 的函数关系式为:y = kx +b ∵y = kx +b 经过点(2,10) 又x =3时,y =14∴210314k b k b +=⎧⎨+=⎩解得42k b =⎧⎨=⎩ ∴当x >2时,y 与x 的函数关系式为:y = 4x +2………………………………5分 (3)当y = 8. 8时, x =8.85=1.76 当x = 4.165时,y = 4×4.165+2 =18.66∴甲农户的购买量为1.76千克,乙农户的付款金额为18.66元. …………7分 22.(9分)解:(1)乙的平均成绩:73+80+82+834=79.5 …………………1分∵80.25 >79.5 ∴应选派甲……………………………………2分(2)甲的平均成绩:85×2+78×1+85×3+73×410 = 79.5…………………5分乙的平均成绩:73×2+80×1+82×3+83×410= 80.4………………8分∵79.5<80.4 ∴应选派乙 …………………………………9分 23.(7分) 解:(1) ∵A 点的坐标为(8,y ) ∴OB =8 ∵sin ∠OAB = 45,∴OA =8×54=10,AB =6∵C 是OA 的中点,且在第一象限 ∴C(4,3) ∴反比例函数的解析式为y = 12x………………………………2分 (2)1212322,1266y x y x x x y y =⎧==-⎧⎧⎪⎪⎪⎨⎨⎨===-⎪⎪⎪⎩⎩⎩解方程组得∵M 是直线与双曲线另一支的交点∴M (-2,-6)………………………………………………3分 ∴S △OMB = 12·OB·|-6| = 12×8×6 =24∵S 四边形OCDB = S △OBC +S △BCD =12+12·DB ·4……………………5分D 在双曲线上,且D 点横坐标为8 ∴D (8,32),即BD =32∴S 四边形OCDB =12+3=15∴S △OMB S 四边形OCDB= 85…………………………………………………7分24、(9分)证明:(1) 连接CM∵∠P AC =∠ABC ,∠M =∠ABC ∴∠P AC =∠M ∵AM 为直径 ∴∠M +∠MAC =90° ∴∠P AC +∠MAC =90° 即:∠MAP =90° ∴MA ⊥AP∴P A 是⊙O 的切线…………………………………………3分 (2) 连接AE∵M 为BC ⌒中点,AM 为⊙O 的直径 ∴AM ⊥BC ∵AM ⊥AP ∴AP ∥BC ∴△ADP ∽△CDB∴BD PD = CD AD ………………………………………………………………………5分 ∵AP //BC ∴∠P =∠CBD ∵∠CBD =∠CAE ∴∠P =∠CAE ∵∠P =∠DCF ∴∠DCF =∠CAE ∵∠ADE =∠CDF ∴△ADE ∽△CDF∴CD DA = FD ED………………………………………………………………………7分 ∴BD PD = FD ED = CD AD…………………………………………………………………9分 25、(12分)解:(1)∵抛物线经过坐标原点(0,0) ∴m 2-1=0 ∴m = ±1∴y = x 2+x 或y = x 2-3x ……………………………………………………………………2分 ∵x <0时,y 随x 的增大而减小∴ y = x 2-3x ………………………………………………………………………………3分 由图象知:y <0时,0<x <3 ………………………………………………………………4分 (2)①当BC =1时,由抛物线的对称性知点B 的纵坐标为-2.所以矩形的周长为6 …5分 ②∵点A 的坐标为(a ,b )∴当点A 在对称轴左侧时,矩形ABCD 的一边BC =3-2a ,另一边AB =3a -a 2周长L =-2a 2+2a +6 ,其中 0<a <32……………………………………………………7分当点A 在对称轴右侧时,矩形的一边BC =3-(6-2a )=2a -3, 另一边AB =3a -a 2周长L =-2a 2+10a -6,其中32<a <3……………………………………………………9分 ∴当0<a <32时,L =-2(a -12)2+132∴当a = 12时,L 最大= 132,A 点坐标为(12,-54) 当32<a <3时,L =-2(a -52)2+ 132∴当a = 52时,L 最大= 132,A 点坐标为(52,-54) ……12分 (说明:本试卷各题只要方法合理,可依据情况酌情给分)。

2015年内蒙古包头市中考数学试卷附答案

2015年内蒙古包头市中考数学试卷附答案

精心整理2015年内蒙古包头市中考数学试卷附答案一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)(2015?包头)在,0,﹣1,这四个实数中,最大的是()A.B.0 C.﹣1 D.2.(3分)(2015?包头)2014年中国吸引外国投资达1280亿美元,成为全球外国投资第一大目的地国,将1280亿美元用科学记数法表示为()A.12.8×1010美元B.1.28×1011美元C.1.28×1012美元D.0.128×1013美元3.(3分)(2015?包头)下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2?a3=﹣a6C.(﹣)﹣2=4 D.(﹣2)0=﹣14.(3分)(2015?包头)在Rt△ABC中,∠C=90°,若斜边AB 是直角边BC的3倍,则tanB的值是()A .B.3 C .D.25.(3分)(2015?包头)一组数据5,2,x,6,4的平均数是4,这组数据的方差是()A.2 B .C.10 D .6.(3分)(2015?包头)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.27.(3分)(2015?包头)已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2B.3C.4D.68.(3分)(2015?包头)下列说法中正确的是()A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C.“同位角相等”这一事件是不可能事件D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件9.(3分)(2015?包头)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.πB.πC.πD.π10.(3分)(2015?包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()A. B. C.D.11.(3分)(2015?包头)已知下列命题:①在Rt△ABC中,∠C=90°,若∠A>∠B,则sin∠A>sinB;②四条线段a,b,c,d中,若=,则ad=bc;③若a>b,则a(m2+1)>b(m2+1);④若|﹣x|=﹣x,则x≥0.其中原命题与逆命题均为真命题的是()A.①②③B.①②④C.①③④D.②③④12.(3分)(2015?包头)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;其中正确的结论是()A.①③④B.①②③C.①②④D.①②③④二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2015?包头)计算:(﹣)×= .14.(3分)(2015?包头)化简:(a﹣)÷= .15.(3分)(2015?包头)已知关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,则k的取值范围是.16.(3分)(2015?包头)一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,则n= .17.(3分)(2015?包头)已知点A (﹣2,y 1),B (﹣1,y 2)和C (3,y 3)都在反比例函数y=的图象上,则y 1,y 2,y 3的大小关系为 .(用“<”连接)18.(3分)(2015?包头)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径是4,sinB=,则线段AC 的长为 .19.(3分)(2015?包头)如图,在边长为+1的菱形ABCD 中,∠A=60°,点E ,F 分别在AB ,AD 上,沿EF 折叠菱形,使点A 落在BC 边上的点G 处,且EG⊥BD 于点M ,则EG 的长为 .20.(3分)(2015?包头)如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论:①BE=CD;②∠DGF=135°;③∠ABG+∠ADG=180°;④若=,则3S △BDG =13S △DGF .其中正确的结论是 .(填写所有正确结论的序号)三、解答题(本大题共6小题,共60分,请将必要的文字说明、计算过程或推理过程写出)21.(8分)(2015?包头)某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为人,扇形统计图中“良好”所对应的圆心角的度数为;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.22.(8分)(2015?包头)为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)23.(10分)(2015?包头)我市某养殖场计划购买甲、乙两种鱼苗共700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元,相关资料表明:甲、乙两种鱼苗的成活率分别为85%和90%.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)若要使这批鱼苗的总成活率不低于88%,则甲种鱼苗至多购买多少尾?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.24.(10分)(2015?包头)如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF?DB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.25.(12分)(2015?包头)如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B 出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).(1)求线段CD的长;(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.①t为何值时,l经过点C?②求当l经过点D时t的值,并求出此时刻线段PQ的长.26.(12分)(2015?包头)已知抛物线y=x 2+bx+c经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.(1)求该抛物线的解析式及点D的坐标;(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为S1,S2和S3,用等式表示S1,S2,S3之间的数量关系,并说明理由;(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.2015年内蒙古包头市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)(2015?包头)在,0,﹣1,这四个实数中,最大的是()A.B.0 C.﹣1 D.【考点】实数大小比较.【分析】利用任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.【解答】解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,0<<1,1<<2,∴﹣1<0<<,故选D.【点评】本题主要考查了比较实数的大小,掌握任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,是解答此题的关键.2.(3分)(2015?包头)2014年中国吸引外国投资达1280亿美元,成为全球外国投资第一大目的地国,将1280亿美元用科学记数法表示为()A.12.8×1010美元B.1.28×1011美元C.1.28×1012美元D.0.128×1013美元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】11,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015?包头)下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2?a3=﹣a6C.(﹣)﹣2=4 D.(﹣2)0=﹣1【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、2a3+a3=3a3,故错误;B、(﹣a)2?a3=a5,故错误;C、正确;D、(﹣2)0=1,故错误;故选:C.【点评】本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.4.(3分)(2015?包头)在Rt△ABC中,∠C=90°,若斜边AB 是直角边BC的3倍,则tanB的值是()A.B.3 C.D.2【考点】锐角三角函数的定义;勾股定理.【分析】设BC=x ,则AB=3x ,由勾股定理求出AC ,根据三角函数的概念求出tanB .【解答】解:设BC=x ,则AB=3x ,由勾股定理得,AC=2x , tanB===2,故选:D .【点评】本题考查的是锐角三角函数的概念和勾股定理的应用,应用勾股定理求出直角三角形的边长、正确理解锐角三角函数的概念是解题的关键.5.(3分)(2015?包头)一组数据5,2,x ,6,4的平均数是4,这组数据的方差是( )A .2B .C .10D . 【考点】方差;算术平均数.【分析】根据平均数的公式求出x 的值,根据方差公式求出方差.【解答】解:由题意得,(5+2+x+6+4)=4,解得,x=3,s 2=[(5﹣4)2+(2﹣4)2+(3﹣4)2+(6﹣4)2+(4﹣4)2] =2,故选:A .【点评】本题考查的是平均数和方差的计算,掌握平均数和方差的计算公式是解题的关键.方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].6.(3分)(2015?包头)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.2【考点】一元一次不等式组的整数解.【分析】先解不等式组,求出解集,再找出最小的整数解即可.【解答】解:,解①得x>﹣1,解②得x≤3,不等式组的解集为﹣1<x≤3,不等式组的最小整数解为0,故选B.【点评】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(3分)(2015?包头)已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2B.3C.4D.6【考点】正多边形和圆.【分析】作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,由等边三角形的性质得出BD=CD,∠OBD=∠ABC=30°,得出OA=OB=2OD,求出AD、BC,△ABC 的面积=BC?AD,即可得出结果.【解答】解:如图所示:作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,∵△ABC是等边三角形,∴BD=CD,∠OBD=∠ABC=30°,∴OA=OB=2OD=2,∴AD=3,BD=,∴BC=2,∴△ABC的面积=BC?AD=×2×3=3;故选:B.【点评】本题考查了圆内接正三角形的性质、解直角三角形、三角形面积的计算;熟练掌握圆内接正三角形的性质,并能进行推理计算是解决问题的关键.8.(3分)(2015?包头)下列说法中正确的是()A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C.“同位角相等”这一事件是不可能事件D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件【考点】随机事件;列表法与树状图法.【分析】根据概率的意义,可判断A;根据必然事件,可判断B、D;根据随机事件,可判断C.【解答】解:A、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为,故A错误;B、“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件,故B正确;C、同位角相等是随机事件,故C错误;D、“钝角三角形三条高所在直线的交点在三角形外部”这一事件是必然事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)(2015?包头)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.πB.πC.πD.π【考点】扇形面积的计算;勾股定理的逆定理;旋转的性质.【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==,故选:A.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.10.(3分)(2015?包头)观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为()A. B. C.D.【考点】规律型:数字的变化类.【分析】观察数据,发现第n个数为,再将n=6代入计算即可求解.【解答】解:观察该组数发现:1,,,,…,第n个数为,当n=6时,==.故选C.【点评】本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为.11.(3分)(2015?包头)已知下列命题:①在Rt△ABC中,∠C=90°,若∠A>∠B,则sin∠A>sinB;②四条线段a,b,c,d中,若=,则ad=bc;③若a>b,则a(m2+1)>b(m2+1);④若|﹣x|=﹣x,则x≥0.其中原命题与逆命题均为真命题的是()A.①②③B.①②④C.①③④D.②③④【考点】命题与定理.【分析】先对原命题进行判断,再根据互逆命题的定义写出逆命题,然后判断逆命题的真假即可.【解答】解:①在Rt△ABC中,∠C=90°,若∠A>∠B,则sin∠A >sinB,原命题为真命题,逆命题是:在Rt△ABC中,∠C=90°,若sin∠A>sinB,则∠A >∠B,逆命题为真命题;②四条线段a,b,c,d中,若=,则ad=bc,原命题为真命题,逆命题是:四条线段a,b,c,d中,若ad=bc,则=,逆命题为真命题;③若a>b,则a(m2+1)>b(m2+1),原命题为真命题,逆命题是:若a(m2+1)>b(m2+1),则a>b,逆命题为真命题;④若|﹣x|=﹣x,则x≥0,原命题为假命题,逆命题是:若x≥0,则|﹣x|=﹣x,逆命题为假命题.故选A.【点评】主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.12.(3分)(2015?包头)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4a c﹣b2>8a;其中正确的结论是()A.①③④B.①②③C.①②④D.①②③④【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】①先由抛物线的对称性求得抛物线与x轴令一个交点的坐标为(3,0),从而可知当x>3时,y<0;②由抛物线开口向下可知a<0,然后根据x=﹣=1,可知:2a+b=0,从而可知3a+b=0+a=a<0;③设抛物线的解析式为y=a(x+1)(x﹣3),则y=ax2﹣2ax﹣3a,令x=0得:y=﹣3a.由抛物线与y轴的交点B在(0,2)和(0,3)之间,可知2≤﹣3a≤3.④由4ac﹣b2>8a得c﹣2<0与题意不符.【解答】解:①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,0),当x>3时,y<0,故①正确;②抛物线开口向下,故a<0,∵x=﹣=1,∴2a+b=0.∴3a+b=0+a=a<0,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则y=ax2﹣2ax﹣3a,令x=0得:y=﹣3a.∵抛物线与y轴的交点B在(0,2)和(0,3)之间,∴2≤﹣3a≤3.解得:﹣1≤a≤﹣,故③正确;④.∵抛物线y轴的交点B在(0,2)和(0,3)之间,∴2≤c≤3,由4ac﹣b2>8a得:4ac﹣8a>b2,∵a<0,∴c﹣2<∴c﹣2<0∴c<2,与2≤c≤3矛盾,故④错误.故选:B.【点评】本题主要考查的是二次函数的图象和性质,掌握抛物线的对称轴、开口方向与系数a、b、c之间的关系是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2015?包头)计算:(﹣)×= 8 .【考点】二次根式的混合运算.【专题】计算题.【分析】原式利用乘法分配律及二次根式乘法法则计算即可得到结果.【解答】解:原式=﹣=9﹣1=8,故答案为:8【点评】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.14.(3分)(2015?包头)化简:(a﹣)÷= .【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=?=?=,故答案为:【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(3分)(2015?包头)已知关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,则k的取值范围是k≥1.【考点】根的判别式.【分析】根据二次根式有意义的条件和△的意义得到,然后解不等式组即可得到k的取值范围.【解答】解:∵关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,∴,解得k≥1,∴k的取值范围是k≥1.故答案为:k≥1.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.也考查了二次根式有意义的条件.16.(3分)(2015?包头)一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,则n= 1 .【考点】概率公式.【分析】由一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,即可得方程:=,解此分式方程即可求得答案.【解答】解:根据题意得:=,解得:n=1,经检验:n=1是原分式方程的解.故答案为:1.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2015?包头)已知点A(﹣2,y1),B(﹣1,y2)和C(3,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系为y2<y1<y3.(用“<”连接)【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵反比例函数y=中k=3>0,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随x 的增大而减小.∵﹣2<﹣1<0,∴点A(﹣2,y1),B(﹣1,y2)位于第三象限,且0>y1>y2.∵3>0,∴点C(3,y3)位于第一象限,∴y3>0,∴y2<y1<y3.故答案为:y2<y1<y3.【点评】本题考查的是反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.(3分)(2015?包头)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为 2 .【考点】圆周角定理;解直角三角形.【专题】计算题.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【解答】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.19.(3分)(2015?包头)如图,在边长为+1的菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A 落在BC边上的点G处,且EG⊥BD于点M,则EG的长为.【考点】翻折变换(折叠问题);菱形的性质.【分析】首先连接AC,在Rt△ABO中,求出AO的长度,进而求出AC的长度是多少;然后根据EG⊥BD,AC⊥BD,可得EG∥A C,所以,据此求出EG的长为多少即可.【解答】解:如图1,连接AC,交BD于点O,,∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,∵∠A=60°,∴∠BAO=30°,∴AO=AB?cos30°=(+1)×=,∴AC=×2=3,∵沿EF折叠菱形,使点A落在BC边上的点G处,∴EG=AE,∵EG⊥BD,AC⊥BD,∴EG∥AC,∴,又∵EG=AE,∴,解得EG=,∴EG的长为.故答案为:.【点评】(1)此题主要考查了翻折变换问题,要熟练掌握,解答此题的关键是要明确:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.(2)此题还考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.20.(3分)(2015?包头)如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论: ①BE=CD;②∠DGF=135°;③∠ABG+∠ADG=180°;④若=,则3S △BDG =13S △DGF .其中正确的结论是 ①③④ .(填写所有正确结论的序号)【考点】四边形综合题.【专题】压轴题.【分析】先求出∠BAE=45°,判断出△ABE 是等腰直角三角形,根据等腰直角三角形的性质可得AB=BE ,∠AEB=45°,从而得到BE=CD ,故①正确;再求出△CEF 是等腰直角三角形,根据等腰直角三角形的性质可得CG=EG ,再求出∠BEG=∠DCG=135°,然后利用“边角边”证明△DCG≌△BEG,得到∠BGE=∠DGC,由∠BGE<∠AEB,得到∠DGC=∠BGE<45°,∠DGF<135°,故②错误; 由于∠BGE=∠DGC,得到∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,故③正确;由△BGD是等腰直角三角形得到BD==a,求得S,△BDG,进而得出答案.过G作GM⊥CF于M,求得S△DGF【解答】解:∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴AB=BE,∠AEB=45°,∵AB=C D,∴BE=CD,故①正确;∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF是等腰直角三角形,∵点G为EF的中点,∴CG=EG,∠FCG=45°,∴∠BEG=∠DCG=135°,在△DCG和△BEG中,,∴△DCG≌△BEG(SAS).∴∠BGE=∠DGC,∵∠BGE<∠AEB,∴∠DGC=∠BGE<45°,∵∠CGF=90°,∴∠DGF<135°,故②错误;∵∠BGE=∠DGC,∴∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,故③正确; ∵=,∴设AB=2a ,AD=3a ,∵△DCG≌△BEG,∵∠BGE=∠DGC,BG=DG ,∵∠EGC=90°,∴∠BGD=90°, ∵BD==a , ∴BG=DG=a , ∴S △BDG =×a×a=a 2 ∴3S △BDG =a 2, 过G 作GM⊥CF 于M ,∵CE=CF=BC﹣BE=BC ﹣AB=a , ∴GM=CF=a ,∴S △DGF =?DF?GM=×3a×a=a 2,∴13S △DGF =a 2,∴3S △BDG =13S △DGF ,故④正确.故答案为:①③④.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.三、解答题(本大题共6小题,共60分,请将必要的文字说明、计算过程或推理过程写出)21.(8分)(2015?包头)某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为40 人,扇形统计图中“良好”所对应的圆心角的度数为162°;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)合格人数除以所占的百分比即可得出所调查的男生总人数,用良好的人数除以总人数再乘以360°即可得出“良好”所对应的圆心角的度数;(2)用40﹣2﹣8﹣18即可;(3)用480乘以良好所占的百分比即可.【解答】解:(1)8÷20%=40(人),18÷40×360°=162°;(2)“优秀”的人数=40﹣2﹣8﹣18=12,如图,(3)“良好”的男生人数:×480=216(人),答:全年级男生体质健康状况达到“良好”的人数为216人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(8分)(2015?包头)为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据已知和tan∠ADC=,求出AC,根据∠BDC=45°,求出BC,根据AB=AC﹣BC求出AB;(2)根据cos∠ADC=,求出AD,根据cos∠BDC=,求出BD.【解答】解:(1)在Rt△ADC中,∵∠ADC=60°,CD=3,∵tan∠ADC=,∴AC=3?tan60°=3,在Rt△BDC中,∵∠BDC=45°,∴BC=CD=3,∴AB=AC﹣BC=(3﹣3)米.(2)在Rt△ADC中,∵cos∠ADC=,∴AD===6米,在Rt△BDC中,∵cos∠BDC=,∴BD===3米.【点评】本题考查的是解直角三角形的知识,掌握仰角的概念和锐角三角函数的概念是解题的关键.23.(10分)(2015?包头)我市某养殖场计划购买甲、乙两种鱼苗共700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元,相关资料表明:甲、乙两种鱼苗的成活率分别为85%和90%.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)若要使这批鱼苗的总成活率不低于88%,则甲种鱼苗至多购买多少尾?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;(2)设购买甲种鱼苗z尾,乙种鱼苗(700﹣z)尾,根据题意列不等式求出解集即可;(3)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x 之间的函数关系式,运用一次函数的性质解决问题.【解答】解:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设购买甲种鱼苗z尾,乙种鱼苗(700﹣z)尾,列不等式得:85%z+90%(700﹣z)≥700×88%,解得:z≤280.答:甲种鱼苗至多购买280尾.(3)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.【点评】本题主要考查了二元一次方程组、一元一次不等式以及一次函数应用问题,审清题意,找到等量或不等关系是解决问题的关键.24.(10分)(2015?包头)如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF?DB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.【考点】切线的判定;相似三角形的判定与性质.【专题】证明题.【分析】(1)根据圆周角定理即可得出∠EAB+∠EBA=90°,再由已知得出∠ABE+∠CBE=90°,则CB⊥AB,从而证得BC是⊙O 的切线;(2)通过证得△DEF∽△DBE,得出相似三角形的对应边成比例即可证得结论.(3)连接DA、DO,先证得OD∥BE,得出=,然后根据已知条件得出===,求得PD=4,通过证得△PDA∽△POD,得出=,设OA=x,则PA=x,PO=2x,得出=,解得OA=2.【解答】(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠EDB=∠EAB,∠BDE=∠CBE,∴∠EAB=∠CBE,∴∠ABE+∠CBE=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,=,∴∠DEA=∠DBE,∵∠EDB=∠BDE,∴△DEF∽△DBE,∴=,∴DE2=DF?DB;(3)解:连接DA、DO,。

2015学年内蒙古呼和浩特中考数学年试题

2015学年内蒙古呼和浩特中考数学年试题

数学试卷 第1页(共6页)数学试卷 第2页(共6页)数学试卷 第3页(共6页)绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24}A x x =<<,{|(1)(3)0}B x x x =--<,则A B =( )A .1,3()B .1,4()C .2,3()D .2,4()2.若复数z 满足z 1i-=i ,其中i 为虚数单位,则z=( )A .1i -B .1i +C .1i --D .1i -+ 3.设0.60.6a =, 1.50.6b =,0.61.5c =,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a4.要得到函数πsin(4)3y x =-的图象,只需要将函数sin 4y x =的图象( )A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位5.若m ∈R ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是( )A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤C .若方程20x x m +-=没有实根,则0m >D .若方程20x x m +-=没有实根,则0m ≤6.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:甲 乙 9 8 6 1 1 2 38 9 0 1 2①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( )A .①③B .①④C .②③D .②④7.在区间[0,2]上随机地取一个数x ,则事件“1211log (12x -+≤≤”发生的概率为( )A .34 B .23 C .13D .148.若函数21()2x x f x a+=-是奇函数,则使()3f x >成立的x 的取值范围为( )A .(,1)-∞-B .0,1-()C .01,()D .(1,)+∞9.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )AB C . D .10.设函数3, 1,()2, 1.x x b x f x x -⎧=⎨⎩<≥若5(())46f f =,则b =( )A .1B .78C .34 D.12第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.执行如图所示的程序框图,若输入的x 的值为1,则输出的y 的值是_________.12.若x ,y 满足约束条件131y x x y y -⎧⎪+⎨⎪⎩≤,≤,≥,则z =x +3y 的最大值为_______.13.过点P 作圆221x y +=的两条切线,切点分别为A ,B ,则PA PB =________.14.定义运算“⊗”:22(,,0)x y x y x y xy xy-⊗=∈≠R .当0x >,0y >时,(2)x y y x⊗+⊗的最小值为__________.15.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为___________.---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------------- 姓名________________ 准考证号_____________数学试卷 第4页(共6页)数学试卷 第5页(共6页)数学试卷 第6页(共6页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230(Ⅰ)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学1A ,2A ,3A ,4A ,5A ,3名女同学1B ,2B ,3B .现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.17.(本小题满分12分)ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =,sin()A B +=ac =sin A 和c 的值.18.(本小题满分12分)如图,三棱台DEF—ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (Ⅰ)求证:BD ∥平面FGH ;(Ⅱ)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .19.(本小题满分12分)已知数列{}n a 是首项为正数的等差数列,数列11{} n n a a + 的前n 项和为21n n +.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()1 2n a n n b a =+ ,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数()()ln f x x a x =+,2()x x g x e=,已知曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由; (Ⅲ)设函数()min{()()}(min{},m x f x g x p q p q =,,表示中的较小值),求m (x )的最大值.21.(本小题满分14分)平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a bC +=>>:的离心率为,且点12在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222144E x y a b+=:,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ △面积的最大值.。

2015年内蒙古呼和浩特市中考一模数学试卷(解析版)

2015年内蒙古呼和浩特市中考一模数学试卷(解析版)

2015年内蒙古呼和浩特市中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6B.6C.﹣6D.3或﹣3 3.(3分)为了实现医药卫生改革的目标,经初步测算,2011﹣2015年各级政府一共需要投入人民币8500亿元,这个数据用科学记数法可表示为()A.8.5×1012元B.8.5×1010元C.0.85×1012元D.8.5×1011元4.(3分)已知一组数据1,7,10,8,x,6,0,3,若,则x应等于()A.6B.5C.4D.25.(3分)一个锐角的余角加上90°,就等于()A.这个锐角的两倍数B.这个锐角的余角C.这个锐角的补角D.这个锐角加上90°6.(3分)方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.D.(x+3)2=4 7.(3分)如图,是一个几何体的三视图(主视图中的弧线是半圆),则该几何体的体积是()A.πB.2πC.4πD.8π8.(3分)下列运算正确的是()A.2a﹣2=B.(﹣a)9÷a3=a6C.D.(a2﹣a+)9.(3分)已知平行四边形ABCD的对角钱AC与BD相交于点O,AB⊥AC,若AB=2,AC=8,则对角线BD的长是()A.2B.2C.4D.410.(3分)已知k1<0<k2,则函数y=k1x和y=的图象大致是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)函数y=中,自变量x的取值范围是.12.(3分)从1,2,3,4中任意取出两个不同的数,其和为5的概率是.13.(3分)一个等腰但不等边的三角形,它的角平分线、高、中线的总条数为条.14.(3分)分解因式:2a3﹣8a=.15.(3分)已知圆锥的母线长为8,其侧面展开图是半圆,则这个圆锥的高为.16.(3分)已知a,b是方程x2+2x﹣5=0的两个实数根,则a2﹣ab+3a+b的值为.三、解答题(共9小题,满分72分)17.(10分)计算(1)解方程组(2)计算:(1﹣)0﹣tan30°+()﹣2.18.(7分)在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.19.(5分)已知不等式组的解集包含两个正整数,求a的取值范围.20.(6分)如图,要测量小山上电视塔BC的高度,在山脚下点A测得:塔顶B 的仰角为∠BAD=40°,塔底C的仰角为∠CAD=30°,AC=200米,求电视塔BC的高.(结果用含非特殊角的锐角三角函数及根式表示即可)21.(6分)某班计划组织部分同学义务植树180棵,由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了50%,结果每人比原计划少栽了2棵树,问实际有多少人参加了这次植树活动?22.(10分)某校初一年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5;2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图(在图中标出各组人数);(2)课堂发言次数的中位数落在哪个组;(3)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数.23.(7分)已知:如图.在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求△BOD的面积.24.(9分)如图,已知P A与圆O相切于点A,直径BC⊥OP,线段OP与圆O 交于点E,连接AB交PO于点D.(1)求证:∠P AD=∠ACB;(2)求证:AC•AP=AD•OC.25.(12分)已知二次函数y=kx2﹣4kx+3k(k≠0)(1)当k=1时,求该抛物线与坐标轴的交点的坐标;(2)当0≤x≤3时,求y的最大值;(3)若直线y=2k与二次函数的图象交于E、F两点,问线段EF的长度是否是定值?如果是,求出其长度;如果不是,请说明理由.2015年内蒙古呼和浩特市中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项B正确;∵选项C中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项D不正确.故选:B.2.(3分)数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6B.6C.﹣6D.3或﹣3【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选:A.3.(3分)为了实现医药卫生改革的目标,经初步测算,2011﹣2015年各级政府一共需要投入人民币8500亿元,这个数据用科学记数法可表示为()A.8.5×1012元B.8.5×1010元C.0.85×1012元D.8.5×1011元【解答】解:8500亿=8500 0000 0000=8.5×1011,故选:D.4.(3分)已知一组数据1,7,10,8,x,6,0,3,若,则x应等于()A.6B.5C.4D.2【解答】解:(1+7+10+8+x+6+0+3)÷8=535+x=40,x=5.故选:B.5.(3分)一个锐角的余角加上90°,就等于()A.这个锐角的两倍数B.这个锐角的余角C.这个锐角的补角D.这个锐角加上90°【解答】解:设这个锐角是x度,则它的余角是(90﹣x)度.那么90﹣x+90=180﹣x.而x+(180﹣x)=180.故选:C.6.(3分)方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.D.(x+3)2=4【解答】解:由原方程移项,得x2+6x=5,等式两边同时加上一次项系数一半的平方,即32,得x2+6x+9=5+9,∴(x+3)2=14.故选:A.7.(3分)如图,是一个几何体的三视图(主视图中的弧线是半圆),则该几何体的体积是()A.πB.2πC.4πD.8π【解答】解:观察该几何体的三视图发现:该几何体为圆柱的一半,其地面半径为1,高为2,故其体积为π×12×2=π,故选:A.8.(3分)下列运算正确的是()A.2a﹣2=B.(﹣a)9÷a3=a6C.D.(a2﹣a+)【解答】解:A、,故错误;B、(﹣a)9÷a3=﹣a6,故错误;C、,故错误;D、正确;故选:D.9.(3分)已知平行四边形ABCD的对角钱AC与BD相交于点O,AB⊥AC,若AB=2,AC=8,则对角线BD的长是()A.2B.2C.4D.4【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=AC=4,OB=OD=BD,∵AB⊥AC,∴∠BAO=90°,∴OB===2,∴BD=2OB=4;故选:D.10.(3分)已知k1<0<k2,则函数y=k1x和y=的图象大致是()A.B.C.D.【解答】解:∵k1<0,∴函数y=k1x的图象是过原点,经过第二、四象限的直线,∵0<k2,∴y=的图象是在第一、三象限的双曲线.故选:A.二、填空题(共6小题,每小题3分,共18分)11.(3分)函数y=中,自变量x的取值范围是x≠2.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.12.(3分)从1,2,3,4中任意取出两个不同的数,其和为5的概率是.【解答】解:列表得:∵共有12种等可能的结果,和为5的有4种,∴P(和为5)==.13.(3分)一个等腰但不等边的三角形,它的角平分线、高、中线的总条数为7条.【解答】解:等腰但不等边的三角形底边上的角平分线、中线、高线三线重合成一条;腰上的三条线不重合,因而共有7条线,故答案为:714.(3分)分解因式:2a3﹣8a=2a(a+2)(a﹣2).【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2),故答案为:2a(a+2)(a﹣2)15.(3分)已知圆锥的母线长为8,其侧面展开图是半圆,则这个圆锥的高为4.【解答】解:∵圆锥的侧面展开图是半径为8的半圆,∴轴截面是边长为8的等边三角形,∴圆锥的高为h=8×sin60°=4,故答案为:4.16.(3分)已知a,b是方程x2+2x﹣5=0的两个实数根,则a2﹣ab+3a+b的值为8.【解答】解:∵a是方程x2+2x﹣5=0的实数根,∴a2+2a﹣5=0,∴a2=5﹣2a,∴a2﹣ab+3a+b=5﹣2a﹣ab+3a+b=a+b﹣ab+5,∵a,b是方程x2+2x﹣5=0的两个实数根,∴a+b=﹣2,ab=﹣5,∴a2﹣ab+3a+b=﹣2+5+5=8.故答案为8.三、解答题(共9小题,满分72分)17.(10分)计算(1)解方程组(2)计算:(1﹣)0﹣tan30°+()﹣2.【解答】解:(1)组,化简得:,②﹣①得:4x=8,解得:x=2,把x=2代入①得:y=3,所以方程组的解为:;(2)(1﹣)0﹣tan30°+()﹣2=1﹣×+9=1﹣1+9=9.18.(7分)在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.【解答】(1)证明:∵CE∥BF,∴∠CED=∠BFD,∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,∴△BDF≌△CDE(AAS);(2)四边形BFCE是矩形,证明:∵△BDF≌△CDE,∴DE=DF,∵BD=DC,∴四边形BFCE是平行四边形,∵BD=CD,DE=BC,∴BD=DC=DE,∴∠BEC=90°,∴平行四边形BFCE是矩形.19.(5分)已知不等式组的解集包含两个正整数,求a的取值范围.【解答】解:,∵解不等式①得:x>,解不等式②得:x≤a,∴不等式组的解集为<x≤a,∵不等式组的解集包含两个正整数,∴4≤a<5,即a的取值范围为:4≤a<5.20.(6分)如图,要测量小山上电视塔BC的高度,在山脚下点A测得:塔顶B 的仰角为∠BAD=40°,塔底C的仰角为∠CAD=30°,AC=200米,求电视塔BC的高.(结果用含非特殊角的锐角三角函数及根式表示即可)【解答】解:在Rt△ADC中,∠ADC=90°,∠CAD=30°,AC=200米.∴CD=100米,∴AD=AC•cos∠CAD=200×=100,在Rt△ADB中,∠ADB=90°,∠BAD=40°,AD=100,∴BD=AD•tan∠BAD=100tan40°,∴BC=BD﹣CD=100tan40°﹣100(米).21.(6分)某班计划组织部分同学义务植树180棵,由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了50%,结果每人比原计划少栽了2棵树,问实际有多少人参加了这次植树活动?【解答】解:设原计划有x人参加植树活动,则实际参加人数为1.5x人,根据题意得:﹣=2,解得x=30,经检验:x=30是方程的解,则实际参加这次植树活动的人数是:1.5x=45(人).答:实际有45人参加了这次植树活动.22.(10分)某校初一年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5;2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图(在图中标出各组人数);(2)课堂发言次数的中位数落在哪个组;(3)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数.【解答】解:(1)∵B、E两组发言人数的比为5:2,E组发言人数占8%,∴B组发言的人数占20%,由直方图可知B组人数为10人,所以,被抽查的学生人数为:10÷20%=50人,∴样本容量为50人.F组人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×(1﹣90%)=50×10%,=5(人),C组人数为:50×30%=15(人),E组人数为:50×8%=4人补全的直方图如图;(2)发言次数的中位数在C组.(3)F组发言的人数所占的百分比为:10%,所以,估计全年级在这天里发言次数不少于12次的人数为:500×(8%+10%)=90(人).23.(7分)已知:如图.在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求△BOD的面积.【解答】解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E.tan∠ABO=.∴CE=3.(1分)∴点C的坐标为C(﹣2,3).(2分)设反比例函数的解析式为y=,(m≠0)将点C的坐标代入,得3=.(3分)∴m=﹣6.(4分)∴该反比例函数的解析式为y=﹣.(5分)(2)∵OB=4,∴B(4,0).(6分)∵tan∠ABO=,∴OA=2,∴A(0,2).设直线AB的解析式为y=kx+b(k≠0),将点A、B的坐标分别代入,得.(8分)解得.(9分)∴直线AB的解析式为y=﹣x+2.反比例函数的解析式y=﹣和直线AB的解析式为y=﹣x+2联立可得交点D 的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2.故△BOD的面积为2.(10分).24.(9分)如图,已知P A与圆O相切于点A,直径BC⊥OP,线段OP与圆O 交于点E,连接AB交PO于点D.(1)求证:∠P AD=∠ACB;(2)求证:AC•AP=AD•OC.【解答】(1)证明:连接OA,∵P A与圆O相切于点A,∴OA⊥AP,∴∠OAD+∠DAP=90°,∵BC是⊙O的直径,∴∠OAD+∠OAC=90°,∵OC=OA,∴∠ACB=∠OAC,∴∠ACB=∠P AD;(2)解:由(1)知∠P AD=∠ACB,∵OP⊥BC,∴∠COA+∠AOP=90°,∵∠AOP+∠P=90°,∴∠COA=∠P,∴△ADP∽△COA,∴,∴AC•AP=AD•OC.25.(12分)已知二次函数y=kx2﹣4kx+3k(k≠0)(1)当k=1时,求该抛物线与坐标轴的交点的坐标;(2)当0≤x≤3时,求y的最大值;(3)若直线y=2k与二次函数的图象交于E、F两点,问线段EF的长度是否是定值?如果是,求出其长度;如果不是,请说明理由.【解答】解:(1)当k=1时,该抛物线为:y=x2﹣4x+3,x2﹣4x+3=0,解得:x1=1,x2=3,抛物线与x轴的交点的坐标为(1,0),(3,0),当x=0时,y=3,抛物线与y轴的交点的坐标为(0,3);(2)对称轴为:x=﹣=﹣=2,当k>0时,x=0时,y有最大值3k,当k<0时,y的最大值即顶点的纵坐标,为=﹣k,(3),解得:,,E(2+,2k),F(2﹣,2k),EF=2,∴EF为定值.。

呼和浩特中考数学试题及答案.doc

呼和浩特中考数学试题及答案.doc

2015年呼和浩特中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

内蒙古呼和浩特市2015年中考数学试题(含详解)

内蒙古呼和浩特市2015年中考数学试题(含详解)

2015年呼和浩特市中考数学详解一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是A.-3℃B.15℃C.-10℃D.-1℃考点分析:有理数生活常识数轴初级建模思想详解:选C首先,有理数考点是送分的,本次考点比较有意思,稍微有一点常识的同学都能答对。

这里“-”读“零下”。

为什么提到数轴呢?马上升初三的学生可能已经忘记数轴是如何定义方向的,教材中“一般规定水平向右或者竖直向上为数轴正方向。

”那么家中挂在墙上的温度计就可以看成是一个竖直向上的数轴。

为什么说到建模思想呢?首先来源于数轴0点的定义,数轴0点的另一个作用就是“基准”。

很多同学到了初三早就忘了这个基准,基准是很多数学思想及物理思想中的一个非常重要的概念,类似温度的还有海拔高度。

温度的基准是一个标准大气压下水恰好结冰的温度值,即0℃,高于这个温度取正数(一般省略正号),低于这个温度取负数。

海拔高度更容易理解,即将海平面定为0,单位是米,比海平面高的取正值,比海平面低的取负值。

只有将温度值具体数量化后,尤其是负值的运用,才便于建立与温度有关的数学模型,学过化学后同学知道还有个绝对零度值,但这个绝对零度值在初中阶段也是依靠摄氏温度方式定义的。

2.下列图形中,既是轴对称图形,又是中心对称图形的是A. B. C. D.考点分析:轴对称中心对称详解:选A轴对称是一个对折后能完全重合的实际意义上的概念,而中心对称是旋转180°后能重合的实际意义上的概念。

所以,我们通过大体上目测,基本可以上可以挑出我们想要的。

很明显,选项A,C,D是轴对称图形,其中C选项中的梅花图案只有一个对称轴,你能数数选项D中的图形对称轴有几个?选项A,B是中心对称图形。

3.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为A. 70°B. 100°C. 110°D. 120°考点分析:平行与相交——角的关系详解:选C为了便于表述,将AB与CD的交点命名为F点,则∠1就是∠AFC。

2015学年内蒙古呼和浩特中考数学年试题答案

2015学年内蒙古呼和浩特中考数学年试题答案
r
数学试卷 第 4 页(共 6 页)
数学试卷 第 5 页(共 6 页)
数学试卷 第 6 页(共 6 页)
数学试卷 第 3 页(共 6 页)
第Ⅱ卷(非选择题 共 100 分)
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分.把答案填在题中的横线上.
11. lg 5 2lg 2 (1)1 __________.
2
2
12. 在△ABC 中, AB 6 , A 75 , B 45 ,则 AC __________.
A. {1,2,5,6}
()
B. {1}
C. {2}

D. {1,2,3,4}
数学试卷 第 1 页(共 6 页)
3. 设 p:x 3 , q:1 x 3 ,则 p 是 q 成立的
A. 充分必要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分也不必要条件
4. 下列函数中,既是偶函数又存在零点的是 A. y lnx
(Ⅱ)设点 C 的坐标为 (0, b) , N 为线段 AC 的中点,证明:MN AB.
21.(本小题满分 13 分) 已知函数 f (x) ax (a 0, r 0) . (x r)2
(Ⅰ)求 f (x) 的定义域,并讨论 f (x) 的单调性; (Ⅱ)若 a 400 ,求 f (x) 在 (0,) 内的极值.

题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡
背面规定的地方填写姓名和座位号后两位.
2. 答第Ⅰ卷时,每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.如
需改动,用橡皮擦干净后,再选涂其他答案标号.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年呼和浩特市中考数学详解一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是A.-3℃B.15℃C.-10℃D.-1℃考点分析:有理数生活常识数轴初级建模思想详解:选C首先,有理数考点是送分的,本次考点比较有意思,稍微有一点常识的同学都能答对。

这里“-”读“零下”。

为什么提到数轴呢?马上升初三的学生可能已经忘记数轴是如何定义方向的,教材中“一般规定水平向右或者竖直向上为数轴正方向。

”那么家中挂在墙上的温度计就可以看成是一个竖直向上的数轴。

为什么说到建模思想呢?首先来源于数轴0点的定义,数轴0点的另一个作用就是“基准”。

很多同学到了初三早就忘了这个基准,基准是很多数学思想及物理思想中的一个非常重要的概念,类似温度的还有海拔高度。

温度的基准是一个标准大气压下水恰好结冰的温度值,即0℃,高于这个温度取正数(一般省略正号),低于这个温度取负数。

海拔高度更容易理解,即将海平面定为0,单位是米,比海平面高的取正值,比海平面低的取负值。

只有将温度值具体数量化后,尤其是负值的运用,才便于建立与温度有关的数学模型,学过化学后同学知道还有个绝对零度值,但这个绝对零度值在初中阶段也是依靠摄氏温度方式定义的。

2.下列图形中,既是轴对称图形,又是中心对称图形的是A. B. C. D.考点分析:轴对称中心对称详解:选A轴对称是一个对折后能完全重合的实际意义上的概念,而中心对称是旋转180°后能重合的实际意义上的概念。

所以,我们通过大体上目测,基本可以上可以挑出我们想要的。

很明显,选项A,C,D是轴对称图形,其中C选项中的梅花图案只有一个对称轴,你能数数选项D中的图形对称轴有几个?选项A,B是中心对称图形。

3.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为A. 70°B. 100°C. 110°D. 120°考点分析:平行与相交——角的关系详解:选C为了便于表述,将AB与CD的交点命名为F点,则∠1就是∠AFC。

两种方法推进此题:法一:∵CD∥BE,∴∠AFD=∠B,又∵∠1+∠AFD=180°,∴∠B=∠AFD=180°-∠1=180°-70°=110°;法二:∵CD∥BE,∴∠BFD+∠B=180°,又∵∠BFD=∠1,∴∠B=180°-∠BFD=180°-∠1=180°-70°=110°。

4.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为A. 12 B.13 C.14 D.16考点分析:概率初步分类讨论能力(穷举法)详解:选A老曾一般喜欢用列表法,便于检查,其实列表法与树状图本质是一样的。

为什么初中教材这部分内容叫“概率初步”,而不是叫概率呢?因为概率是个比值,是应该算出来的,但现阶段我们是列出所有组合,找到符合题问所要求的情形后,把符合要求情形的数量数出来的,再比上所有组合的总数。

真的是初步,所以只要你会列表法,稍微细心些,分数很容易到手。

如果本题不列表或不画树状图,仅凭感觉,你很可能选择B或者C,因为红球多。

下面是两个风格的表格,第一个为了形象(好看),但写作业、考试,都不建议用,第二个是我们考试时呈现到卷面上的,现在考的是选择题,所以你在草稿上的表格可以随意一些,但如果出现在解答题中,你还是要学习一个格式。

组合 ● ● ● ● 符合?1 ● ●2 ● ●3 ● ● 是4 ● ●5 ● ● 是 6●●是注意:列表法的核心思想就是穷举,当对象是由有限个元素构成的集合时,把所有对象一一列举出来,再对其一一进行研究,选出符合要求的对象,这里对象是指小球所有的可能组合的排列。

红红红黄一红一黄?1 √ √ 否2 √ √ 否3 √ √ 是4 √ √ 否5 √ √ 是 6√√是则两球恰好是一个黄球和一个红球的概率为P (一红一黄)=63=21 5.如果两个变量x 、y 之间的函数关系如图所示,则函数值y 的取值范围是A. -3≤y ≤3 B . 0≤y ≤2 C . 1≤y ≤3 D . 0≤y ≤3 考点分析:函数的基本定义 审题能力 详解:选D老曾写了个“审题能力”,因为之前我们做大量类似的题目,都是问自变量x 的取值范围,而且选项A 还配合这个审题错误带来的结论。

如果看清楚这个,你很容易找到正确答案。

如果你像老曾一样足够细心地审题观图,会发现配图有点小瑕疵,就是在纵轴上2的下方大约1的位置,还标有一个圆点,在初中阶段圆点的含义很明确,就是函数可以取到这一点,那么对这个函数而言,当x =0时,对应的是两个y 值,一个是2,一个貌似是1。

可能是编辑卷面的工作人员没有擦掉这个点。

哎,老曾以前是做编辑的,所以喜欢挑刺。

6.下列运算,结果正确的是A. 224m m m +=B. 22211( )m m m m+=+ C. 2224(3)6mn m n = D. 2222m m n mn n÷=考点分析:幂相关运算 排除法 详解:选D逐个作下去,如果你概念稍微扎实一些,很容易发现前三个都是错误的,不用犹豫,选择最后一个。

选项A ,两边同除m 2得m 2=2,显然只有两个互为相反数的数才能使等号成立;选项B ,你把左边乘开后,合并同类项后,得2=0;选项C ,看常数的运算即可。

这题目没啥作头,送分送到家。

7.如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为A. 12B. 98C. 2D. 4 考点分析:折叠性质 正方形性质 等腰直角三角形性质 推理能力 动手操作 详解:选C用你手头的草稿纸和直尺完全可以做出一个8厘米×6厘米的矩形,然后折两下后沿着EF 画条线,之后再展开,把折痕用笔画上直线,这样可能容易些。

第一次折叠:折叠后的∠ADE 就是折叠前的∠D ,折叠后的AD 就是折叠前的AD ,折叠后新形成的DE 是折叠前DC 的一段,且这段长度等于BC ,也就是等于AD ,综上△ADE 是等腰直角三角形,继而推出∠AED =45°,EC =DC -DE = AB -AD =8-6=2。

第二次折叠:折叠后的∠C 还是折叠前的∠C ,折叠后的EC 等于折叠前的EC ,折叠后的∠AED 等于折叠前的∠AED ,所以∠AEC =∠CED -∠AED =90°-45°=45°,所以△CEF 还是一个等腰直角三角形,所以该三角形的面积为:12 EC 2=2。

其实本题难度比较低,你几何稍微好一点,用眼睛盯着看就能顺推出答案。

8.以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额 考点分析:统计 直方图 折线图 数形结合能力 审题能力 详解:选B题目中的信息很少,就是题目中“四个同学”这个数量给的稍微有些混淆,你直接理解为“下列四个说法中”就可以了。

先看直方图,直方图中的销售总额是手机店里所有品牌的手机的销售总金额,包括三星、金立、苹果、诺基亚等。

再看折线图,图中的百分比是指三星手机销售额与当月所有品牌的手机的销售总金额比值。

看选项A 中的65万,从直方图中看,65万元是4月份所有品牌的手机总销售额,包括苹果、三星、魅族、诺基亚等手机,而不是三星手机的在当月的销售额。

再看选项B 、C 、D ,都是在比较3月份和4月份三星手机销售金额。

结合两个统计图,可知,3月份三星手机的销售金额为:60万×18﹪=10.8万,而4月份三星手机的销售金额为:65万×17﹪=11.05万,因为11.05>10.8万,所以,4月份三星手机销售额比3月份有所上升。

9.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为A. 236πB. 136πC. 132πD. 120π 考点分析:三视图 圆柱体积 空间想象能力 详解:选B本题目与以前的题目不同之处在于,没有立体图,需要计算圆柱的体积。

另外,本题中的物体摆放处于非稳态状态——几何体可以滚动。

至于是否需要区分哪个图是什么视图吗?各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图不用。

从右上面图看,是两个同心圆,所以该几何体是两个圆柱体的组合,再从左面上下的两个视图看,首先没有虚线,所以圆柱体没有掏空,其次可以看到是两个圆柱体的叠加。

计算就很简单,分别算出两个圆柱体的体积。

大圆柱体的体积为42π×8=128π,小圆柱体的体积为22π×2=8π,所以该几何体的体积为128π+8π=136π。

老曾来变一下题目吧。

如右图,老曾在左面的两个视图中增加虚线,按照纯理论这个几何体是做不出来的,本修改主要是开拓你的眼界。

也只有这样修改过,这个题目的难度才会稍微升级一下难度,也勉强适合这个位置的题目难度。

体积应该是之前算下的128π+8π=136π再减去一个掏空圆柱体的体积。

10.函数xx x y 22+=的图象为A. B. C. D.考点分析:函数的性质——图像 分类讨论思想 详解:选D如果你掌握了分类讨论思想,这道题就是白给分。

从四个选项的图像上,x 都取不到0点,所以0点就是本题中函数的一个分界线,因此需要讨论。

再看题目中的函数表达式,x 不能为0。

当x >0时,∣x ∣=x ,则原函数可以写为xxx y 22+=,继续化简后可得y =x +2,是一个标准的一次函数,这里x >0,这样干掉选项B 当x <0时,∣x ∣=-x ,则原函数可以写为xxx y -+=22,继而化简后可得y =-x -2,斜率为-1,截距为-2。

二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题卡规定的横线上,不需要解答过程)11.某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为__________元.考点分析:科学计数法 详解:4.1×106没啥说的,这是一个规定,你要记住,“×”之前的数字的绝对值一定是大于或等于1,而小于10。

12.分解因式:x 3-x =__________. 考点分析:分解因式 详解:x (x +1)(x -1)这是整个初中数学最明火执仗的考点,考点名称与题目名称一致,没有太高的技术含量和难度。

相关文档
最新文档