洞穿高考数学解答题核心考点-函数于导数4
函数与导数综合知识点总结

函数与导数综合知识点总结一、函数的概念与性质1. 函数的基本概念函数是一个从一个集合到另一个集合的映射规则。
通俗地说,函数就是一种输入与输出之间的对应关系。
函数通常用f(x)来表示,其中x是输入,f(x)是输出。
2. 函数的定义域与值域函数的定义域是指所有可能的输入值的集合,值域是指所有可能的输出值的集合。
在数学上,定义域和值域的概念非常重要,因为它们决定了函数的性质。
3. 函数的奇偶性如果对于函数f(x),有f(-x) = f(x),那么该函数是偶函数;如果对于函数f(x),有f(-x) = -f(x),那么该函数是奇函数。
奇偶函数具有一些特殊的对称性质,在积分和求导的时候非常有用。
4. 函数的周期性如果对于函数f(x),存在一个正数T,使得对所有的x,有f(x + T) = f(x),那么该函数是周期函数。
周期函数在数学建模和信号处理中有广泛的应用。
5. 函数的复合如果有两个函数f(x)和g(x),那么它们的复合函数就是f(g(x)),它是先对输入进行g(x)的处理,然后再对结果进行f(x)的处理。
复合函数在微积分中具有重要的地位。
6. 反函数如果一个函数f(x)的定义域和值域分别为A和B,那么如果存在另一个函数g(y),它的定义域和值域分别为B和A,并且对任意的x,有g(f(x)) = x,那么g(y)就是f(x)的反函数。
反函数在解方程和求逆矩阵等领域有重要应用。
二、导数的概念与性质1. 导数的定义给定函数f(x)和一点x,如果极限lim(h->0)[f(x + h) - f(x)]/h存在,那么这个极限就是函数f(x)在点x处的导数,用f'(x)或者dy/dx来表示。
导数衡量了函数在某个点处的变化率。
2. 导数的几何意义函数f(x)在点x处的导数f'(x)表示了函数曲线在点x处的切线斜率。
导数的几何意义可以帮助我们理解函数的变化规律。
3. 导数的计算有许多方法可以计算函数的导数,比如极限定义法、泰勒公式法、微分法等。
高考函数与导数知识点

高考函数与导数知识点在高考数学中,函数与导数是重要的考点之一。
理解和掌握函数与导数的知识对于解答各类函数与导数题目至关重要。
本文将对高考函数与导数的知识点进行详细论述,帮助同学们更好地应对考试。
1. 函数的概念与性质函数是数学中常见的概念,它描述了两个变量之间的关系。
通常用字母表示,其中一个变量称为自变量,另一个变量称为函数的值或因变量。
函数可以用方程、图形或解析式等形式表示。
函数的性质有很多,例如:奇偶性、单调性、周期性、有界性等。
了解这些性质对于解题非常有帮助。
同时,还需要掌握函数的基本运算、复合函数以及函数的反函数等概念和运算方法。
2. 导数的概念与计算方法导数是函数在某一点上的变化率或斜率。
它是函数微分学的基本概念之一。
导数的计算方法有很多,常见的有用定义法、用极限法和用基本导数法等。
要计算导数,首先需要了解导数的定义。
其次,掌握各类函数的导数公式,如幂函数、指数函数、对数函数、三角函数等的导数。
此外,还需要掌握导数的运算法则,例如和差法则、积法则、商法则等。
3. 函数与导数的关系函数与导数之间有着密切的联系,理解函数与导数的关系对于高考数学题目的解答至关重要。
首先,导数可以表征函数的变化趋势。
通过函数的导数值,可以判断函数在某一点上是递增还是递减,也可以分析函数的极值(最大值和最小值)。
其次,函数的导数也可以求出函数的切线方程。
通过求导并代入给定点的坐标,可以确定函数在该点的切线,进而得到切线的方程。
此外,通过函数的导数还可以判断函数的凹凸性。
函数的导数值的变化可以揭示函数的曲线是上凹还是下凹,从而确定函数的凹凸区间。
4. 应用题与解题技巧高考中,函数与导数的知识点经常会涉及到应用题。
这类题目结合了函数与导数的知识,考察学生对于函数与导数概念的理解和运用能力。
在解答应用题时,需要注意以下几个方面的技巧:(1) 确定函数的自变量和因变量,建立函数模型;(2) 利用导数求出函数的变化趋势,比如函数递增递减的区间、函数的最值等;(3) 根据问题中给出的条件,列方程并求解;(4) 检查解的合理性以及问题中是否有陷阱,注意解答方式和表述的准确性。
如何备考高考数学函数与导数部分重点知识点及解题思路

如何备考高考数学函数与导数部分重点知识点及解题思路高考数学是每位学生备战高考的关键科目之一,其中函数与导数部分作为数学的重点内容之一,需要我们充分理解其中的知识点和解题思路。
本文将详细介绍备考高考数学函数与导数部分的重点知识点和解题思路,帮助同学们在备考过程中更好地准备这一部分考试内容。
一、函数的基本概念与性质在备考高考数学函数与导数部分,首先要掌握函数的基本概念与性质。
函数是两个集合之间的一种对应关系,其中自变量和因变量之间存在确定的对应关系。
在学习函数的过程中,需要掌握函数的定义域、值域、图像和性质等相关概念。
在解题时,常用的函数有线性函数、二次函数、指数函数、对数函数等。
每种函数都有自己的特点和主要的解题方法。
在备考过程中,我们需要深入理解每种函数的定义及其特点,同时掌握它们的常用解题方法。
例如,对于一元一次方程,可以通过求解方程组或消元法来确定方程的解。
二、函数的运算与复合函数函数的运算与复合函数也是备考高考数学函数与导数部分的重点内容。
在函数的运算中,我们常遇到的有函数的加减乘除、复合函数的概念和求导法则等。
同学们要熟练掌握函数的运算方法,能够熟练解答相关题目。
复合函数是由两个或多个函数按照一定的顺序组成的新函数。
在解题时,常用的方法是利用函数之间的复合关系求导,根据链式法则将复合函数的导数转化为基本函数的导数。
通过反复练习和掌握相关的解题技巧,我们能够更好地应对高考中的相关题目。
三、导数的基本概念和运算规则导数是函数在某一点的变化速率,也是备考高考函数与导数部分需要掌握的重点内容之一。
在备考过程中,我们需要理解导数的定义和运算规则,并能够熟练计算导数。
导数的定义是函数变化率的极限值,也可以理解为函数曲线在某一点的切线斜率。
计算导数时,常用的方法有基本导数法则、导数的四则运算法则和复合函数求导法则等。
在备考过程中,我们要掌握这些法则的使用方法,能够熟练计算各种函数的导数。
四、函数的应用数学函数在实际问题中有着广泛的应用,备考高考数学函数与导数部分也需要理解其中的应用题。
2024高考数学函数与导数关系解读

2024高考数学函数与导数关系解读数学函数与导数是高中数学中重要的概念,深入理解它们之间的关系对于应对2024年高考数学考试至关重要。
本文将解读2024高考数学函数与导数之间的关系,帮助考生提高对这一知识点的理解。
1. 函数的定义函数是数学中一种重要的数学工具,它描述了两个变量之间的关系。
一个函数通常由定义域、值域和对应关系组成。
函数可以用符号表示,例如 y = f(x),其中 x 表示自变量,y 表示因变量,f(x) 表示函数的具体形式。
2. 导数的定义导数是函数求变化率的工具。
函数 f(x) 在某一点 x0 处的导数,表示了函数曲线在这一点的切线斜率。
导数的计算公式为 f'(x) =lim┬(Δx→0)(f(x+Δx)−f(x))/Δx。
导数可以表示函数在某一点的切线斜率、增减性以及函数在该点的变化趋势。
3. 函数与导数的关系函数与导数之间具有密切关系,导数可以帮助我们更好地理解函数的性质。
以下是在考试中经常会涉及到的函数与导数的关系:a. 函数的单调性:通过导数可以判断函数的单调性。
若导数 f'(x) > 0,则函数 f(x) 在该区间上是增函数;若导数 f'(x) < 0,则函数 f(x) 在该区间上是减函数。
b. 函数的极值点:通过导数可以找到函数的极值点。
若导数 f'(x) = 0,并且由增变减或由减变增,则该点为函数的极值点。
c. 函数的凹凸性:通过导数可以判断函数的凹凸性。
若导数 f''(x) > 0,则函数 f(x) 在该区间上是凹函数;若导数 f''(x) < 0,则函数 f(x) 在该区间上是凸函数。
4. 导数的计算求函数的导数是高考中常见的题型之一,以下是一些常见的函数求导法则:a. 常数函数法则:常数函数的导数为零。
b. 幂函数法则:y = x^n,则 y' = nx^(n-1)。
高考数学专题《函数与导数》解读

从新高考的考查情况来看,函数与导数一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点等问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查。
一般出现在选择题和填空题的后两题以及解答题中,难度较大,复习备考的过程中应引起重视。
通过导数研究函数的单调性、极值、最值问题,考查考生的分类讨论思想、等价转化思想以及数学运算、逻辑推理核心素养.1、研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (1)讨论分以下四个方面①二次项系数讨论;②根的有无讨论;③根的大小讨论;④根在不在定义域内讨论. (2)讨论时要根据上面四种情况,找准参数讨论的分类. (3)讨论完毕须写综述.2、研究函数零点或方程根的方法(1)通过最值(极值)判断零点个数的方法:借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点:①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法. 3、求与函数零点有关的参数范围的方法: 方程有实根函数的图象与轴有交点函数有零点.(1)参数分离法,构造新的函数,将问题转化为利用导数求新函数单调性与最值.(2)分类讨论法. 4、不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点()0f x =()y f x =x ()y f x =重难点06 函数与导数和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.恒成立问题的重要思路:(1)m≥f(x)恒成立⇒m≥f(x)max.(2)m≤f(x)恒成立⇒m≤f(x)min.存在性(有解)问题的重要思路:(1)存在m≥f(x) ⇒m≥f(x) min(2) 存在m≤f(x) ⇒m≤f(x) max.5、利用导数证明不等式f(x)>g(x)的基本方法:(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.无论不等式的证明还是解不等式,构造函数,运用函数的思想,利用导数研究函数的性质,达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.6、函数性质综合问题函数性质综合应用问题的常见类型及解题策略:(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.(4)应用奇函数图象关于原点对称,偶函数图象关于y轴对称.利用单调性比较大小、解不等式、研究函数的最值、函数单调性的讨论(含参)、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的;同时也要注意极值点偏移、双变量等热点问题。
高考数学函数与导数知识点

高考数学函数与导数知识点在高考数学中,函数与导数是重要的知识点。
理解和掌握这些知识点对于高考数学的学习非常关键。
本文将介绍函数与导数的基本概念、性质以及相关应用。
一、函数的基本概念函数是数学中一种重要的概念,定义如下:定义1:设A、B是两个非空集合,对于A中的每一个元素a,在B中都有唯一确定的元素b与之对应。
这样的对应关系称为函数,记作y=f(x)。
在函数的定义中,x是自变量,y是因变量,而f(x)则表示函数的值或函数表达式。
1.1 函数的表示方法函数可以通过多种方式来表示:1.1.1 函数的代数式表示:常用的代数式表示函数的方法有多项式函数、有理函数、指数函数、对数函数等。
1.1.2 函数的图像表示:通过绘制函数的图像,可以更直观地理解函数的性质。
1.1.3 函数的表格表示:将自变量与因变量的对应关系记录在表格中,方便观察函数的规律。
1.2 函数的性质函数具有以下一些基本性质:1.2.1 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
1.2.2 奇偶性:函数的奇偶性描述了函数关于y轴对称或关于原点对称的特点。
1.2.3 单调性:函数的单调性描述了函数在定义域内的增减趋势。
1.2.4 周期性:周期函数是一类具有周期性规律的函数,如正弦函数、余弦函数等。
二、导数的基本概念导数是函数的一个重要性质,用来描述函数在某一点的变化率。
导数的定义如下:定义2:设函数y=f(x)在点x0处有定义,当自变量x在x0的邻域内取得不同值时,对应的函数值f(x)也随之变化。
如果存在一个常数k,使得当x趋近于x0时,函数值的变化量与x-x0的差的比趋近于k,那么称函数y=f(x)在点x0处可导,常数k称为函数f(x)在点x0处的导数,记作f'(x0)。
2.1 导数的几何意义导数的几何意义可以从函数的图像中理解:2.1.1 函数的切线斜率:对于函数y=f(x),在点(x0, f(x0))处的切线的斜率就是函数在该点处的导数。
高考数学函数与导数知识点梳理

高考数学函数与导数知识点梳理在高考数学中,函数与导数是非常重要的基础知识点。
掌握好这些知识点,对于高考数学的备考和解题都至关重要。
下面将对高考数学函数与导数知识点进行梳理,帮助同学们更好地理解和掌握这些知识。
一、函数的概念和性质1. 函数的定义:函数是一种特殊的关系,它将一个集合中的每一个元素映射到另一个集合中的唯一元素。
2. 函数的符号表示:设函数为y=f(x),x是自变量,y是因变量。
3. 函数的性质:3.1 定义域:函数的自变量的取值范围。
3.2 值域:函数的因变量的取值范围。
3.3 奇偶性:函数关于y轴对称为偶函数,关于原点对称为奇函数,否则为非奇非偶函数。
二、常见函数类型1. 一次函数:y=ax+b,其中a、b为常数,a不为0。
2. 二次函数:y=ax^2+bx+c,其中a、b、c为常数,a不为0。
3. 幂函数:y=x^a,其中a为常数。
4. 指数函数:y=a^x,其中a为常数且a大于0且不等于1。
5. 对数函数:y=log_a(x),其中a为常数且a大于0且不等于1。
6. 三角函数:包括正弦函数、余弦函数、正切函数等。
7. 反三角函数:包括正弦反函数、余弦反函数、正切反函数等。
三、函数的图像与性质1. 函数的图像:函数的图像是函数在坐标平面上的表示,可通过描点法或作图工具绘制。
2. 函数的增减性与极值:函数在某个区间上递增时,图像是上升的;在某个区间上递减时,图像是下降的。
3. 函数的奇偶性与轴对称:函数的奇偶性与轴对称与函数的性质有关。
四、导数的概念和性质1. 导数的定义:函数在某一点的导数是该点切线的斜率。
2. 导数的符号表示:函数f(x)的导数表示为f'(x)或dy/dx或y'。
3. 导数的性质:3.1 导数存在性:函数在某一点可导意味着该点的左导数和右导数都存在,且相等。
3.2 导数与函数图像的关系:函数图像在导数不为零的点处有切线。
五、常见函数的导数1. 一次函数的导数:一次函数y=ax+b的导数为a。
高考导数压轴题-函数与导数核心考点(完美版)

题型二 单调型
1.主导函数需 “二次求导 ”型 I 不含参求单调区间
例
1.求函数
f
(x
)=
x(
ex
-
1)-
1 2x
2的单调区间
.
解: f(x)的定义域为 R f ′x()= ex(1+x)-1-x=(x+ 1)(ex+1)
令 f ′x()>0,得 x<- 1 或 x> 0;令 f ′x()<0,得- 1< x<0
所以切线方程为: y- 13x03+43=x02(x-x0),
由切线经过点
P(2,4),可得
4-
13x03+
4 3=
x02(2-
x0),整理得:
x03-
3x02+
4
= 0,解得 x0=- 1 或 x0=2
当 x0=- 1 时,切线方程为: x-y+ 2= 0;
当 x0=2 时,切线方程为: 4x-y-4=0. 例 2.求 f(x)=x3- 4x2+5x-4 过点 (2,- 2)的切线方程 . 解:设切点为 (x0,x03- 4x02+5x0-4),则切线斜率 f ′x(0)= 3x02-8x0+5,
点 P 在曲线上 切点
点 P 不在曲线上 不是切点
点 P 在曲线上 不确定是切点
O
P
O
O
P
P
Step1 设切点为 (x0,f(x0)),则切线斜率 f ′x(0),切线方程为:
y- f(x0)=f ′x(0)(x- x0)
Step2 因为切线过点 (a, b),所以 b-f(x0)= f ′x(0)(a-x0),解得 x0=x1 或 x0=x2
∵切线经过点 P(1,m), ∴ m- (x03-4x02+5x0-4)= (3x02- 8x0+ 5) (1-x0), 即:- 2x03+ 3x02-3-m=0,即 m=- 2x03+3x02-3 ∵过点 A(1, m)(m≠2可) 作 f(x)=x3- 3x 的三条切线, ∴方程 m=- 2x03+ 3x02-3,有三个不同的实数根 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核心考点四 利用导数证明不等式
思路提示:构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,而构造函数是利用导数证明不等式的关键。
构造辅助函数的一般方法及解题程序如下: (1) 移项(有时需作简单的恒等变形),使不等式的一端为“0”,另一端即为所作的辅助
函数()f x
(2) 求'()f x ,并判断()f x 在指定区间的单调性 (3) 求出区间的端点的函数值,作比较即得所证。
【例】已知函数()ln(1)1x f x x x
=+-+
(1)求()f x 的极小值
(2)若,0a b >,求证:ln ln 1b a b a -≥-
【解析】(1)()f x 的定义域为(1,)-+∞,2
'()(1)
x f x x =+
当10x -<<时,'()0f x <;当0x >时,'()0f x > 故当0x =时,()f x 取得极小值(0)0f =
(2)由(1)可知,1x >-时,()f x 的极小值(0)0
f =
也是最小值,故()l n (1)
01x f x x x =+-≥+,即l n (1)1x
x x
+≥
+,可得1l n
(0)x x x x
-≥>
,
即1
l n 1(
0)
x x x
≥-> 因为,0a b >,
0b a
>,所以1ln
11a b a b
a
b
≥-
=-
,即ln ln 1b a b a
-≥-
【例】已知函数()ln f x x =
(1)求函数()()g x f x x =-的最大值 (2)当0a b <<时,求证:2
2
2()()()a b a f b f a a b
-->+
【解析】(1)()ln(1)(1)g x x x x =+->-
1'()111
x g x x
x =
-=-
++
当10x -<<时,'()0g x >;当0x >时,'()0g x <
故当0x =时,()g x 取得最大值(0)0g = (2)由(1)知,ln(1)(1)x x x +≤>-
()()ln ln ln
ln
ln(1)b a a b a b b a f b f a b a a b
b
b a
----=-==-=-+≥-
=
又因为0a b <<,故222a b ab +>,则2
2
12a b a b
>
+,所以
2
2
()2()b a a b a b
a b
-->
+
故2
2
2()()()a b a f b f a a b
-->
+
【练习1】已知()ln f x x =,()()a g x x a R x
=+
∈
(1)若1x ≥时,()()f x g x ≤恒成立,求实数a 的取值范围 (2)当*,2n N n ∈≥时,证明:
ln 2ln 3ln 1
341n n n
⋅⋅⋅<+ 【练习2】(2004全国II )已知()ln(1),()ln f x x x g x x x =+-=,设0a b <<,求证:
0()()2(
)()ln 22
a b g a g b g b a +<+-<-。