整式的乘除

合集下载

专题04 整式的乘除(原卷版)

专题04 整式的乘除(原卷版)

专题04整式的乘除【热考题型】【知识要点】知识点一幂的运算同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

nm n m a a a +=·(其中m、n 为正整数)【注意事项】1)当底数为负数时,先用同底数幂乘法法则计算,再根据指数的奇偶来确定结果的正负,并且化简到底。

2)不能疏忽指数为1的情况。

例:a·a 2=a 1+2=a 33)乘数a 可能是有理数、单项式或多项式。

4)如果底数互为相反数时可先变成同底后再运算。

5)逆用公式:n m n m a a a ·=+(m,n 都是正整数)【扩展】三个或三个以上同底数幂相乘时,也具有这一性质,即pn m p n m a a a a ++=··(m,n,p 都是正整数)考查题型一同底数幂的乘法典例1.(2022·浙江嘉兴·中考真题)计算a 2·a ()A.aB.3aC.2a2D.a3变式1-1.(2022·河南·中考真题)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于()A.810B.1210C.1610D.2410变式1-2.(2022·内蒙古包头·中考真题)若42222m ⨯=,则m 的值为()A.8B.6C.5D.2变式1-3.(2022·湖南邵阳·中考真题)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是()A.0.11B.1.1C.11D.11000易错点总结:幂的乘方法则:幂的乘方,底数不变,指数相乘.mnnm a a =)((其中m,n 都是正整数).【注意事项】1)负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。

整式的乘除知识点归纳

整式的乘除知识点归纳

整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。

一、整式的定义整式由单项式或多项式组成。

单项式是一个数字或变量的乘积,也可以包含指数。

例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。

多项式是多个单项式的和。

例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。

二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。

2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。

3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。

在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。

例如,(2x^2)×(3y)=6x^2y。

三、整式的除法整式的除法是乘法的逆过程。

除法运算中,被除数除以除数得到商。

以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。

例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。

例如,5/0没有意义。

在进行整式的除法运算时,要注意约分和消去的原则。

例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。

四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。

常见的运算顺序规则如下:1.先解决括号内的运算。

2.然后进行乘法和除法的运算。

3.最后进行加法和减法的运算。

五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。

对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。

整式的乘除法

整式的乘除法

整式的乘除法整式是指由数字、字母和运算符号(加减乘除和括号)组成的代数式。

在数学中,整式的乘除法是学习代数运算的重要一环。

本文将介绍整式的乘法和除法,并提供相应的解题方法和技巧。

一、整式的乘法整式的乘法是指将两个或多个整式相乘得到一个新的整式。

在进行整式的乘法时,需要注意以下几点:1. 符号相乘:当两个整式相乘时,需要根据乘法法则对各项进行符号相乘。

同号相乘得正,异号相乘得负。

2. 同类项合并:在得到乘积后,需要对乘积中的同类项进行合并。

即将相同指数的字母项合并,并将系数相加。

下面通过一个示例来展示整式的乘法:例题:计算乘积 $(3x-4y)(2x+5)$。

解答:按照乘法法则,我们将每一项进行符号相乘,得到乘积:$$6x^2+15x-8xy-20y$$然后,我们将乘积中的同类项进行合并:$$6x^2+15x-8xy-20y$$至此,我们得到了乘积的最简形式。

二、整式的除法整式的除法是将一个整式除以另一个整式,得到商和余数的过程。

在进行整式的除法时,需要遵循以下几个步骤:1. 确定除数和被除数:将要除以的整式称为除数,被除的整式称为被除数。

2. 用除法定律进行整式的除法:将整式的除法转化为有理数的除法。

3. 化简商式:对除法得到的商式进行化简,即将商式中的同类项合并。

4. 找到余式:将化简后的商式与被除数相乘,得到乘积后减去除数,得到余式。

下面通过一个示例来展示整式的除法:例题:计算商和余数 $\frac{4x^3-7x^2+10}{x-2}$。

解答:按照除法的步骤,我们首先确定除数为 $x-2$,被除数为$4x^3-7x^2+10$。

然后,我们用除法定律进行整式的除法:```4x^2 -5x___________________x-2 | 4x^3 -7x^2 +10- (4x^3 -8x^2)_______________x^2 +10- (x^2 -2x)____________12x +10- (12x -24)__________34```化简商式得到商 $4x^2-5x+1$,余数为 $34$。

人教版八年级上册数学整式的乘除全章课件

人教版八年级上册数学整式的乘除全章课件
17个10 =1017
3个10
通过观察可以发现1014、 103这两个因数是同底数 幂的形式,所以我们把 像1014×103的运算叫做
同底数幂的乘法 .
请同学们先根据自己的理解,解答下列各题. 103 ×102 =(10×10×10)×(10×10) = 10( 5 ) 23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2 =2( 5 )
2.计算:(1)23×24×25
(2)y · y2 · y3
【解析】(1)23×24×25=23+4+5=212 (2)y · y2 · y3 = y1+2+3=y6
3.计算:(-a)2×a4
【解析】原式 = a2×a4 =a6
(-2)3×22 原式 = -23 ×22
= -25
当底数互为相反数时, 先化为同底数形式.
(an)3·(bm)3·b3=a9b15 a3n ·b3m·b3=a9b15 a3n ·b3m+3=a9b15 3n=9,3m+3=15
n=3,m=4.
通过本课时的学习,需要我们掌握:
积的乘方法则 (ab)n =anbn (n为正整数) 积的乘方等于把积的每个因式分别乘方,再把 所得的幂相乘.
通过本课时的学习,需要我们掌握: 1.am·an =am+n(m、n都是正整数) 2.am·an·ap = am+n+p (m、n、p都是正整数)
14.1.2 幂的乘方
1.经历探索幂的乘方运算性质的过程,进一步体会幂 的意义,发展推理能力和有条理的表达能力. 2.了解幂的乘方的运算性质,并能解决一些实际问题.
【解析】xm·x2m= x3m =2 x9m =(x3m)3 = 23 =8 6.若a3n=3,求(a3n)4的值.

第14章整式知识点

第14章整式知识点

第十四章 整式的乘除与分解因式一、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.⑵幂的乘方:()n m mn a a =(m 、n 为正整数)幂的乘方,底数不变,指数相乘.⑶幂的乘方:()nn n ab a b =(n 为正整数)积的乘方等于各因式乘方的积.(4)幂的除法:n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数相减.(5)零指数幂的概念: a 0=1 (a ≠0) 任何一个不等于零的数的零指数幂都等于l .(6)负指数幂的概念:a -p =p a 1(a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:pp n m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数) 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用其中一个多项式除以另一个多项式再把所得的商相加4.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++; ()2222a b a ab b -=-+ 二、因式分解:因式分解定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解。

整式的乘除教案

整式的乘除教案

整式的乘除教案教案:整式的乘除一、教学内容本节课的教学内容选自人教版小学数学五年级上册第三单元《整式的乘除》。

本节课主要内容包括:1. 整式的乘法:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式。

2. 整式的除法:单项式除以单项式,多项式除以单项式,多项式除以多项式。

二、教学目标1. 理解整式乘除的概念,掌握整式乘除的计算方法。

2. 能够运用整式乘除解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和团队合作能力。

三、教学难点与重点1. 教学难点:整式的乘除运算规则,以及如何运用这些规则解决实际问题。

2. 教学重点:整式乘除的计算方法,以及如何将这些方法应用到实际问题中。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:假设有一块长方形的地,长为8米,宽为6米,求这块地的面积。

2. 例题讲解:(1) 单项式乘以单项式:例如,3x × 4x = 12x²。

(2) 单项式乘以多项式:例如,2x × (x + 3) = 2x² + 6x。

(3) 多项式乘以多项式:例如,(x + 2) × (x + 3) = x² + 3x+ 2x + 6 = x² + 5x + 6。

(4) 单项式除以单项式:例如,12x² ÷ 4x = 3x。

(5) 多项式除以单项式:例如,(x² + 5x + 6) ÷ x = x + 5 +6/x。

(6) 多项式除以多项式:例如,(x² + 5x + 6) ÷ (x + 2) = x+ 3。

3. 随堂练习:a. 3x × 4xb. 2x × (x + 3)c. (x + 2) × (x + 3)a. 12x² ÷ 4xb. (x² + 5x + 6) ÷ xc. (x² + 5x + 6) ÷ (x + 2)4. 板书设计:整式的乘法:a. 3x × 4x = 12x²b. 2x × (x + 3) = 2x² + 6xc. (x + 2) × (x + 3) = x² + 5x + 6整式的除法:a. 12x² ÷ 4x = 3xb. (x² + 5x + 6) ÷ x = x + 5 + 6/xc. (x² + 5x + 6) ÷ (x + 2) = x + 35. 作业设计:a. 4y × 5yb. 3x × (2x 3)c. (2x + 4) × (3x 2)a. 15x² ÷ 5xb. (x² 5x + 6) ÷ xc. (x² 5x + 6) ÷ (x + 3)六、课后反思及拓展延伸1. 课后反思:本节课通过实践情景引入,使学生能够更好地理解整式的乘除概念。

初二八年级数学整式的乘除法

初二八年级数学整式的乘除法
此外,整式乘除法还可以用于解决一些日常生活中的问题,例如计算时间和距离 等。通过整式乘除法,我们可以更准确地计算出所需的数值,从而更好地理解和 解决实际问题。
在数学和其他学科中的应用
整式乘除法是数学中的一个基本概念,它在代数、几何和三角学等数学领域中有广泛的应用。例如, 在代数中,我们可以使用整式乘除法来化简多项式、解方程和证明代数恒等式等。在几何中,我们可 以使用整式乘除法来计算图形的面积和周长等。
对整式乘除法的理解更加深入
通过本章的学习,我对整式的乘除法有了更深入的 理解,掌握了其基本法则和应用技巧。
增强了数学运算能力
整式乘除法涉及较多的数学运算,通过不断练习, 我的运算能力得到了提高。
学会了解决实际问题
通过解决实际问题,我学会了如何运用整式乘除法 来解决生活中的数学问题。
下一步学习计划
深入学习分式的运算法则
初二八年级数学整式的乘除法

CONTENCT

• 引言 • 整式乘法规则 • 整式除法规则 • 整式乘除法的实际应用 • 练习与巩固 • 总结与回顾
01
引言
主题简介
整式乘除法是初中数学中的重要内容,是代数运算 的基础之一。
通过学习整式的乘除法,学生可以掌握代数式的基 本运算规则,为后续学习方程、不等式、函数等打 下基础。
学习几何学知识
在掌握了整式的乘除法后,我将继续 学习分式的运算法则,包括分式的加、 减、乘和除等。
在掌握了整式和分式的运算法则后, 我将开始学习几何学知识,包括平面 几何和立体几何等。
强化数学思维能力
通过练习更多的数学题目,提高自己 的数学思维能力,为后续的学习打下 坚实的基础。
THANK YOU
感谢聆听

整式的乘除

整式的乘除

第一章:整式的乘除单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:(1)代数式化简。

(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除一.选择题(共17小题)1.方程(x2+x﹣1)x+3=1的所有整数解的个数是()A.5个 B.4个 C.3个 D.2个2.如果自然数a是一个完全平方数,那么与a之差最小且比a大的一个完全平方数是()A.a+1 B.a2+1 C.a2+2a+1 D.a+2+13.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A.总不小于2 B.总不小于7 C.可为任何实数D.可能为负数4.若M=3x2﹣8xy+9y2﹣4x+6y+13(x,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()A.2005 B.2006 C.2007 D.20086.设x为正整数,若x+1是完全平方数,则它前面的一个完全平方数是()A.x B .C .D .7.下列运算中,正确的个数是()①x2+x3=2x5;②(x2)3=x6;③30×2﹣1=5;④﹣|﹣5|+3=8;⑤1÷.A.1个 B.2个 C.3个 D.4个8.下列各项中的两个幂,其中是同底数幂的是()A.﹣a与(﹣a)B.a与(﹣a) C.﹣a与a D.(a﹣b)与(b﹣a)9.若a=(﹣)﹣2,b=(﹣1)﹣1,c=(﹣)0,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、b,都有a+b≥2成立.某同学在做一个面积为3 600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备xcm.则x的值是()A.120B.60C.120 D.6011.已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2﹣ab﹣bc ﹣ac的值是()试卷第1页,总1页A.4 B.3 C.2 D.112.某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价m%,再降价n% B.先涨价n%,再降价m%C .行涨价%,再降价% D .先涨价%,再降价%13.已知,的值为()A .B .C .D.无解14.下列运算不正确的是()A.a﹣3=B.﹣x3÷(﹣x)2=﹣xC.若x+x﹣1=0,则x2﹣x﹣2=0 D .•x﹣1=15.如果a﹣b=2,a﹣c=,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A .B .C .D.不能确定16.已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2 C.(4R+4)cm2D.以上都不对17.m为偶数,则(a﹣b)m•(b﹣a)n与(b﹣a)m+n的结果是()A.相等B.互为相反数C.不相等D.以上说法都不对2二.填空题(共14小题)18.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=.19.若(x﹣1)x+1=1,则x=.20.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.21.已知=(a﹣b)(c﹣a)且a≠0,则=.22.设a>b>0,a2+b2=4ab ,则的值等于.23.若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.24.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.25.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=.26.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.27.已知实数x,y满足方程(x2+2x+3)(3y2+2y+1)=,则x+y=.28.如果a+b +,那么a+2b﹣3c=.29.a2x2﹣4x+b2是一个完全平方式,则ab=.30.满足(x2+x﹣1)x+3=1的所有x的个数有个.31.如图,将面积为a2的正方形与面积为b2的正方形(b>a)放在一起,则△ABC的面积是.三.解答题(共7小题)32.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n +﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.33.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的试卷第3页,总3页两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.34.已知2a•5b=2c•5d=10,求证:(a﹣1)(d﹣1)=(b﹣1)(c﹣1).35.化简求值:(2x﹣y+3z)(﹣2x﹣y﹣3z)﹣(x+2y﹣3z)2,其中x=1,y=﹣1,z=1.36.观察下列各式:(x﹣1)÷(x﹣1)=1;(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1;(1)根据上面各式的规律可得(x n+1﹣1)÷(x﹣1)=;(2)利用(1)的结论求22015+22014+…+2+1的值;(3)若1+x+x2+…+x2015=0,求x2016的值.37.杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是;(2)利用上述规律直接写出27=;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与的积.4(4)由此你可以写出115=.(5)由第行可写出118=.38.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式:152=1×2×100+25=225,252=2×3×100+25=625,352=3×4×100+25=1225,…(1)根据上述格式反应出的规律填空:952=,(2)设这类等式左边两位数的十位数字为a,请用一个含a的代数式表示其结果,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出1952的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数想成的算式,请写出89×81的简便计算过程和结果.试卷第5页,总5页6本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

整式的乘除一.选择题(共17小题)1.方程(x2+x﹣1)x+3=1的所有整数解的个数是()A.5个 B.4个 C.3个 D.2个【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为﹣1,指数为偶数.【解答】解:(1)当x+3=0,x2+x﹣1≠0时,解得x=﹣3;(2)当x2+x﹣1=1时,解得x=﹣2或1.(3)当x2+x﹣1=﹣1,x+3为偶数时,解得x=﹣1因而原方程所有整数解是﹣3,﹣2,1,﹣1共4个.故选B.【点评】本题考查了:a0=1(a是不为0的任意数)以及1的任何次方都等于1.本题容易遗漏第3种可能情况而导致误选C,需特别注意.2.如果自然数a是一个完全平方数,那么与a之差最小且比a大的一个完全平方数是()A.a+1 B.a2+1 C.a2+2a+1 D.a+2+1【分析】当两个完全平方数是自然数时,其算术平方根是连续的话,这两个完全平方数的差最小.【解答】解:∵自然数a是一个完全平方数,∴a 的算术平方根是,∴比a的算术平方根大1的数是+1,∴这个平方数为:(+1)2=a+2+1.故选D.【点评】解此题的关键是能找出与a之差最小且比a大的一个完全平方数是紧挨着自然数后面的自然数:+1的平方.3.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A.总不小于2 B.总不小于7 C.可为任何实数D.可能为负数1本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

【分析】要把代数式x2+y2+2x﹣4y+7进行拆分重组凑完全平方式,来判断其值的范围.具体如下:【解答】解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2≥2,∴x2+y2+2x﹣4y+7≥2.故选A.【点评】主要利用拆分重组的方法凑完全平方式,把未知数都凑成完全平方式,就能判断该代数式的值的范围.要求掌握完全平方公式,并会熟练运用.4.若M=3x2﹣8xy+9y2﹣4x+6y+13(x,y是实数),则M的值一定是()A.零B.负数C.正数D.整数【分析】本题可将M进行适当变形,将M的表达式转换为几个完全平方式的和,然后根据非负数的性质来得出M的取值范围.【解答】解:M=3x2﹣8xy+9y2﹣4x+6y+13,=(x2﹣4x+4)+(y2+6y+9)+2(x2﹣4xy+4y2),=(x﹣2)2+(y+3)2+2(x﹣2y)2>0.故选C.【点评】本题主要考查了非负数的性质,将M的表达式根据完全平方公式的特点进行变形是解答本题的关键.5.如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是()A.2005 B.2006 C.2007 D.2008【分析】把p重新拆分组合,凑成完全平方式的形式,然后判断其最小值.【解答】解:p=a2+2b2+2a+4b+2008,=(a2+2a+1)+(2b2+4b+2)+2005,=(a+1)2+2(b+1)2+2005,当(a+1)2=0,(b+1)2=0时,p有最小值,最小值最小为2005.故选A.【点评】此题主要考查了完全平方式的非负性,即完全平方式的值是大于等2本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

相关文档
最新文档