高一数学 向量的概念及表示导学案
苏教版数学高一-必修4学案 2.1 向量的概念及表示

2.1 向量的概念及表示1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.1.力和位移都是既有大小,又有方向的量,在物理学中常称为矢量,在数学中叫做向量;而把那些只有大小,没有方向的量称为数量,在物理学中常称为标量.2.已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有②④⑤⑨⑩,是向量的有①③⑥⑦⑧. 3.向量与数量有什么联系和区别?答 联系是向量与数量都是有大小的量;区别是向量有方向且不能比较大小,数量无方向且能比较大小.1.向量:既有大小又有方向的量称为向量.2.向量的几何表示:以A 为起点、B 为终点的向量记作AB →. 3.向量的有关概念(1)零向量:长度为0的向量,叫做零向量,记作0.(2)单位向量:长度等于1个单位长度的向量,叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量.(4)相反向量:与向量a 长度相等且方向相反的向量叫做a 的相反向量.(5)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于b ,记作a ∥b . ②规定:零向量与任一向量平行.要点一 向量的概念 例1 给出下列各命题: (1)零向量没有方向; (2)若|a |=|b |,则a =b ; (3)单位向量都相等; (4)向量就是有向线段;(5)两相等向量若其起点相同,则终点也相同; (6)若a =b ,b =c ,则a =c ; (7)若a ∥b ,b ∥c ,则a ∥c ;(8)若四边形ABCD 是平行四边形,则AB →=CD →,BC →=DA →. 其中正确命题的序号是________. 答案 (5)(6)解析 (1)该命题不正确,零向量不是没有方向,只是方向不确定; (2)该命题不正确,|a |=|b |只是说明这两向量的模相等,但其方向未必相同; (3)该命题不正确,单位向量只是模为单位长度1,而对方向没要求;(4)该命题不正确,有向线段只是向量的一种表示形式,但不能把两者等同起来;(5)该命题正确,因两相等向量的模相等,方向相同,故当它们的起点相同时,其终点必重合; (6)该命题正确.由向量相等的定义知,a 与b 的模相等,b 与c 的模相等,从而a 与c 的模相等;又a 与b 的方向相同,b 与c 的方向相同,从而a 与c 的方向也必相同,故a =c ; (7)该命题不正确.因若b =0,则对两不共线的向量a 与c ,也有a ∥0,0∥c ,但a ∥c 不成立;(8)该命题不正确.如图所示,显然有AB →≠CD →,BC →≠DA →.规律方法 要充分理解与向量有关的概念,明白它们各自所表示的含义,搞清楚它们之间的区别是解决与向量概念有关问题的关键.跟踪演练1 下列命题中,正确的是________. ①a ,b 是两个单位向量,则a 与b 相等; ②若向量a 与b 不共线,则a 与b 都是非零向量; ③两个相等的向量,起点、方向、长度必须都相同; ④共线的单位向量必是相等向量. 答案 ②解析 若a 与b 中有一个是零向量,则a 与b 是平行向量. 要点二 向量的表示例2 在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°; (2)AB →,使|AB →|=4,点B 在点A 正东; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°.解 (1)由于点A 在点O 北偏东45°处,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 位置可以确定,画出向量OA →如图所示.(2)由于点B 在点A 正东方向处,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 位置可以确定,画出向量AB →如图所示.(3)由于点C 在点B 北偏东30°处,且|BC →|=6,依据勾股定理可得:在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 位置可以确定,画出向量BC →如图所示.规律方法 在画图时,向量是用有向线段来表示的,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.应该注意的是有向线段是向量的表示,并不是说向量就是有向线段.跟踪演练2 中国象棋中规定:马走“日”字.下图是中国象棋的半个棋盘,若马在A 处,可跳到A 1处,也可跳到A 2处,用向量AA 1→或AA 2→表示马走了“一步”.试在图中画出马在B ,C 处走了“一步”的所有情况.解 根据规则,画出符合要求的所有向量. 马在B 处走了“一步”的情况如图(1)所示; 马在C 处走了“一步”的情况如图(2)所示.要点三 相等向量与共线向量例3 如图,在正方形ABCD 中,M ,N 分别为AB 和CD 的中点,在以A ,B ,C ,D ,M ,N 为起点和终点的所有向量中,相等的向量分别有多少对?解 不妨设正方形的边长为2,则以A ,B ,C ,D ,M ,N 为起点和终点的向量中: ①模为2的相等向量共有8对,AB →=DC →,BA →=CD →,AD →=BC →,DA →=CB →,AD →=MN →,DA →=NM →,BC →=MN →,CB →=NM →.②模为1的相等向量有12对,其中与AM →同向的有MB →,DN →,NC →,这四个向量组成相等的向量有6对,即AM →=MB →,AM →=DN →,AM →=NC →,MB →=DN →,MB →=NC →,DN →=NC →,同理与AM →反向的也有6对.③模为5的相等向量共有4对,AN →=MC →,NA →=CM →,MD →=BN →,DM →=NB →.规律方法 判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.跟踪演练3 如图所示,O 为正方形ABCD 对角线的交点,四边形OAED 、OCFB 都是正方形.(1)写出与AO →相等的向量; (2)写出与AO →共线的向量; (3)向量AO →与CO →是否相等?解 (1)与AO →相等的向量有:OC →、BF →、ED →.(2)与AO →共线的向量有:OA →、OC →、CO →、AC →、CA →、ED →、DE →、BF →、FB →. (3)向量AO →与CO →不相等,因为AO →与CO →的方向相反,所以它们不相等.1.下列说法正确的是________. ①零向量没有大小,没有方向; ②零向量是唯一没有方向的向量; ③零向量的长度为0;④任意两个单位向量方向相同. 答案 ③解析 零向量的长度为0,方向是任意的,故①②错误,③正确.任意两个单位向量的长度相等,但方向不一定相同,故④错误.2.如图,在△ABC 中,若DE ∥BC ,则图中向量是共线向量的有________.答案 ED →与CB →,AD →与BD →,AE →与CE →3.在四边形ABCD 中,AB →∥CD →且|AB →|≠|CD →|,则四边形ABCD 的形状是________. 答案 梯形解析 ∵AB →∥CD →且|AB →|≠|CD →|,∴AB ∥DC ,但AB ≠DC ,∴四边形ABCD 是梯形.4.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中.(1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量. 解 (1)AF →=BE →=CD →,AE →=BD →. (2)DA →,CF →,FC →.1.向量是既有大小又有方向的量,从其定义看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,也可以将几何问题转化为代数问题,故向量能起数形结合的桥梁作用.2.共线向量与平行向量是一组等价的概念.平行向量是指向量所在直线平行或重合即可,是一种广义平行.3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.一、基础达标1.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列正确的是______.①AD →=BC →;②AC →=BD →;③PE →=PF →;④EP →=PF →. 答案 ④解析 由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →模相等而方向相反,故PE →≠PF →;EP →与PF →模相等且方向相同,所以EP →=PF →. 2.下列说法正确的有________.(填相应的序号) ①方向相同的向量叫相等向量; ②零向量的长度为0;③共线向量是在同一条直线上的向量; ④零向量是没有方向的向量; ⑤共线向量不一定相等; ⑥平行向量方向相同. 答案 ②⑤解析 ②与⑤正确,其余都是错误的.3.若a 为任一非零向量,b 为模为1的向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1.其中正确的是________.(填相应的序号) 答案 ③解析 a 任一非零向量,故|a |>0. 4.有下列说法:①若向量a 与向量b 不平行,则a 与b 方向一定不相同; ②若向量AB →,CD →满足|AB →|>CD →|,且AB →与CD →同向,则AB →>CD →; ③若|a |=|b |,则a ,b 的长度相等且方向相同或相反; ④由于零向量方向不确定,故其不能与任何向量平行. 其中,正确说法的个数是________. 答案 1解析 对于①,由共线向量的定义知,两向量不平行,方向一定不相同,故①正确; 对于②,因为向量不能比较大小,故②错误;对于③,由|a |=|b |,只能说明a ,b 的长度相等,不能确定它们的方向,故③错误;对于④,因为零向量与任一向量平行,故④错误.5.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是________. 答案 ①③④解析 因为a =b ⇒a ∥b ,即①能够使a ∥b 成立;由于|a |=|b |并没有确定a 与b 的方向,即②不能够使a ∥b 成立;因为a 与b 方向相反时,a ∥b ,即③能够使a ∥b 成立;因为零向量与任意向量共线,所以|a |=0或|b |=0时,a ∥b 能够成立.故使a ∥b 成立的条件是①③④. 6.下列结论中,正确的是________.(填相应的序号) ①若向量AB →,CD →共线,则向量AB →∥CD →; ②若向量AB →∥CD →,则向量AB →与DC →共线; ③若向量AB →=CD →,则向量BA →=DC →; ④若AB →=DC →,则四边形ABCD 是正方形. 答案 ①②③解析 根据平行向量(或共线向量)定义知①②均正确;根据向量相等的概念知③正确;④不正确.7.如图,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.证明 ∵AB →=DC →, ∴|AB →|=|CD →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →.同理可证,四边形CNAM 是平行四边形, ∴CM →=NA →.∵|CB →|=|DA →|,|CM →|=|NA →|,∴|DN →|=|MB →|.∵DN ∥MB 且DN →与MB →的方向相同,∴DN →=MB →. 二、能力提升8.下列说法正确的是________.(填相应的序号)①向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线;②长度相等的向量叫做相等向量;③零向量长度等于0;④共线向量是在一条直线上的向量. 答案 ③解析 向量AB →∥CD →包含AB →所在的直线平行于CD →所在的直线和AB →所在的直线与CD →所在的直线重合两种情况;相等向量不仅要求长度相等,还要求方向相同;共线向量也称为平行向量,它们可以是在一条直线上的向量,也可以是所在直线互相平行的向量,所以①②④均错. 9.如图,已知四边形ABCD 为正方形,△CBE 为等腰直角三角形,回答下列问题:(1)图中与AB →共线的向量有____________; (2)图中与AB →相等的向量有____________; (3)图中与AB →模相等的向量有____________. 答案 (1)BA →,BE →,EB →,AE →,EA →,CD →,DC →(2)DC →,BE →(3)BA →,BE →,EB →,DC →,CD →,AD →,DA →,BC →,CB →10.一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向北偏西40°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,又|AB →|=|CD →|,∴在四边形ABCD 中,AB ∥CD 且AB =CD . ∴四边形ABCD 为平行四边形. ∴AD →=BC →,∴|AD |→=|BC →|=200 km.11.一位模型赛车手遥控一辆赛车沿正东方向向前行进1米,逆时针方向转变α度,继续按直线向前行进1米,再逆时针方向转变α度,按直线向前行进1米,按此方法继续操作下去. (1)按1∶100比例作图说明当α=45°时,操作几次时赛车的位移为零; (2)按此法操作使赛车能回到出发点,α应满足什么条件? 解 (1)如图所示,操作8次后,赛车的位移为零;(2)要使赛车能回到出发点,只需赛车的位移为零,按(1)的方式作图,则所作图形是内角为180°-α的正多边形, 故有n ·(180°-α)=(n -2)·180°. 即α=360°n,n 为不小于3的整数.12.如图平面图形中,已知AA ′→=BB ′→=CC ′→.求证:(1)△ABC ≌△A ′B ′C ′; (2)AB →=A ′B ′→,AC →=A ′C ′→. 证明 (1)∵AA ′→=BB ′→, ∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→. 又∵A 不在BB ′→上,∴AA ′∥BB ′. ∴四边形AA ′B ′B 是平行四边形. ∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|.∴△ABC ≌△A ′B ′C ′.(2)∵四边形AA ′B ′B 是平行四边形,∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|.∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.三、探究与创新13.如图,在平行四边形ABCD 中,O 是两对角线AC ,BD 的交点,设点集S ={A ,B ,C ,D ,O },向量集合T ={MN →|M ,N ∈S ,且M ,N 不重合},试求集合T 中元素的个数.解 由题意知,集合T 中的元素实质上是S 中任意两点连成的有向线段,共有20个, 即AB →,AC →,AD →,AO →;BA →,BC →,BD →,BO →;CA →,CB →,CD →,CO →;DA →,DB →,DC →,DO →;OA →,OB →,OC →,OD →.由平行四边形的性质可知,共有8对向量相等,即AB →=DC →,BA →=CD →,AD →=BC →,DA →=CB →,AO →=OC →,OA →=CO →,DO →=OB →,OD →=BO →.∵集合中元素具有互异性,∴集合T 中的元素共有12个.。
高一必修一向量教案(精心整理)

高一必修一向量教案(精心整理)高一必修一向量教案完整版(精心整理)导言本教案旨在帮助高一学生全面了解和掌握向量的基本概念、运算方法和应用技巧,从而打下坚实的数学基础。
教学目标1. 理解向量的概念及其表示方法;2. 掌握向量的加法和数乘运算;3. 能够解决与向量相关的几何和物理问题;4. 培养分析问题、推理和解决问题的能力。
教学内容1. 向量的定义和性质- 向量的概念- 向量的模长和方向- 向量的共线与共面2. 向量的表示方法- 坐标表示法- 分量表示法3. 向量的运算- 向量的加法- 向量的数乘- 向量的减法和负向量4. 向量的应用- 几何问题的向量解法- 物理问题的向量解法教学步骤1. 导入:通过引入一些真实问题引起学生对向量的兴趣,并提出相关的问题。
2. 理论讲解:简要介绍向量的定义和性质,通过示例帮助学生理解和掌握相关概念。
3. 案例分析:通过具体的几何和物理问题,引导学生运用向量的运算方法解决问题。
4. 练巩固:提供一系列练题,让学生在课堂上进行解答,检验他们的研究成果。
5. 提高拓展:引导学生思考更复杂的问题,拓展他们的思维和应用能力。
6. 总结归纳:梳理向量的重要概念和运算法则,帮助学生理解和记忆。
7. 课后作业:布置相关的作业,提醒学生对所学知识进行巩固和回顾。
教学评价1. 课堂表现:考察学生对向量概念的理解和应用能力。
2. 练成绩:通过练题的答案判断学生是否掌握了相关知识和技巧。
3. 作业完成情况:检验学生对课堂内容的掌握程度。
教学资源1. 教材:高中数学教材必修一2. 辅助工具:黑板、多媒体设备、练题集等教学反思在教学过程中,需要根据学生的实际情况和反馈及时调整教学策略,提供适合他们的案例和练题。
同时,加强与学生的互动和思维碰撞,激发他们对数学的兴趣和求知欲。
请根据需要自行修改或添加具体的内容。
苏教版数学高一必修4教案 2.1向量的概念及表示

2.1向量的概念及表示●三维目标1.知识与技能(1)理解、掌握向量的概念.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等的概念.2.过程与方法在理解向量等有关概念的基础上,充分联系实际,培养学生解决生活实际问题的能力.3.情感、态度与价值观(1)通过对向量的学习,使学生对现实生活中的向量和数量有一个清楚的认识,培养学生对现实生活中的真善美的识别能力.(2)对学生进行辩证思维的教育.●重点难点重点:向量的概念、相等向量的概念、向量的几何表示.难点:向量的概念和共线向量的概念.●教学建议1.关于向量概念的教学教学时,建议教师从向量的物理背景出发,借助物理学中的位移、速度、力等矢量引出向量的概念,并指出向量具有“数”和“形”的双重特征.2.关于零向量、单位向量、相等向量和共线向量的教学教学时,建议教师类比数及向量的概念给出零向量、单位向量的概念;结合向量的两要素给出相等向量的定义;强调指出共线向量未必是在同一直线上的向量.由于零向量、单位向量、相等向量和共线向量是研究向量的基础,为增加学生对上述概念的感性认识,学习时建议教师对该知识点进行适当训练.●教学流程创设问题情境,引入向量的概念.⇒引导学生结合物理学中的位移、速度、力等矢量理解向量具有“数”和“形”的双重特征.⇒通过类比数与向量的概念,引导学生理解零向量、单位向量、相等向量、共线向量等概念.⇒通过例1及其变式训练,使学生掌握利用向量有关概念判断有关命题真假的方法.⇒通过例2及其变式训练,使学生掌握利用有向线段表示向量的方法,并注意向量模的大小.⇒通过例3及其变式训练,使学生掌握写出图形中的相等共线向量的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.了解向量的实际背景,理解平面向量的概念.2.理解零向量、单位向量、相等向量、共线(平行)向量、相反向量的含义.(重点、难点)3.理解向量的几何表示.向量及其有关概念(1)火车向正南方向行驶了50 km,行驶速度的大小为120 km/h,方向是正南.(2)起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.1.上述两个实例中涉及的物理量的特点是什么?【提示】它们的大小和方向都是确定的.2.上述实例中的速度和力,如何表示?【提示】可以用有向线段表示,也可以用字母表示.1.向量的概念向量:既有大小,又有方向的量叫向量.2.向量的表示(1)用有向线段表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.以A 为起点、B 为终点的向量记作AB →.向量AB →的大小称为向量的长度(或称为模),记作|AB →|. (2)用字母表示向量通常在印刷时,用黑体小写字母a ,b ,c …表示向量,在手写时用带箭头的小写字母a →, b →, c →…表示向量.也可用表示向量的有向线段的起点和终点字母表示,如AB →,CD →. 3.与向量有关的概念(1)零向量:长度为0的向量叫做零向量,记作0.(2)单位向量:长度等于1个单位长度的向量叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量. (4)相反向量:长度相等且方向相反的向量叫相反向量.(5)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量.规定零向量与任一向量平行.向量的有关概念(1)单位向量一定相等; (2)若a =b ,b =c ,则a =c ;(3)若AB →=CD →,则点A 与点C 重合,点B 与点D 重合; (4)若向量a 与b 同向,且|a |>|b |,则a >b ; (5)若向量a =b ,则a ∥b ; (6)若a ∥b ,b ∥c ,则a ∥c .【思路探究】 从概念的理解出发,结合具体实例进行判断.【自主解答】 (1)不正确.向量有大小和方向两个要素,单位向量的模一定是1,但方向不一定相同,所以单位向量不一定相等.(2)正确.∵a =b ,∴a ,b 的长度相等且方向相同;又∵b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .(3)不正确.这是因为AB →=CD →时,应有|AB →|=|CD →|及由A 到B 与由C 到D 的方向相同,但不一定有A 与C 重合,B 与D 重合.(4)不正确.“大于”、“小于”对于向量来说是没有意义的.(5)正确.相等向量一定是共线向量,但共线向量不一定相等.(6)不正确.对于非零向量命题正确,但当b =0时,满足a ∥b ,b ∥c ,但a 与c 不一定共线.1.在判断与向量有关的命题时,既要立足向量的数(即模的大小),又要考虑其形(即方向性).2.涉及共线向量或平行向量的问题,一定要明确所给向量是否为非零向量. 3.对于判断命题的正误,应该熟记有关概念,理解各命题,逐一进行判断,对于错误命题,只要举一反例即可.下列说法:①方向相同或相反的向量是平行向量;②零向量的长度是0;③长度相等的向量叫相等向量;④共线向量是在一条直线上的向量.其中正确的命题是________.(填序号)【解析】 方向相同或相反的非零向量才是平行向量,所以①不正确;长度相等,方向相同的向量才叫相等向量,所以③不正确;共线向量也叫平行向量,它们不一定在一条直线上,也可能在平行直线上,所以④不正确;零向量的长度为0,所以②正确.【答案】 ②向量的表示50°行驶了200千米到达点C ,最后又改变方向,向东行驶了100千米到达点D.(1)作出向量AB →,BC →,CD →; (2)求|AD →|.【思路探究】 解答本题应首先确定指向标,然后再根据行驶方向确定有关向量,进而求解.【自主解答】 (1)如图.(2) 由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD. 又∵|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD. ∴四边形ABCD 为平行四边形.∴|AD →|=|BC →|=200(千米).用有向线段表示向量时,先确定起点,再确定方向,最后依据向量模的大小确定向量的终点.必要时,需依据直角三角形知识求出向量的方向或长度(模),选择合适的比例关系作出向量.在如图2-1-1的方格纸中,画出下列向量.图2-1-1(1)|OA →|=3,点A 在点O 正西方向; (2)|OB →|=32,点B 在点O 北偏西45°方向.【解】 取每个方格的单位长为1,依题意,结合向量的表示可知,相应的向量如图所示:相等向量与共线向量图2-1-2如图2-1-2所示,在△ABC 中,三边长均不相等,D ,E ,F 分别是BC ,AC ,AB 的中点,在以A ,B ,C ,D ,E ,F 这6点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与EF →共线的向量; (2)与EF →长度相等的向量; (3)与EF →相等的向量.【思路探究】 (1)与EF →共线的向量即与之方向相同或相反的向量;(2)与EF →长度相等即表示向量的线段与EF 长度相等;(3)与EF →相等的向量即与之共线且长度相等的向量.【自主解答】 (1)∵E ,F 分别是AC ,AB 的中点,∴EF ∥BC , ∴与EF →共线的向量为FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)∵D ,E ,F 分别是BC ,AC ,AB 的中点,∴BD =DC =12BC ,EF =12BC.∵AB ,BC ,AC 均不相等,∴与EF →长度相等的向量为FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量为DB →,CD →.1.寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.2.寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.图2-1-3如图2-1-3,D ,E ,F 分别是△ABC 各边上的中点,四边形BCMF 是平行四边形,请分别写出:(1)与CM →模相等且共线的向量; (2)与ED →相等的向量; (3)与BF →相反的向量.【解】 (1)DE →,ED →,BF →,FB →,FA →,AF →,MC →. (2)FB →,AF →,MC →. (3)FB →,AF →,ED →,MC →.对向量的有关概念理解不透彻致误判断下列说法是否正确: (1)向量就是有向线段; (2)AB →=BA →;(3)若向量AB →与向量CD →平行,则线段AB 与CD 平行; (4)若|a |=|b |,则a =±b ;(5)若AB →=DC →,则ABCD 是平行四边形. 【错解】 以上说法都正确.【错因分析】 (1)向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.因此,有向线段是向量的一种表示方法,不能说向量就是有向线段.(2)AB →与BA →的长度相等,但方向相反,故当AB →是非零向量时,AB →与BA →不相等. (3)方向相同或相反的非零向量叫做平行向量,故若AB →与CD →平行,则线段AB 与CD 可能平行,也可能共线.(4)由|a |=|b |,仅能说明两向量的模相等,但方向却不能确定,故(4)不正确.而(5)中,A ,B ,C ,D 可能落在同一条直线上,故(5)不正确.【防范措施】 首先,要清楚向量的两要素:大小和方向;其次,要对共线向量、单位向量、相等向量、零向量有深入的理解,考虑问题要全面,注意零向量的特殊性.【正解】 以上说法都不正确.1.如果有向线段AB 表示一个向量,通常我们就说向量AB →,但有向线段只是向量的表示,并不是说向量就是有向线段.2.共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“共线”的含义不同于平面几何中“共线”的含义.1.下列说法正确的是________. ①若|a |=0,则a =0; ②若|a |=|b |,则a =b ;③向量AB →与向量BA →是相反向量; ④若a ∥b ,则a =b .【解析】 ①不正确,若|a |=0,则a =0;由于相等向量的长度相等且方向相同,故②④不正确;③显然正确.【答案】 ③图2-1-42.如图2-1-4所示,E ,F 分别为△ABC 的边AB ,AC 的中点,则与向量EF →共线的向量有________(将图中适合条件的向量全写出来).【解析】 ∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC , ∴适合条件的向量为FE →,BC →,CB →. 【答案】 FE →,BC →,CB →3.若四边形ABCD 是矩形,则下列命题中不正确的是________. ①AB →与CD →共线;②AC →与BD →相等;③AD →与CB →是相反向量;④AB →与CD →的模相等.【解析】 ∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD ,故①,④正确; AC =BD ,但AC →与BD →的方向不同,故②不正确; AD =CB 且AD ∥CB ,AD →与CB →的方向相反,故③正确. 【答案】 ②4.在直角坐标系中,画出下列向量,使它们的起点都是原点O. (1)|a |=2,a 的方向与x 轴正方向成60°,与y 轴正方向成30°;(2)|a |=4,a 的方向与x 轴正方向成30°,与y 轴正方向成120°. 【解】 所求向量及其向量的终点坐标如图所示:一、填空题1.若a 为任一非零向量,b 为单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a |a |=b .其中正确的是________.(填序号)【解析】 |a |不一定大于1,|b |=1,∴①④不正确;a 和b 不一定平行.a|a |是与a 方向相同的单位向量,所以②⑤不正确;a 为非零向量,显然有|a |>0. 只有③正确. 【答案】 ③2.若a =b ,且|a |=0,则b =________. 【解析】 ∵a =b ,且|a |=0,∴a =b =0. 【答案】 0图2-1-53.如图2-1-5所示,四边形ABCE 为等腰梯形,D 为CE 的中点,且EC =2AB ,则与AB →相等的向量有________.【解析】 易知四边形ABDE 为平行四边形,则AB →=ED →, 又∵D 是CE 的中点,则ED →=DC →. 【答案】 DC →,ED →4.某人向正东方向行进100米后,再向正南方向行进1003米,则此人位移的方向是________.【解析】 如图所示,此人从点A 出发,经点B ,到达点C ,则tan ∠BAC =1003100=3,∴∠BAC =60°,即位移的方向是东偏南60°,即南偏东30°.【答案】 南偏东30°5.给出以下4个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0,其中能使a 与b 共线成立的是________.【解析】 两向量共线只需两向量方向相同或相反.①a =b ,两向量方向相同;②|a |=|b |两向量方向不确定;④|a |=0或|b |=0即为a =0或b =0 ,因为零向量与任一向量平行,所以④成立.综上所述,答案应为①③④. 【答案】 ①③④图2-1-66.如图2-1-6,已知正方形ABCD 边长为2,O 为其中心,则|OA →|=________. 【解析】 正方形的对角线长为22, ∴|OA →|= 2. 【答案】27.四边形ABCD 满足AD →=BC →且|AC →|=|BD →|,则四边形ABCD 的形状是________. 【解析】 由四边形ABCD 满足AD →=BC →可知,四边形ABCD 为平行四边形. 又|AC →|=|BD →|,即平行四边形ABCD 对角线相等,从而可知四边形ABCD 为矩形. 【答案】 矩形8.设O 是正方形ABCD 的中心,则①AO →=OC →;②AO →∥AC →;③AB →与CD →共线;④AO →=BO →.其中,所有表示正确的序号为________.【解析】 如图,正方形的对角线互相平分,∴AO →=OC →,①正确;AO →与AC →的方向相同,所以AO →∥AC →,②正确;AB →与CD →的方向相反,所以AB →与CD →共线,③正确;尽管|AO →|=|BO →|,然而AO →与BO →的方向不相同,所以AO →≠BO →,④不正确.【答案】 ①②③二、解答题图2-1-79.设在平面上给定了一个四边形ABCD ,如图2-1-7所示,点K ,L ,M ,N 分别是边AB ,BC ,CD ,DA 的中点,求证:KL →=NM →.【证明】 ∵N ,M 分别是AD ,DC 的中点,则NM →=12AC →,同理KL →=12AC →,故KL →=NM →.图2-1-810.如图2-1-8所示菱形ABCD 中,对角线AC ,BD 相交于O 点,∠DAB =60°,分别以A ,B ,C ,D ,O 中的不同两点为起点与终点的向量中,(1)写出与DA →平行的向量;(2)写出与DA →模相等的向量.【解】 由题意可知,(1)与DA →平行的向量有:AD →,BC →,CB →;(2)与DA →模相等的向量有:AD →,BC →,CB →,AB →,BA →,DC →,CD →,BD →,DB →.11.一架飞机从A 点向西北飞行200 km 到达B 点,再从B 点向东飞行100 2 km 到达C 点,最后从C 点向南偏东60°飞行50 2 km 到达D 点,求飞机从D 点飞回A 点的位移.【解】 如图所示,由|AB →|=200 km ,|BC →|=100 2 km ,知C 在A 的正北100 2 km 处.又由|CD →|=50 2 km ,∠ACD =60°,知∠CDA =90°,所以∠DAC =30°,所以|DA →|=50 6 km.故DA →的方向为南偏西30°,长度为50 6 km.如图,已知四边形ABCD 中,M ,N 分别是BC ,AD 的中点,又AB →=DC →.求证:CN綊MA.【思路探究】 要证CN ∥MA 且CN =MA ,只需证四边形AMCN 是平行四边形,而四边形AMCN 是平行四边形,可以通过AN →=MC →得证.【自主解答】 由条件AB →=DC →可知AB =DC 且AB ∥DC ,从而四边形ABCD 为平行四边形,从而AD →=BC →.又M ,N 分别是BC ,AD 的中点,于是AN →=MC →,所以AN =MC 且AN ∥MC ,所以四边形AMCN 是平行四边形,从而CN =MA 且CN ∥MA ,即CN 綊MA.1.若AB →=DC →,且四点A ,B ,C ,D 不共线,则四边形ABCD 为平行四边形,反之,若四边形ABCD 为平行四边形,则AB →=DC →.2.利用向量相等或共线证明平行、相等问题:(1)证明线段相等,只需证明相应向量的长度(模)相等.(2)证明线段平行,先证明相应的向量共线,再说明线段不共线.在四边形ABCD 中,AB →=DC →,N 、M 分别是AD ,BC 上的点,且CN →=MA →,证明:四边形DNBM 是平行四边形.【证明】 ∵AB →=DC →,∴四边形ABCD 为平行四边形,∴AD ,BC 平行且相等.又∵CN →=MA →,∴四边形CNAM 为平行四边形,∴AN ,MC 平行且相等,∴DN ,MB 平行且相等,∴四边形DNBM 是平行四边形.。
向量的概念及表示教案

向量的概念及表示一、教学目标:1. 让学生理解向量的概念,知道向量是有大小和方向的量。
2. 让学生掌握向量的表示方法,包括字母表示和坐标表示。
3. 让学生学会向量的加减法和数乘运算。
二、教学内容:1. 向量的概念:向量是有大小和方向的量,可以用来表示物体的位移、速度等。
2. 向量的表示方法:(1)字母表示:用大写字母表示向量,如\( \vec{a} \),\( \vec{b} \) 等。
(2)坐标表示:用小写字母加上坐标轴上的坐标表示,如\( \vec{a} = (a_x, a_y) \),\( \vec{b} = (b_x, b_y) \) 等。
3. 向量的加减法:(1)向量加法:\( \vec{a} + \vec{b} = (\vec{a}_x + \vec{b}_x, \vec{a}_y + \vec{b}_y) \)。
(2)向量减法:\( \vec{a} \vec{b} = (\vec{a}_x \vec{b}_x, \vec{a}_y \vec{b}_y) \)。
4. 向量的数乘:(1)数乘向量:\( k\vec{a} = (ka_x, ka_y) \),其中\( k \) 是实数。
三、教学重点与难点:1. 重点:向量的概念、表示方法以及向量的加减法和数乘运算。
2. 难点:向量的坐标表示以及向量的加减法和数乘运算的坐标表示。
四、教学方法:1. 采用讲解法,引导学生理解向量的概念和表示方法。
2. 采用练习法,让学生通过例题和练习掌握向量的加减法和数乘运算。
3. 采用提问法,检查学生对向量知识的理解和掌握程度。
五、教学过程:1. 导入:通过生活中的实例,如物体位移、速度等,引入向量的概念。
2. 讲解向量的概念,引导学生理解向量有大小和方向。
3. 讲解向量的表示方法,包括字母表示和坐标表示。
4. 讲解向量的加减法,让学生掌握向量加减法的运算规则。
5. 讲解向量的数乘,让学生掌握向量数乘的运算规则。
苏教版数学高一《向量的概念及表示》名师导学案

四、课中研学
变题: 的相反向量有几个?
(10)若|a|=|b|,则
2.课本57页习题2.1 题 23.课本57页练习1、2、3、4
六、课堂小结
七、课后作业:教学与测试19课时
三、课前预习
1.向量的概念:
2.向量的表示方法记作:
3.向量的模:记作
4.两种特殊向量
零向量:单位向量:
注意:零向量的方向是任意的.零向量与零不一样.
5向量间的特殊关系
(1)平行向量:
规定0与任一向量平行.
(2)相等向量定义:
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)共线向量:
§2.1 向量的概念及表示
一、学习目标:
1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的
2.模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分
3.平行向量、相等向量和共线向量.
二、学习重点:
(1)向ห้องสมุดไป่ตู้概念的引入,会表示向量.
(2)理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,
高中数学必修四导学案:2.1.1向量的概念

数学中,把既有,又有的量叫做,把只有大小,没有方向的量称为数量.那么年龄、身高、体重、面积、体积、温度、时间、路程等是向量吗?
(探究三:向量的几何表示)
思考1:一条小船从A地出发,向西北方向航行15km到达B地,可以用什么方式表示小船的位移?
课题
2.1.1向量的概念
课型
合作课
学习目标
(一)知识与技能:
了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。
(二)过程与方法:
经历概念的形成过程,解题的思维过程,体验数形结合思想的指导作用。
(三)情感、态度与价值观:
通过实例,体会向量语言或运算在解决数学问题和实际问题中的工具作用。
(1)画图表示向量;
(2)求飞机从A地到达D地的位移所对应的向量的模和方向.
☆我的收获与困惑
反思:
(探究四:相等向量)大小方向的向量是相等向量。记作 。
(探究五:共线向量),叫做向量 的基线。
则称这些向量共线或平行。
共线向量的方向向量 平行与 ,记作
(探究六:零向量)模为0的向量叫做,记作,零向量的方向模为1个单位的向量叫做.
☆基础训练
已知飞机从A地按北偏东30°方向飞行2000km到达B地,再从B地按南偏东30°方向飞行2000km到达C地,再从C地按西南方向飞行1000 km到达D地.
思考4:用有向线段 表示向量,有向线段的方向表示向量的,有向线段 的长度就是指线段AB的长度,也称为向量 的或,它表示向量 的大小,记作,两个不同的向量可以比较大小吗?向量的模可以为0吗?可以为1吗?可以为负数吗?
思考5:如果表示向量的有向线段没有标注起点和终点字母,向量也可以用黑体字母a,b,c,…,表示向量,手写时写成
苏教版数学高一《向量的概念及表示》 精品导学案 苏教

若存在,分别写出这些向量.
教后反思:本堂课主要是让学生掌握向量的基本概念和表示。向量的基本要素为:大小和方向。本节课抓住这两方面让学生进行探究。在本节课中,我感到开始的概念对学生而言,应该多强调注意点,揭示本质特征,注意它的形成过程。本节课在举例方面做的较少,这在以后的教学中要重点关注.
(2)模相等的两个平行向量是相等的向量;
(3)若 和 都是单位向量,则 ;
(4)两个相等向量的模相等。
2、设O是正△ABC的中心,则向量 是________ .
1)相等向量 2)模相等的向量 3)共线向量
4)共起点的向量 5)相反向量
3.在如图所示的向量中 (小正方形的边长为1),是否存在:
(1)共线向量? (2)相反向量?
(1)试找出与 共线的向量;
(2)确定与 相等的向量;
(3) 与 向量相等吗?
例3.如图,在4×5的方格纸中有一个向量 ,分别以图中的格点为起点和终点作向量,其中与 相等的向量有多少个?与 长度相等的共线向量有多少个?( 除外)
三.学以致用:
1、在下列结论中,正确的是____________
(1)若两个向量相等,则它们的起点和终点分别重合;
盐都区2011年优质课评比数学学科课堂设计活页
上课时间:2011年12月27日 星期:二
课题:2.1向量的概念及表示
学习目标::1.了解向量的实际背景,理解平面向量的基本概念和几何表示;
2.理解零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念.
【使用说明】
阅读课本55~56页,回答下列问题
一.新课导学:
1.向量的定义
2.向量的表示方法
高一数学导学案全套

高一数学导学案第1课时向量的概念及表示数学建构(一)生成概念引导学生思考、讨论上面的问题,从而引出以下概念.(1)定义:既有大小又有方向的量叫向量,如位移、力、速度、加速度等.(2)向量的表示方法1°几何表示法:有向线段——具有一定方向的线段,如;2°字母表示法:如a.(3)模的概念:向量的大小称为向量的模,记作||,模是可以比较大小的.(4)两个特殊的向量1°零向量:长度(模)为0的向量,记作0.0的方向是任意的.2°单位向量:长度(模)为1个单位长度的向量叫做单位向量.(5)平行向量:方向相同或相反的非零..向量叫做平行向量.向量a,b平行, 记作a∥b.规定:0与任一向量平行.(6)相等向量:长度相等且方向相同的向量叫做相等向量.向量a,b相等,记作a=b.规定:0=0.(7)相反向量:长度相等且方向相反的向量叫做相反向量.(8)共线向量:任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量.如图3,=a,=b,=c,且a∥b∥c,则向量a,b,c可以平移到一条直线上.(图3)(二)理解概念(1)数量与向量的区别:数量只有大小,可以比较大小;向量既有方向又有大小,不能比较大小(2)0与0的区别:0是向量,是有方向的(虽然方向是任意的);0是数量,没有方向.(3)任意两个相等的非零向量都可用同一条有向线段表示,与起点无关.数学运用【例1】下列命题中正确的是(填序号).①向量a与b共线,b与c共线,则a与c也共线;②任意两个相等的非零向量的始点与终点是一平行四边形的四顶点;③向量a与b不共线,则a与b都是非零向量;④有相同起点的两个非零向量不平行.[3]【例2】已知O为正六边形ABCDEF的中心,在下图所标出的向量中:(例2)(1)试找出与共线的向量;(2)确定与相等的向量;(3)与相等吗?[4](变式1在图中标出的向量中,与向量模相等的向量有多少个?变式2如图,在以1cm×3cm方格纸中的格点为起点和终点的所有向量中,请写出以A为起点的不同向量,并求其大小.[5](变式2)课堂练习1.有下列命题:①向量的模是一个正实数;②两个相等向量必是两个平行向量;③坐标平面上的x轴和y轴都是向量;④温度有零上温度和零下温度,所以温度是向量.其中真命题的个数是.2.设点O为正方形ABCD的中心,在以正方形的顶点及点O为起点或终点的向量中,分别与,相等的向量是————————,3.某人从A点出发向东走了5m到达B点,然后改变方向往东北方向走了10m到达C点,到达C点后又改变方向向西走了10m到达D点,求的模.课堂小结1.向量的概念:定义、表示方法、零向量、单位向量.(三个定义,两种表示)2.向量的关系:平行向量(共线向量)、相等向量、相反向量.(三个关系)3.两种思想:数形结合思想、分类讨论思想.第2课时向量的加法数学建构一般地,如何定义向量的加法运算?1.向量的加法的含义如图2,已知向量a和b,在平面内任取一点O,作=a,=b,则向量叫做a与b 的和,记作a+b.即a+b=+=.(图2)求两个向量的和的运算叫做向量的加法.2.向量加法的三角形法则根据向量加法的定义得出的求向量和的方法,称为向量加法的三角形法则.说明三角形法则使用时应该“首尾相连”,即其中一个向量的起点应该与另一个向量的终点相连,若不“首尾相连”可通过平移使之“首尾相连”.3.向量运算(类比于数的加法)的法则对于零向量和任一向量a,有a+0=0+a=a.对于相反向量,有a+(-a)=(-a)+a=0.向量的加法满足交换律、结合律:a+b=b+a,(a+b)+c=a+(b+c).通过作图方式验证向量的加法满足交换律.如图3,作▱OABC,使=a,=b,则==a,==b.因为=+=a+b,=+=b+a,所以a+b=b+a.(图3)4.向量加法的平行四边形法则图3还表明,对于两个不共线的非零向量a,b,我们还可以作平行四边形来求两个向量的和.分别记作=a,=b,以OA,OB为邻边作▱OABC,则以O为起点的对角线就是向量a与b的和.我们把这种方法叫做向量加法的平行四边形法则.说明平行四边形法则使用时应该“共起点”,即其中一个向量的起点应该与另一个向量的起点相同,若不“共起点”可通过平移使之“共起点”.同样,根据图4可以验证,向量的加法满足结合律.(图4)思考如果平面内有n个向量依次首尾连接组成一条封闭折线,那么这n个向量的和是什么?数学运用)【例2】如图,已知D,E,F分别是△ABC三边AB,BC,CA的中点,求证:++ =0.(例2)【例3】在长江南岸某渡口处,江水以12.5km/h的速度向东流,渡船的速度为25km/h.渡船要垂直地渡过长江,其航向应如何确定?(例3)四、课堂练习1.在矩形ABCD中,||=,||=1,则向量的模等于______2.化简:(1)++=_____-; (2)++++=___3.在正六边形ABCDEF中,=a,=b,则=________(用a,b表示).4.在Rt△ABC中,∠A=90°,若||=3,||=4,则|+|=_______.第3课时向量的减法数学建构问题1类似于实数的减法,你能定义向量的减法吗?向量的减法是向量的加法的逆运算.若b+x=a,则向量x叫做a与b的差,记为a-b,求两个向量差的运算,叫做向量的减法.问题2类似于向量的加法,你能作出向量减法的几何表示吗?作法:如图1、图2,在平面内任取一点O,作=a,=b.(图1)(图2)因为+=,即b+=a,所以=a-b.这就是说,当向量a,b起点相同时,从b的终点指向a的终点的向量就是a-b.由向量加法结合律可知,[a+(-b)]+b=a+[(-b)+b]=a,所以a-b=a+(-b).这表明:减去一个向量等于加上这个向量的相反向量.三、数学运用【例1】如图,已知向量a,b,求作a-b.[3](例1)(例2)【例2】如图,O是▱ABCD对角线的交点,若=a,=b,=c,试证明:b+c-a=.四、课堂练习【例3】证明:对于任意两个向量a,b都有||a|-|b||≤|a+b|≤|a|+|b|.1.在四边形ABCD中,=+,则四边形ABCD 的形状为____________2.下列各式中,能化简为的是__________(填序号).①+(-);②(-)+(-);③--;④-+.3.在△ABC中,D,E分别为AB,AC的中点,则-=_______4.设D是正三角形ABC的BC边中点,若|-|=1,则|-|=______.第4课时向量的数乘一、问题情境一艘船上午8点从某港口出发,以v km/h的速度向南偏东45°的方向航行,下午1点半该船到达何处?若设该船每小时的位移为a,则该船5.5小时的位移应如何表示?二、数学建构问题1位移为5.5a,它是向量吗,有什么特点?问题2向量5.5a可以看成什么运算的结果?问题3一般地,实数λ与向量a的积是一个向量,记作λa,叫做向量的数乘, 那它的方向、大小与向量a有什么关系?(1)|λa|=|λ‖a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;特别地,当λ=0或a=0时,λa=0.问题4类比于实数的运算,向量的数乘有哪些运算律?根据向量数乘的定义,可以验证向量的数乘满足下列运算律:(1)λ(μa)=(λμ)a; (2)(λ+μ)a=λa+μa; (3)λ(a+b)=λa+λb.三、数学运用【例1】如图(1),已知向量a,b,c,求作向量3a-2b+c.【例2】计算:(1) 3(a-b)-2(a+2b);(2) 2(2a+6b-3c)-3(-3a+4b-2c).【例3】如图,在平行四边形ABCD中,M是AB的中点,N在BD上且BN=BD, 求证:M,N,C三点共线.[4]一般地,对于两个向量a(a≠0)和b,有如下的向量共线定理:如果有一个实数λ,使b=λa(a≠0),那么b与a(a≠0)是共线向量;反之,如果b与a(a≠0)是共线向量,那么有且只有一个实数λ,使b=λa.证明根据向量数乘的定义可知,对于两个向量a(a≠0)和b,如果有一个实数λ,使b=λa(a≠0),那么b与a(a≠0)是共线向量.反过来,如果向量b与a是共线向量,当b与a同方向时,令λ=;当b与a反方向时,令λ=-;若b=0,则令λ=0.从而有一个实数λ,使b=λa.假设有两个实数λ,λ',使b=λa,b=λ'a,则b-b=(λ-λ')a=0,即|λ-λ'‖a|=0.因为|a|≠0,所以λ-λ'=0,即λ=λ'.从而有且只有一个实数λ,使b=λa.四、课堂练习1.计算:-3(4a-5b)=-_________,2(2a-3b)-4(3a-2b)= -_________,.2.若向量a,b,c满足(4a-3c)+3(5c-4b)=0,则c=-_________,.3.已知点R在线段PQ上,且=,设=λ,则λ=-_________,.4.已知向量a=e1-e2,b=-3(e2-2e1),求证:a与b是共线向量.五、课堂小结1.理解并掌握向量数乘的定义及运算律.2.理解向量共线定理,并能运用它判断两个向量是否共线.第5课时向量线性运算习题课问题情境梳理知识结构数学运用【例1】设e是非零向量,若a+b=2e,2a-b=-3e,向量a与b是否平行?【例2】如图,设P,Q是线段AB的三等分点,若=a,=b,试用a,b表示向量, .(例2)【例3】如图,在△OAB中,C为直线AB上一点,=λ(λ≠-1),求证:=.(例3)【例4】已知点G为△ABC的重心,过G作直线与AB,AC两边分别交于M,N 两点,且=x,=y,求+的值.四、课堂练习1.下列命题中真命题的个数为1.①若|a|=|b|,则a=b或a=-b;②若=,则A,B,C,D是一个平行四边形的四个顶点;③若a=b,b=c,则a=c;④若a∥b,b∥c,则a∥c.2.在△ABC中,=a,=b,M是CB的中点,N是AB的中点,且CN,AM交于点P,则可用a,b 表示为________________3.设=x+y,且A,B,C三点共线(该直线不过点O),则x+y=_____-4.已知x,y∈R,向量a,b不共线,若(x+y-2)a+(x-y)b=0,则x=_____,y=_____.五、课堂小结1.平面向量线性运算法则的巩固、强化,线性运算几何意义的理解.2.通过向量线性运算进一步体会“向量是既有大小又有方向的量”,同时感受向量在求解平面几何问题中的灵活应用.第6课时平面向量基本定理一、问题情境[3]1.情境:火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度(如下图所示).在力的分解的平行四边形法则中,我们看到一个力可以分解为两个不共线方向的力的和.(图1)2.问题:平面内任一向量是否可以用两个不共线的向量来表示?二、数学建构设e1,e2是平面内两个不共线的向量.活动1请同学们作出向量=2.5e1+1.5e2.[4]活动2a是平面内的任一向量,能否通过作图用e1,e2表示呢?[5]如图2,在平面内任取一点O,作=e1,=e2,=a.过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交直线OB于N,则有且只有一对实数λ1,λ2,使得=λ1e1,=λ2e2.因为=+,所以a=λ1e1+λ2e2.(图2)问题1是不是平面内每一个向量都可以分解成两个不共线的向量?这样的分解是否唯一?问题2对于平面上两个不共线的向量e1,e2,是不是平面上所有的向量都可以用它们来表示?[6]平面向量基本定理如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.我们把不共线的向量e1,e2,叫做表示这一平面内所有向量的一组基底.一个平面向量用一组基底e1,e2表示成a=λ1e1+λ2e2的形式,我们称它为向量的分解.当e1,e2互相垂直时,就称为向量的正交分解.定理理解(1)基底e1,e2必须不共线;(2)λ1,λ2是被e1,e2,a唯一确定的实数对.思考平面向量基本定理与前面所学的向量共线定理,在内容和表述形式上有什么区别和联系?(平面向量基本定理是向量共线定理的推广)三、数学运用【例1】如图,▱ABCD的对角线AC和BD交于点M,=a,=b,试用基底a,b 表示,,和.(例1)变式在▱ABCD中,E和F分别是边CD和BC的中点,=λ+μ,其中λ,μ∈R, 则λ+μ=___【例2】设e1,e2是平面内的一组基底,如果=3e1-2e2,=4e1+e2,=8e1-9e2, 求证:A,B,D三点共线.[9]变式设两个非零向量e1和e2不共线.(1)如果=e1-e2,=3e1+2e2,=-8e1-2e2,求证:A,C,D三点共线;(2)如果=e1+e2,=2e1-3e2,=2e1-k e2,且A,C,D三点共线,求k的值.【例3】如图,在△ABC中,M是BC的中点,点N在AC上,且AN=2NC,AM与BN 相交于点P,求AP∶PM的值.(例3)(例4)【例4】如图,在△OAB中,=,=,AD与BC交于点M,设=a,=b.(1)用a,b表示;(2)在线段AC上取一点E,在线段BD上取一点F,使EF过M点,设=p,=q,求证:+=1.四、 课堂练习 1. 在▱ABCD 中, =a ,=b ,=3, M 为BC 的中点,则=-_________, (用a , b 表示).2. 在△ABC 中,D 是AB 边上一点,若=2, =+λ,则λ=-_________,3. 设a , b 是不共线向量,且a +2b =(x-1)a +y b ,则x=-_________,,y=-_________,.4. 已知非零向量a , b 不共线,若m a +b 与a -n b 平行,则mn=.第7课时 平面向量的坐标运算(1)一、 问题情境我们知道,在平面直角坐标系内,点M 可以用坐标(x , y )表示.这种表示在确定点M 的同时也确定了的长度及的方向.换句话说,向量也可以用坐标来表示.二、 数学建构问题1平面向量基本定理的内容是什么?[2]问题2 如图1,分别取与x 轴、y 轴方向相同的两个单位向量i , j 作为基底,那么如何用i , j 表示呢?(=3i +4j )(图1)(图2)对于向量a ,如图2,根据平面向量基本定理又如何表示?(由平面向量基本定理可知有且只有一对实数x , y ,使得a =x i +y j )归纳1 平面向量的坐标表示一般地,对于向量a ,如图2,当它的起点移至原点O 时,其终点坐标(x , y )称为向量a 的(直角)坐标,记作a =(x , y ).探究1 相等向量的坐标有关系吗?探究2 将表示向量的有向线段的起点移至坐标原点后有何结论呢?[3] 问题3 当向量用坐标表示时,向量的加、减、数乘运算也都可以用相应的坐标来表示吗?[4]设a =(x 1, y 1), b =(x 2, y 2),那么a +b =(x 1, y 1)+(x 2, y 2)=(x 1i +y 1j )+(x 2i +y 2j )=(x 1+x 2)i +(y 1+y 2)j =(x 1+x 2, y 1+y 2).同理得a -b =(x 1-x 2, y 1-y 2),λa =(λx 1,λy 1).归纳2 已知向量a =(x 1, y 1), b =(x 2, y 2)和实数λ,那么a +b =(x 1+x 2, y 1+y 2),a -b =(x 1-x 2, y 1-y 2), λa =(λx 1,λy 1).问题4 向量的坐标与它对应的有向线段的起点、终点坐标有何关系?如图3,已知A(x1,y1),B(x2,y2),则=-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1).(图3)归纳3一个向量的坐标等于该向量终点的坐标减去起点的坐标.三、数学运用【例1】如图,已知O是坐标原点,点A在第一象限,||=4,∠xOA=60°,求向量的坐标.【例2】已知a=(2, 1),b=(-3, 4),求a+b,a-b, 3a+4b的坐标.变式已知a=(x, 2),A(1,-1),B(-2,y),且a=,求x,y的值.【例3】(1)已知a=(-1, 2),b=(1,-1),c=(3,-2),且有c=p a+q b,试求实数p,q的值;(2)已知a=(2, 1),b=(1,-3),c=(3, 5),把a,b作为一组基底,试用a,b表示c.变式已知a=(2,-4),b=(-1, 3),c=(6, 5),p=a+2b-c,试以a,b为基底求p.【例4】已知P1(x1,y1),P2(x2,y2),P是直线P1P2上一点,且=λ(λ≠-1), 求点P的坐标.[8]*【例5】已知平行四边形ABCD的三个顶点的坐标分别是A(-2, 1),B(-1, 3),C(3, 4),求顶点D的坐标.(例5)变式已知平面上三点的坐标分别为A(-2, 1),B(-1, 3),C(3, 4),求点D的坐标,使这四点构成平行四边形的四个顶点.四、课堂练习1.已知向量a=(1, 1),b=(1,-1),则向量a-b=________.2.已知O是坐标原点,A(-2, 1),B(4,-3),且-3=0,则=_______3.在平面直角坐标系xOy中,四边形ABCD的边AB∥DC,AD∥BC,已知点A(-2,0),B(6,8),C(8,6),则点D的坐标为____________.第8课时平面向量的坐标运算(2)一、问题情境前面我们如何判定向量a,b平行(或共线)?向量a=(1,-4)与b=(-2, 8)是否平行?二、数学建构活动1引导学生回顾平面向量共线定理.如果有一个实数λ,使b=λa(a≠0),那么b与a是共线向量;反之,如果b与a(a≠0)是共线向量,那么有且只有一个实数λ,使b=λa.活动2判断向量a=(1,-4)与b=(-2, 8)是否平行?[3]归纳一般地,设向量a=(x1,y1),b=(x2,y2)(a≠0),如果a∥b,那么x1y2-x2y1=0;反过来,如果x1y2-x2y1=0,那么a∥b.概念理解当a=0时,由于0与任意向量平行,故x1y2-x2y1=0恒成立.三、数学运用【例1】(教材第80页例5)已知a=(1, 0),b=(2, 1),当实数k为何值时,向量k a-b 与a+3b平行?并确定此时它们是同向还是反向.[5]变式1已知a=(2, 3),b=(-1, 2).若k a-b与a-k b平行,求实数k的值.变式2已知点A(-1,-1),B(1, 3),C(1, 5),D(2, 7),向量与平行吗?直线AB平行与直线CD吗?【例2】已知点O,A,B,C的坐标分别为(0, 0),(3, 4),(-1, 2),(1, 1),是否存在常数t,使得+t=成立?解释你所得结论的几何意义.[6]变式已知O(0, 0),A(1, 2),B(4, 5),点P坐标满足=+t(t∈R).(1)t为何值时,点P在x轴上?t为何值时,点P在y轴上?(2)四边形OABP能否构成一个平行四边形?若能,求t的值;若不能,请说明理由.【例3】已知点A(x, 0),B(2x, 1),C(2,x),D(6, 2x).(1)求实数x的值,使向量与共线;(2)当向量与共线时,点A,B,C,D是否在一条直线上?[【例4】在平面直角坐标系中,O为坐标原点,点A(-2, 1),B(1, 3),求线段AB的中点M和三等分点P,Q(点P靠近点A)的坐标.四、课堂练习1.当x=_____时,向量a=(2,-3)与b=(x, 9)平行.2.已知向量a=(1, 1),b=(2,x).若a+b与4b-2a平行,则实数x的值是_______.3.已知向量=(3,-4),=(6,-3),=(5-m,-3-m),若点A,B,C构成三角形,则实数m的取值范围为____________第9课时向量的数量积(1)一、问题情境问题1前面已经学过向量加法、减法和实数与向量的乘法,它们有一个共同的特点,即运算的结果还是向量,那么向量与向量之间有没有“乘法”运算呢?如果有,这种“乘法”运算的结果是什么量呢?问题2物理学中,一个物体在力F的作用下发生了位移s,那么该力对此物体所做的功是如何计算的?(图1)通过对物理公式:W=|F‖s|cosθ(其中θ是F与s的夹角)的分析,得到如下结论:(1)功W是两个向量F和s的某种运算结果,而且这个结果是一个数量;(2)功不仅与力和位移的大小有关,而且还与它们的方向有关,具体地,它和力F与位移s的夹角有关.二、数学建构1.平面向量数量积(内积)已知两个非零向量a和b,它们的夹角是θ,我们把数量|a‖b|cosθ叫做向量a和b 的数量积(内积),记作a·b,即a·b=|a‖b|cosθ.规定:零向量与任一向量的数量积为零.可见,功W就是两个向量F和s的数量积.2.两个向量的夹角问题3向量数量积(内积)的定义中,提到了“两个向量的夹角”的概念,它究竟代表什么意义呢?从问题情境中的力和位移的夹角出发,得到下面的结论:对于两个非零向量a和b,作=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b 的夹角.(这里要特别强调找向量的夹角两向量要移到共同的起点)当θ=0°时,a与b同向;当θ=180°时,a与b反向;当θ=90°时,则称向量a与b垂直, 记作a⊥b.理解概念(1)当a≠0且b≠0时,a·b=|a‖b|cosθ;而当a=0或b=0时,由于零向量的方向是不确定的,因此我们不定义零向量与其他向量的夹角,为了定义的完整性.特别规定:零向量与任一向量的数量积为零.(2)两个向量的数量积的结果是一个实数,而不是向量,符号由cosθ的符号所决定.(3)向量的数量积a·b中的符号“·”,既不能省略,也不能写成“×”,a×b是向量的另外一种运算,不是数量积.三、数学运用【例1】已知向量a与b的夹角为θ,|a|=2,|b|=3,分别在下列条件下求a·b:(1)θ=135°;(2)a∥b;(3)a⊥b.问题1在理解例1的基础上,思考数量积有哪些性质?[3]由平面向量数量积的定义和向量夹角的定义可知:(1)当a与b同向时,a·b=|a‖b|;(2)当a与b反向时,a·b=-|a‖b|;(3)a·a=a2=|a|2,|a|=;(4)当a⊥b时,a·b=0.问题2定义了向量的数量积运算,那么它的运算遵循什么规律呢?即向量数量积的运算律是什么?设向量a,b,c和实数λ,向量的数量积满足下列运算律:(1)a·b=b·a;(2)(λa)·b=a·(λb)=λ(a·b)=λa·b;(3)(a+b)·c=a·c+b·c.【例2】已知向量a与b的夹角为120°,|a|=2,|b|=3,求: (1)(a+b)·(a-b);(2)|a-b|.变式根据例2中的条件求|a+2b|.【例3】已知x=a+b,y=2a+b,且|a|=|b|=1,a⊥b.(1)求|x|,|y|;(2)若x与y的夹角为θ,求cosθ的值.四、课堂练习1.有下列命题:①若a·b=0,则a=0,或b=0;②若a⊥b,则a·b=0;③若a≠0,且a·b=a·c,则b=c;④对任意向量a,都有a2=|a|2.其中正确的是_________.2.在▱ABCD中,已知||=4,||=3,∠DAB=60°,那么·=_____,·=________.3.已知向量a,b满足|a|=2,|b|=1,且a与b的夹角为120°,求b·(2b-3a)的值.第10课时向量的数量积(2)二、数学建构1.投影的概念定义:|b|cosθ叫做向量b在a方向上的投影.(一)理解概念(图1)①投影也是一个数量,不是向量;②当θ为锐角时(图1),与a同向,投影为正值;当θ为钝角时(图2),与a反向,投影为负值;当θ为直角时(图3),投影为0;当θ=0°时,投影为|b|;当θ=180°时,投影为-|b|.(图2)(图3)问题2向量的数量积的几何意义是什么?数量积a·b等于a的长度与b在a方向上的投影|b|cosθ的乘积.(二)巩固概念练习已知向量a,b满足|a|=8,|b|=3,它们的夹角为θ.当θ=30°时,a在b上的投影为_______;当θ=90°时,a在b上的投影为________;当θ=120°时,a在b上的投影为_____-.2.对上节课运算律的简要证明(1)交换律:a·b=b·a.(2)数乘结合律:(λa)·b=λ(a·b)=a·(λb).(3)分配律:(a+b)·c=a·c+b·c.问题3向量的数量积是否满足结合律? (a·b)c=a(b·c)?三、数学运用【例1】已知|a|=5,|b|=4,a与b的夹角为60°,问:当k为何值时,(k a-b)⊥(a+2b)?【例2】已知a,b都是非零向量,且a+3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b的夹角.【例3】若O为△ABC所在平面内任意一点,且满足(-)·(+-2)=0, 试判断△ABC的形状.变式用向量方法证明:菱形对角线互相垂直.四、课堂练习1.在△ABC中,已知||=||=4,且·=8,则△ABC的形状是________.2.设向量a,b满足|a|=|b|=1,a·b=-,则|a+2b|=________.3.已知向量a,b满足(a+2b)·(a-b)=-6,且|a|=1,|b|=2,则a与b的夹角为________.4.已知a与b为两个不共线的单位向量,k为实数,若向量a+b与k a-b垂直,则k=________五、课堂小结1.向量数量积的几何意义.2.能运用向量数量积处理一些常见的问题,如①向量模的计算;②向量夹角的计算;③判断三角形的形状等.第11课时向量的数量积(3)一、问题情境问题1已知两个向量a=(x1,y1),b=(x2,y2),如何用a和b的坐标来表示它们的数量积a·b呢?二、数学建构设x轴上的单位向量为i,y轴上的单位向量为j,则i·i=1,j·j=1,i·j=j·i=0.∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1i·(x2i+y2j)+y1j·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1j·i+y1y2j2=x1x2+y1y2.这就是说:两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2.问题2已知a=(x,y),如何将|a|用其坐标表示?∵a·a=a2=|a|2=x2+y2,∴|a|==.问题3设A(x1,y1),B(x2,y2),如何将||用A,B的坐标表示?设表示向量a的有向线段的起点是A(x1,y1),终点是B(x2,y2),则=a=(x2,y2)-(x1,y1)=(x2-x1,y2-y1),∴||=|a|=.这就是通过向量求模来推导平面内两点间的距离公式.问题4前面学过的向量的夹角、平行、垂直公式可以用坐标表示吗?(1)两个非零向量a=(x1,y1),b=(x2,y2),θ为a和b的夹角,则由向量数量积的定义得cosθ==.(2)a⊥b⇔a·b=0,可以写成a⊥b⇔x1x2+y1y2=0.(3)a∥b(b≠0)⇔存在唯一的实数λ,使得a=λb,可以写成a∥b⇔x1y2-x2y1=0.[3]三、数学运用【例1】已知向量a=(2, 1),b=(3,-1),求:(1)(3a-b)·(a-2b);(2)a与b的夹角θ.【例2】已知向量a=(1, 1),b=(0,-2),当k为何值时: (1)k a-b与a+b共线;(2)k a-b与a+b的夹角为120°.【例3】在△ABC中,设=(2, 3),=(1,k),且△ABC是直角三角形,求k的值变式将例3中△ABC是直角三角形改为钝角三角形,其他条件不变,求k的取值范围.四、课堂练习1.已知向量a=(-2, 1),b=(1,-3),则a·b=-5,向量a与b的夹角为________.2.已知a+b=(-4, 6),a-b=(2,-8),则a·b=________3.已知向量a=(-3, 2),b=(-1, 0).若λa+b与a-2b垂直,则实数λ=________4.已知平面内四点A(-1, 0),B(0, 2),C(4, 3),D(3, 1),则四边形ABCD________ (填序号,从①正方形,②矩形,③菱形,④平行四边形中选择).5.已知△ABC的3个顶点为A(1, 2),B(4, 1),C(0,-1),求证:△ABC是等腰直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量的概念及表示
【学法指导】
1.阅读探究课本P71-P73的基础知识和例题(15分钟),完成课后练习和习题2-1.自主高效预习,提高自己的阅读理解能力;
2.完成预习自学,然后结合课本基础知识和例题,完成预习自测题;对合作探究部分认真审题,做不好的上课时组内讨论。
3.将预习中不能解决的问题标识出来,并写到后面“我的疑惑”处,准备课上讨论质疑。
【学习目标】
1.了解向量的实际背景,会用字母表示向量,理解向量的几何表示。
2.理解零向量、单位向量、平行向量、相等向量、共线向量,相反向量的概念。
【学习过程】
一 . 预习自学(我学习,我主动,我参与,我收获。
)
1.我们把____________的量叫做向量;把 的线段叫做有向线段,以A 为起点,B 为终点的有向线段记作____。
2.向量可以用有向线段表示,向量AB 的长度(或称____)记作_____,长度为零的向量叫做____向量,记作0,长度等于1个单位的向量,叫做__ 向量;
3.______________________的非零向量叫做平行向量,向量a 与b 平行,记作______,规定0与任一向量平行,即对任意向量a 都有 ;
4.由于任一组平行向量可以移动到同一直线上,平行向量也叫_______向量.
5.______________________的向量叫做相等向量;若a 与b 相等,记作__ ; 【预习自测】
1.下列各量中不是向量的是 ( )(考察向量的概念) A. 浮力 B.风速 C.位移 D.密度 E.温度 F.体积
2.下列说法中错误的是( )
(A )零向量是没有方向的;(B )向量0=0;
(C) 零向量与任一向量平行; (D) 零向量的方向是任意的。
3.给出下列命题:○1向量AB 和向量BA 的长度相等;○2若|a |=|b |,则a =b ;○3零向量的长度为0;○4 若a 与
b 平行同向,且a >b ,则a >b
其中正确的个数是( )
(A )0 (B )1 (C )2 (D )3
【我的疑惑】 【我的收获】 二.合作探究(我探究,我分析,我思考,我提高。
) 探究一:判断下列命题是否正确:
(1)共线的向量,若起点不同,则终点一定不同。
(2)AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上; (3)若//a b ,//b c ,则//a c ;
(4)方向为南偏西 的向量与北偏东 的向量是共线向量.
探究二:给出下列六个命题:○1两个向量相等,则它们的起点相同,终点相同;○3若AB =DC ,则四边形ABCD 是平行四边形;○4平行四边形ABCD 中,一定有AB =DC ;○5若m n =,n k =,则m k =;(6)相等的向量一定是共线向量 (7)单位向量都相等
其中不正确的命题是 _______________
探究三 如图O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形。
在图中所示的向量中: (1)分别写出与AO ,BO 相等的向量; (2)写出与AO 共线的向量; (3)写出与AO 的模相等的向量; (4)向量AO 与CO 是否相等?
【课堂小结】
1.知识方面
2.数学思想方法 ※ 自我评价 你完成本节导学案的情况为 ( ) A. 很好 B. 较好 C. 一般 D. 较差
F
E
D
C
A
B
O。