2018年湖南省娄底市中考数学试卷-答案
2018年湖南省娄底市中考数学试卷-答案

湖南省娄底市2018年中考数学试卷数学答案解析一、选择题1.【答案】C【解析】直接利用相反数的定义分析得出答案.解:2018的相反数是:.故选:C.2018-【考点】相反数2.【答案】B【解析】众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.解:这组数据中2出现次数最多,有3次,所以众数为2,故选:B.【考点】众数.3.【答案】B【解析】科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数10n a ⨯11|0|a ≤<变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当1>原数的绝对值时,n 是负数.解:,故选:B.1<6210 2.110=⨯万【考点】科学记数法—表示较大的数4.【答案】D【解析】各式计算得到结果,即可作出判断.解:A 、原式,不符合题意;B 、原式,不符合题意;7a =69a =C 、原式,不符合题意;D 、原式,符合题意,故选:D.222a ab b =++26a a =--【考点】整式的混合运算.5.【答案】A【解析】先计算判别式得到,再利用非负数的性质得到,然后可判断2234(1)8k k k ∆=+⨯=+-+()0∆>方程根的情况.解:,222342918k k k k k ∆=+⨯=+-+=++()()∵,210k +()≥∴,即,2180k ++()>0△>所以方程有两个不相等的实数根.故选:A.【考点】根的判别式.6.【答案】B【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式,得:,22x x -≥-2x ≤解不等式,得:,314x ->-1x ->则不等式组的解集为,12x -<≤所以不等式组的最小整数解为0,故选:B.【考点】一元一次不等式组的整数解.7.【答案】B【解析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上边看立体图形得到俯视图即可得立体图形的俯视图是, 故选:B.【考点】简单组合体的三视图.8.【答案】C【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出的范围.解:x 根据题意得:,2030x x -≥⎧⎨-≠⎩解得:且2x ≥ 3.x ≠故选:C.【考点】函数自变量的取值范围.9.【答案】A【解析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.解:.223324y x x =--+=-()化简,得,24y x =-故选:A.【考点】一次函数图象与几何变换.10.【答案】C【解析】AB 中水柱的长度为AC ,CH 为此时水柱的高,设,竖直放置时短软管的底面积为S ,易CH x =得,细管绕A 处顺时针方向旋转到AB 位置时,底面积为2S ,利用水的体积不变得到2AC CH x ==60︒,然后求出x 后计算出AC 即可.解:AB 中水柱的长度为AC ,CH 为此时水柱的高,266x S x S S S ⋅+⋅=⋅+⋅设,竖直放置时短软管的底面积为S ,CH x =∵,906030BAH ∠=︒-︒=︒∴,2AC CH x ==∴细管绕A 处顺时针方向旋转到AB 位置时,底面积为2S ,60︒∵,解得,266x S x S S S ⋅+⋅=⋅+⋅4x =∴,28AC x ==即中水柱的长度约为8 cm.AB 故选:C.【考点】旋转的性质.11.【答案】D【考点】勾股定理的证明、解直角三角形.【解析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC ,然后根据正弦和余弦的定义即可求和的值,进而可求出的值.解:∵小正方形面积为49,大正方形面积为169, sin αcos αsin αcos α-∴小正方形的边长是7,大正方形的边长是13,在中,,Rt ABC 222AC BC AB +=即, ()22AC 7AC 132++=整理得,,AC27AC 600+-=解得,(舍去),AC 5=AC 12=-∴, 12BC ==∴,, 5sin 13AC AB α==12cos 13BC AB α==∴, 5127sin αcos α131313-=-=-故选:D.12.【答案】C【解析】根据题意可以判断各个选项是否正确,从而可以解答本题.解: ,()110101404f ⎡⎤⎡⎤-=-=⎢⎥⎢⎥⎦⎣⎦+⎣=故选项A 正确; ,故选项B 正确;C 、当时, 4141141444()(44)k k k k k f k f k ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-==-=⎢⎥⎢⎥⎢++++⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣=⎦+++k =3,而,故选项C 错误; 41131110()44f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦()31f =D 、当(n 为自然数)时,,当k 为其它的正整数时,,所以D 选项的结论正确; 34k n =+()1f k =()0f k =故选:C.【考点】解一元一次不等式组、函数值.二、填空题13.【答案】1【解析】直接利用反比例函数的性质结合系数k 的几何意义得出答案.解:∵点P 是反比例函数图象2y x =上的一点,轴于点A ,PA x ⊥∴的面积为:. POA △11•122AO PA xy ==故答案为:1.【考点】反比例函数系数k 的几何意义、反比例函数图象上点的坐标特征.14.【答案】<【解析】过点作于,作于,作于,根据内心的定义可得P PD AB ⊥D PE AC ⊥E PF BC ⊥F ,再根据三角形面积公式和三角形三边关系即可求解.解:过点作于D ,作PD PE PF ==P PD AB ⊥于,作于,PE AC ⊥E PF BC ⊥F ∵是的内心,P ABC △∴,PD PE PF ==∵,,,, 112S AB PD = 212S BC PF = 312S AC PE = AB BC AC +<∴.123S S S +<故答案为:.<【考点】三角形的内切圆与内心、三角形三边关系、角平分线的性质.15.【答案】. 16【解析】先画出树状图展示所有6种等可能的结果数,再找出选修地理和生物的结果数,然后根据概率公式求解.解:画树状图如下:由树状图可知,共有6种等可能结果,其中选修地理和生物的只有1种结果, 所以选修地理和生物的概率为, 16故答案为:. 16【考点】列表法与树状图法. 16.【答案】6.【解析】先利用证明,得出,HL Rt Rt ADB ADC △≌△12232ABC ABD S S AB DE AB DE AB ==⨯⋅=⋅= 又,将代入即可求出.解:在与中, 12ABC S AC BF =⋅ AC AB =BF Rt ADB △Rt ADC △, AB AC AD AD =⎧⎨=⎩∴,R Rt ADB ADC △≌△。
2018年湖南省娄底市中考数学试卷及答案

2018年湖南省娄底市中考数学试卷及答案一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.(3分)2018的相反数是()A.B.2018 C.﹣2018 D.﹣2.(3分)一组数据﹣3,2,2,0,2,1的众数是()A.﹣3 B.2 C.0 D.13.(3分)随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A.0.21×107B.2.1×106C.21×105D.2.1×1074.(3分)下列运算正确的是()A.a2•a5=a10B.(3a3)2=6a6C.(a+b)2=a2+b2D.(a+2)(a﹣3)=a2﹣a﹣65.(3分)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定6.(3分)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.27.(3分)如图所示立体图形的俯视图是()A. B. C.D.8.(3分)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠39.(3分)将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣210.(3分)如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度约为()A.4cm B.6cm C.8cm D.12cm11.(3分)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=()A.B.﹣C.D.﹣12.(3分)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k) C.f(k+1)≥f(k)D.f(k)=0或1二、填空题(木大题共6小题,每小题3分,满分18分)13.(3分)如图,在平面直角坐标系中,O为坐标原点,点P是反比例函数y=图象上的一点,PA⊥x轴于点A,则△POA的面积为.14.(3分)如图,P是△ABC的内心,连接PA、PB、PC,△PAB、△PBC、△PAC 的面积分别为S1、S2、S3.则S1S2+S3.(填“<”或“=”或“>”)15.(3分)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.16.(3分)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC 于点F,DE=3cm,则BF=cm.17.(3分)如图,已知半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,半径OC=1,则AE•BE=.18.(3分)设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a n﹣1)2,则a2018=.三、解答题(本大题共2小题,每小题6分,共12分)19.(6分)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°.20.(6分)先化简,再求值:(+)÷,其中x=.四、解答题(本大题共2小题,每小题8分,共16分)21.(8分)为了取得贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为A、B、C、D四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:(1)求样本容量;(2)补全条形图,并填空:n=;(3)若全市有5000人参加了本次测试,估计本次测试成绩为A级的人数为多少?22.(8分)如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了测量高楼BC上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,sinα=,在顶端E点测得A的仰角为45°,求发射塔AB的高度.五、解答题(本大题共2小题,每小题9分,共18分)23.(9分)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?24.(9分)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.六、解答题(木本大题共2小题,每小题10分,共20分)25.(10分)如图,C、D是以AB为直径的⊙O上的点,=,弦CD交AB于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;(2)求证:BC2﹣CE2=CE•DE;(3)已知OA=4,E是半径OA的中点,求线段DE的长.26.(10分)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.2018年湖南省娄底市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.【解答】解:2018的相反数是:﹣2018.故选:C.2.【解答】解:这组数据中2出现次数最多,有3次,所以众数为2,故选:B.3.【解答】解:210万=2.1×106,故选:B.4.【解答】解:A、原式=a7,不符合题意;B、原式=9a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a2﹣a﹣6,符合题意,故选:D.5.【解答】解:△=(k+3)2﹣4×k=k2+2k+9=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,所以方程有两个不相等的实数根.故选:A.6.【解答】解:解不等式2﹣x≥x﹣2,得:x≤2,解不等式3x﹣1>﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的最小整数解为0,故选:B.7.【解答】解:从上边看立体图形得到俯视图即可得立体图形的俯视图是,故选:B.8.【解答】解:根据题意得:,解得:x≥2且x≠3.故选:C.9.【解答】解:y=2(x﹣2)﹣3+3=2x﹣4.化简,得y=2x﹣4,故选:A.10.【解答】解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,∵∠BAH=90°﹣60°=30°,∴AC=2CH=x,∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,∵x•S+x•2S=6•S+6•S,解得x=4,∴AC=2x=8,即AB中水柱的长度约为8cm.故选:C.11.【解答】解:∵小正方形面积为49,大正方形面积为169,∴小正方形的边长是7,大正方形的边长是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC﹣60=0,解得AC=5,AC=﹣12(舍去),∴BC==12,∴sinα==,cosα==,∴sinα﹣cosα=﹣=﹣,故选:D.12.【解答】解:f(1)=[]﹣[]=0﹣0=0,故选项A正确;f(k+4)=[]﹣[]=[+1]﹣[+1]=[]﹣[]=f(k),故选项B正确;C、当k=3时,f(3+1)=[]﹣[]=1﹣1=0,而f(3)=1,故选项C错误;D、当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,所以D选项的结论正确;故选:C.二、填空题(木大题共6小题,每小题3分,满分18分)13.【解答】解:∵点P是反比例函数y=图象上的一点,PA⊥x轴于点A,∴△POA的面积为:AO•PA=xy=1.故答案为:1.14.【解答】解:过P点作PD⊥AB于D,作PE⊥AC于E,作PF⊥BC于F,∵P是△ABC的内心,∴PD=PE=PF,∵S1=AB•PD,S2=BC•PF,S3=AC•PE,AB<BC+AC,∴S1<S2+S3.故答案为:<.15.【解答】解:画树状图如下:由树状图可知,共有6种等可能结果,其中选修地理和生物的只有1种结果,所以选修地理和生物的概率为,故答案为:.16.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,=2S△ABD=2×AB•DE=AB•DE=3AB,∴S△ABC∵S=AC•BF,△ABC∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.17.【解答】解:如图连接OE.∵半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,∴OE⊥AB,AD⊥CD,BC⊥CD,∠OAD=∠OAE,∠OBC=∠OBE,∴AD∥BC,∴∠DAB+∠ABC=180°,∴∠OAB+∠OBA=90°,∴∠AOB=90°,∵∠OAE+∠AOE=90°,∠AOE+∠BOE=90°,∴∠EAO=∠EOB,∵∠AEO=∠OEB=90°,∴△AEO∽△OEB,∴=,∴AE•BE=OE2=1,故答案为1.18.【解答】解:∵4a n=(a n+1﹣1)2﹣(a n﹣1)2,﹣1)2=(a n﹣1)2+4a n=(a n+1)2,∴(a n+1∵a1,a2,a3……是一列正整数,﹣1=a n+1,∴a n+1=a n+2,∴a n+1∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n﹣1,∴a2018=4035.故答案为4035.三、解答题(本大题共2小题,每小题6分,共12分)19.【解答】解:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°=1+9﹣+4×=1+9﹣2+2=10.20.【解答】解:原式=•=,当x=时,原式==3+2.四、解答题(本大题共2小题,每小题8分,共16分)21.【解答】解:(1)样本容量为18÷30%=60;(2)C等级人数为60﹣(24+18+6)=12人,n%=×100%=10%,补全图形如下:故答案为:10;(3)估计本次测试成绩为A级的人数为5000×=2000人.22.【解答】解:作EH⊥AC于H,则四边形EDCH为矩形,∴EH=CD,设AC=24x,在Rt△ADC中,sinα=,∴AD=25x,由勾股定理得,CD==7x,∴EH=7x,在Rt△AEH中,∠AEH=45°,∴AH=EH=7x,由题意得,24x=7x+340,解得,x=20,则AC=24x=480,∴AB=AC﹣BC=480﹣452=28,答:发射塔AB的高度为28m.五、解答题(本大题共2小题,每小题9分,共18分)23.【解答】解:(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据题意,得12x+15(10﹣x)≥140,解得x≤3,∵x为正整数,∴x=1,2,3.∴该景区有三种设计方案:方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,∴采用(1)设计的第二种方案,使购买费用最少.24.【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形BEDF是菱形,∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形,∵OB=OD,EF⊥BD,∴EB=ED,∴四边形BEDF是菱形.六、解答题(木本大题共2小题,每小题10分,共20分)25.【解答】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠BAD+∠ABD=90°,∵PB是⊙O的切线,∴∠ABP=90°,即∠PBD+∠ABD=90°,∴∠BAD=∠PBD;(2)∵∠A=∠C、∠AED=∠CEB,∴△ADE∽△CBE,∴=,即DE•CE=AE•BE,如图,连接OC,设圆的半径为r,则OA=OB=OC=r,则DE•CE=AE•BE=(OA﹣OE)(OB+OE)=r2﹣OE2,∵=,∴∠AOC=∠BOC=90°,∴CE2=OE2+OC2=OE2+r2,BC2=BO2+CO2=2r2,则BC2﹣CE2=2r2﹣(OE2+r2)=r2﹣OE2,∴BC2﹣CE2=DE•CE;(3)∵OA=4,∴OB=OC=OA=4,∴BC==4,又∵E是半径OA的中点,∴AE=OE=2,则CE===2,∵BC2﹣CE2=DE•CE,∴(4)2﹣(2)2=DE•2,解得:DE=.26.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入y=ax2+bx+c,,解得:,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4).(2)①过点F作FM∥y轴,交BD于点M,如图1所示.设直线BD的解析式为y=mx+n(m≠0),将(3,0)、(1,4)代入y=mx+n,,解得:,∴直线BD的解析式为y=﹣2x+6.∵点F的坐标为(x,﹣x2+2x+3),∴点M的坐标为(x,﹣2x+6),∴FM=﹣x2+2x+3﹣(﹣2x+6)=﹣x2+4x﹣3,∴S=FM•(y B﹣y D)=﹣x2+4x﹣3=﹣(x﹣2)2+1.△BDF∵﹣1<0,∴当x=2时,S取最大值,最大值为1.△BDF②过点E作EN∥BD交y轴于点N,交抛物线于点F1,在y轴负半轴取ON′=ON,连接EN′,射线EN′交抛物线于点F2,如图2所示.∵EF1∥BD,∴∠AEF1=∠DBE.∵ON=ON′,EO⊥NN′,∴∠AEF2=∠AEF1=∠DBE.∵E是线段AB的中点,A(﹣1,0),B(3,0),∴点E的坐标为(1,0).设直线EF1的解析式为y=﹣2x+b1,将E(1,0)代入y=﹣2x+b1,﹣2+b1=0,解得:b1=2,∴直线EF1的解析式为y=﹣2x+2.联立直线EF1、抛物线解析式成方程组,,解得:,(舍去),∴点F1的坐标为(2﹣,2﹣2).当x=0时,y=﹣2x+2=2,∴点N的坐标为(0,2),∴点N′的坐标为(0,﹣2).同理,利用待定系数法可求出直线EF2的解析式为y=2x﹣2.联立直线EF2、抛物线解析式成方程组,,解得:,(舍去),∴点F2的坐标为(﹣,﹣2﹣2).综上所述:当∠AEF=∠DBE时,点F的坐标为(2﹣,2﹣2)或(﹣,﹣2﹣2).。
2018年湖南省娄底市中考数学试卷(含答案解析版)

2018 年湖南省娄底市中考数学试卷一、选择题(本大题共 12 小题,每小题 3 分,满分 36 分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.(3分)(2018?娄底) 2018 的相反数是()1 1A.2018 B.2018C.﹣ 2018 D.﹣20182.(3分)(2018?娄底)一组数据﹣ 3,2,2,0,2,1 的众数是()A.﹣ 3 B.2 C.0 D.13.(3 分)(2018?娄底)随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有 210 万,请将“210万”用科学记数法表示为()A.0.21×107B.2.1×106C.21×105 D.2.1×1074.(3 分)(2018?娄底)下列运算正确的是()A.a2?a5=a10B.(3a3)2=6a6C.(a+b)2=a2+b2D.( a+2)(a﹣3)=a2﹣a﹣65.(3 分)(2018?娄底)关于 x 的一元二次方程x2﹣( k+3)x+k=0 的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定6.(3分)(2018?娄底)不等式组2 -??≥ ??-2的最小整数解是()3??- 1> - 4A.﹣ 1 B.0 C.1 D.27.(3分)(2018?娄底)如图所示立体图形的俯视图是()A.B.C.第1页(共 30页)D .??-28.(3 分)(2018?娄底)函数 y= 中自变量 x 的取值范围是()??-3A .x >2B .x ≥2C . x ≥ 2 且 x ≠3D .x ≠39.(3 分)(2018?娄底)将直线 y=2x ﹣3 向右平移 2 个单位,再向上平移3 个单位后,所得的直线的表达式为()A .y=2x ﹣4B .y=2x+4C .y=2x+2D .y=2x ﹣210.( 3 分)(2018?娄底)如图,往竖直放置的在A 处由短软管连接的粗细均匀细管组成的 “U ”装置中注入一定量的水,水面高度为形6cm ,现将右边细管绕A处顺时针方向旋转60°到 AB 位置,则 AB 中水柱的长度约为()A .4cmB .6 3cmC . 8cmD .12cm11.( 3 分)(2018?娄底)如图,由四个全等的直角三角形围成的大正方形的面积是 169,小正方形的面积为49,则 sin α﹣cos α=()5 5 7 7 A .B .﹣ 13 C . D .﹣13 13 1312.(3 分)( 2018?娄底)已知: [ x] 表示不超过 x 的最大整数. 例:[ 3.9] =3,[ ﹣﹣ .令关于的函数() ??+1??3+1k ] ﹣[ ](k 是正整数).例:f (3)=[] ﹣1.8] = 2 f k=[4 4 43 )[ ] =1.则下列结论错误的是(4A .f (1)=0B .f (k+4)=f (k )C .f ( k+1)≥ f (k )D . f ( k )=0 或 1二、填空题(木大题共 6 小题,每小题 3 分,满分 18 分)13.( 3 分)(2018?娄底)如图,在平面直角坐标系中, O 为坐标原点,点 P 是2反比例函数 y= 图象上的一点, PA ⊥x 轴于点 A ,则△ POA 的面积为.??第2页(共 30页)14.( 3 分)(2018?娄底)如图, P 是△ ABC的内心,连接PA、PB、PC,△ PAB、△ PBC、△ PAC的面积分别为S1、 S2、 S3.则 S1S2+S3.(填“<”或“=或”“>”)15.( 3 分)( 2018?娄底)从 2018 年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物 6 个科目中,自主选择 3 个科目参加等级考试.学生A 已选物理,还从思想政治、历史、地理 3 个文科科目中选 1 科,再从化学、生物 2 个理科科目中选 1 科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.16.( 3 分)(2018?娄底)如图,△ ABC 中, AB=AC, AD⊥ BC 于 D 点, DE⊥AB 于点 E,BF⊥AC于点 F,DE=3cm,则 BF= cm.17.( 3 分)(2018?娄底)如图,已知半圆O 与四边形 ABCD的边 AD、AB、BC都相切,切点分别为D、 E、C,半径 OC=1,则 AE?BE= .第3页(共 30页)18.(3 分)(2018?娄底)设 a1,a2,a3⋯⋯是一列正整数,其中 a1 表示第一个数, a2表示第二个数,依此类推, a n表示第 n 个数( n 是正整数).已知 a1 =1,4a n=( a n+1﹣ 1)2﹣( a n﹣1)2,则 a2018= .三、解答题(本大题共 2 小题,每小题 6 分,共 12 分)19.( 6 分)(2018?娄底)计算:(π﹣ 3.14)0+(1)﹣2﹣| ﹣ 12|+ 4cos30°.31+ 1 ??,其中 x= 2.20.(6 分)(2018?娄底)先化简,再求值:( 2 )÷ 2??+1 ??- 1 ?? +2 ??+1四、解答题(本大题共 2 小题,每小题 8 分,共 16 分)21.( 8 分)(2018?娄底)为了取得贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为 A、B、C、D 四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:( 1)求样本容量;( 2)补全条形图,并填空:n= ;( 3)若全市有 5000 人参加了本次测试,估计本次测试成绩为 A 级的人数为多少?22.( 8 分)(2018?娄底)如图,长沙九龙仓国际金融中心主楼BC高达 452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE 高 340m,为了24测量高楼 BC上发射塔 AB 的高度,在楼 DE底端 D 点测得 A 的仰角为α,sin α=,在25 顶端 E 点测得 A 的仰角为 45°,求发射塔 AB 的高度.第4页(共 30页)五、解答题(本大题共 2 小题,每小题 9 分,共 18 分)23.( 9 分)(2018?娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买 A、B 两种型号的垃圾处理设备共10 台.已知每台 A 型设备日处理能力为 12 吨;每台 B 型设备日处理能力为15 吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买 A、B 两种设备的方案;(2)已知每台 A 型设备价格为 3 万元,每台 B 型设备价格为 4.4 万元.厂家为了促销产品,规定货款不低于 40 万元时,则按 9 折优惠;问:采用( 1)设计的哪种方案,使购买费用最少,为什么?24.( 9 分)( 2018?娄底)如图,已知四边形 ABCD中,对角线 AC、BD 相交于点O,且OA=OC,OB=OD,过 O 点作 EF⊥BD,分别交 AD、 BC于点 E、F.(1)求证:△ AOE≌△ COF;(2)判断四边形 BEDF的形状,并说明理由.六、解答题(木本大题共 2 小题,每小题 10 分,共 20 分)25.( 10 分)( 2018?娄底)如图, C、 D 是以 AB 为直径的⊙ O 上的点, ????=????,弦CD交 AB于点 E.( 1)当 PB 是⊙ O 的切线时,求证:∠ PBD=∠ DAB;第5页(共 30页)2 2(2)求证: BC﹣ CE=CE?DE;(3)已知 OA=4,E 是半径 OA 的中点,求线段 DE 的长.26.( 10 分)(2018?娄底)如图,抛物线y=ax2+bx+c 与两坐标轴相交于点A(﹣1,0)、B(3,0)、 C( 0, 3),D 是抛物线的顶点, E 是线段 AB 的中点.(1)求抛物线的解析式,并写出 D 点的坐标;(2) F(x,y)是抛物线上的动点:①当 x>1,y>0 时,求△ BDF的面积的最大值;②当∠ AEF=∠DBE时,求点 F 的坐标.第6页(共 30页)2018 年湖南省娄底市中考数学试卷参考答案与试题解析一、选择题(本大题共 12 小题,每小题 3 分,满分 36 分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.(3 分)(2018?娄底) 2018 的相反数是()1 1A.B.2018 C.﹣ 2018 D.﹣2018 2018【考点】 14:相反数.【专题】 11 :计算题.【分析】直接利用相反数的定义分析得出答案.【解答】解: 2018 的相反数是:﹣ 2018.故选: C.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3 分)(2018?娄底)一组数据﹣ 3,2,2,0,2,1 的众数是()A.﹣ 3 B.2 C.0 D.1【考点】 W5:众数.【专题】 1 :常规题型; 542:统计的应用.【分析】众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【解答】解:这组数据中 2 出现次数最多,有 3 次,所以众数为 2,故选: B.【点评】本题主要考查众数,解题的关键是掌握众数是指一组数据中出现次数最多的数据.3.(3 分)(2018?娄底)随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口第7页(共 30页)约有 210 万,请将“210万”用科学记数法表示为()A.0.21×107B.2.1×106C.21×105 D.2.1×107【考点】 1I:科学记数法—表示较大的数.【专题】 511:实数.【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤| a| < 10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解: 210 万=2.1×106,故选: B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中 1≤| a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.(3 分)(2018?娄底)下列运算正确的是()A.a2?a5=a10B.(3a3)2=6a62 2+b2 .()(﹣)2﹣a﹣6C.(a+b) =a D a+2 a 3 =a【考点】 4I:整式的混合运算.【专题】 11 :计算题; 512:整式.【分析】各式计算得到结果,即可作出判断.【解答】解: A、原式 =a7,不符合题意;B、原式 =9a6,不符合题意;C、原式 =a2+2ab+b2,不符合题意;D、原式 =a2﹣a﹣6,符合题意,故选: D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.(3 分)(2018?娄底)关于 x 的一元二次方程x2﹣( k+3)x+k=0 的根的情况是()A.有两不相等实数根B.有两相等实数根第8页(共 30页)C.无实数根D.不能确定【考点】 AA:根的判别式.【专题】 11 :计算题.【分析】先计算判别式得到△ =(k+3)2﹣4× k=(k+1)2+8,再利用非负数的性质得到△> 0,然后可判断方程根的情况.222【解答】解:△ =(k+3)﹣4×k=k +2k+9=(k+1) +8,∴( k+1)2+8>0,即△> 0,所以方程有两个不相等的实数根.【点评】本题考查了根的判别式:一元二次方程 ax2+bx+c=0(a≠0)的根与△ =b2﹣4ac 有如下关系:当△> 0 时,方程有两个不相等的实数根;当△ =0 时,方程有两个相等的实数根;当△< 0 时,方程无实数根.6.(3 分)(2018?娄底)不等式组 2 - ??≥ ??- 2的最小整数解是()3??- 1> - 4A.﹣ 1 B.0 C.1 D.2【考点】 CC:一元一次不等式组的整数解.【专题】 11 :计算题; 524:一元一次不等式 ( 组 ) 及应用.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式 2﹣ x≥ x﹣2,得:x≤2,解不等式 3x﹣1>﹣ 4,得: x>﹣ 1,则不等式组的解集为﹣ 1<x≤2,所以不等式组的最小整数解为0,故选: B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第9页(共 30页)7.(3 分)(2018?娄底)如图所示立体图形的俯视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【专题】 1 :常规题型.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上边看立体图形得到俯视图即可得立体图形的俯视图是,故选: B.【点评】本题考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.??-2中自变量 x 的取值范围是()8.(3 分)(2018?娄底)函数 y=??-3A.x>2 B.x≥2 C. x≥ 2 且 x≠3 D.x≠3【考点】 E4:函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于 0,可以求出 x 的范围.【解答】解:根据题意得:??- 2 ≥0,??- 3 ≠0解得: x≥2 且 x≠ 3.故选: C.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;第 10 页(共 30 页)( 3)当函数表达式是二次根式时,被开方数非负.9.(3 分)(2018?娄底)将直线 y=2x﹣3 向右平移 2 个单位,再向上平移 3 个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣2【考点】 F9:一次函数图象与几何变换.【专题】 46 :几何变换.【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解: y=2(x﹣2)﹣ 3+3=2x﹣ 4.化简,得y=2x﹣4,故选: A.【点评】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.10.( 3 分)(2018?娄底)如图,往竖直放置的在 A 处由短软管连接的粗细均匀细管组成的“U”装置中注入一定量的水,水面高度为形6cm,现将右边细管绕 A 处顺时针方向旋转60°到 AB 位置,则 AB 中水柱的长度约为()A.4cm B.6 3cm C. 8cm D.12cm【考点】 R2:旋转的性质.【专题】 11 :计算题.【分析】 AB 中水柱的长度为 AC, CH 为此时水柱的高,设 CH=x,竖直放置时短软管的底面积为 S,易得 AC=2CH=x,细管绕 A 处顺时针方向旋转 60°到 AB 位置时,底面积为 2S,利用水的体积不变得到 x?S+x?2S=6?S+6?S,然后求出 x 后计算出 AC即可.【解答】解: AB 中水柱的长度为AC,CH 为此时水柱的高,设CH=x,竖直放置第 11 页(共 30 页)时短软管的底面积为S,∵∠ BAH=90°﹣60°=30°,∴AC=2CH=x,∴细管绕 A 处顺时针方向旋转60°到 AB 位置时,底面积为2S,∵x?S+x?2S=6?S+6?S,解得 x=4,∴AC=2x=8,即AB 中水柱的长度约为 8cm.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.( 3 分)(2018?娄底)如图,由四个全等的直角三角形围成的大正方形的面积是 169,小正方形的面积为49,则 sin α﹣cosα=()5 5 7 7A.B.﹣C.D.﹣13 13 13 13【考点】 KR:勾股定理的证明; T7:解直角三角形.【专题】 1 :常规题型.【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求sin α和 cosα的值,进而可求出 sin α﹣ cosα的值.【解答】解:∵小正方形面积为49,大正方形面积为169,∴小正方形的边长是 7,大正方形的边长是13,2 2 2在 Rt△ABC中, AC +BC=AB ,即 AC2+( 7+AC)2=132,2整理得, AC+7AC﹣60=0,第 12 页(共 30 页)解得 AC=5,AC=﹣ 12(舍去), 2 2∴ BC= ????- ????=12,????5 ????12∴ sin α= = , cos α= = ,????13 ????135 12 7∴ sin α﹣cos α= ﹣ =﹣ ,13 13 13 故选: D .【点评】本题考查了勾股定理的证明, 锐角三角形函数的定义, 利用勾股定理列式求出直角三角形的较短的直角边是解题的关键.12.(3 分)( 2018?娄底)已知: [ x] 表示不超过 x 的最大整数. 例:[ 3.9] =3,[ ﹣??+1 ??3+11.8] =﹣ 2.令关于 k 的函数()] ﹣[](k 是正整数).例:f (3)=[] ﹣ f k=[ 4443] =1.则下列结论错误的是( ) [ 4A .f (1)=0B .f (k+4)=f (k )C .f ( k+1)≥ f (k )D . f ( k )=0 或 1【考点】 CB :解一元一次不等式组; E5:函数值. 【专题】 11 :计算题.【分析】 根据题意可以判断各个选项是否正确,从而可以解答本题.【解答】 解: f (1)=[ 1+1 14 ] ﹣ [ ] =0﹣0=0,故选项 A 正确;4 ??+4+1 ??+4 ??+1 ?? ??+1 ??f (k+4)=[ ] ﹣[ 4 ] =[ 4 +1] ﹣[ +1] =[ ] ﹣[ ] =f ( k ),故选项 B 正 4 4 4 4确;、当4+1 ] ﹣[ 4 ] =1﹣1=0,而 f ( 3) =1,故选项 C 错误; C k=3 时, f ( 3+1) =[ 4 4 D 、当 k=3+4n (n 为自然数)时, f (k )=1,当 k 为其它的正整数时, f (k )=0, 所以 D 选项的结论正确;故选: C .【点评】本题考查解一元一次不等式组、函数值,解答本题的关键是明确题意,第 13 页(共 30 页)可以判断各个选项中的结论是否成立.二、填空题(木大题共 6 小题,每小题 3 分,满分 18 分)13.( 3 分)(2018?娄底)如图,在平面直角坐标系中,O 为坐标原点,点P 是2反比例函数 y= 图象上的一点, PA⊥x 轴于点 A,则△ POA的面积为 1 .??【考点】 G5:反比例函数系数k 的几何意义; G6:反比例函数图象上点的坐标特征.【专题】 1 :常规题型.【分析】直接利用反比例函数的性质结合系数k 的几何意义得出答案.2【解答】解:∵点 P 是反比例函数 y= 图象上的一点, PA⊥x 轴于点 A,??1 1∴△ POA的面积为:AO?PA= xy=1.2 2故答案为: 1.【点评】此题主要考查了反比例函数系数 k 的几何意义,正确表示出△ POA的面积是解题关键.14.( 3 分)(2018?娄底)如图, P 是△ ABC的内心,连接 PA、PB、PC,△ PAB、△ PBC、△PAC的面积分别为 S1、S2、S3.则 S1< S2+S3.(填“<”或“=或”“>”)【考点】 MI:三角形的内切圆与内心; K6:三角形三边关系; KF:角平分线的性质.【专题】 552:三角形; 559:圆的有关概念及性质.第 14 页(共 30 页)【分析】过 P 点作 PD⊥AB 于 D,作 PE⊥AC 于 E,作 PF⊥ BC于 F,根据内心的定义可得 PD=PE=PF,再根据三角形面积公式和三角形三边关系即可求解.【解答】解:过 P 点作 PD⊥ AB 于 D,作 PE⊥AC于 E,作 PF⊥BC于 F,∵ P 是△ ABC的内心,∴PD=PE=PF,1 1 1∵S1= AB?PD,S2= BC?PF,S3= AC?PE,AB<BC+AC,222∴S1<S2+S3.故答案为:<.【点评】考查了三角形的内切圆与内心,三角形面积和三角形三边关系,关键是由内心的定义得 PD=PE=PF.15.( 3 分)( 2018?娄底)从 2018 年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物 6 个科目中,自主选择 3 个科目参加等级考试.学生A 已选物理,还从思想政治、历史、地理 3 个文科科目中选 1 科,再从化学、生物 2 个理科科目中选 1 科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概1率为.6【考点】 X6:列表法与树状图法.【专题】 1 :常规题型; 543:概率及其应用.【分析】先画出树状图展示所有 6 种等可能的结果数,再找出选修地理和生物的结果数,然后根据概率公式求解.【解答】解:画树状图如下:第 15 页(共 30 页)由树状图可知,共有 6 种等可能结果,其中选修地理和生物的只有 1 种结果,1所以选修地理和生物的概率为,61故答案为:.6【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率 =所求情况数与总情况数之比.16.( 3 分)(2018?娄底)如图,△ ABC 中, AB=AC, AD⊥ BC 于 D 点, DE⊥AB 于点 E,BF⊥AC于点 F,DE=3cm,则 BF= 6 cm.【考点】 KH:等腰三角形的性质; K3:三角形的面积.【专题】 1 :常规题型.【分析】先利用 HL 证明 Rt△ ADB≌ Rt△ ADC,得出 S△ABC△ ABD ×=2S=21 1AB?DE=AB?DE=3AB,又 S ABC= AC?BF,将 AC=AB代入即可求出 BF.2 △2【解答】解:在 Rt△ADB 与 Rt△ADC中,????= ????,????= ????∴Rt△ADB≌ Rt△ADC,1∴S△ ABC=2S△ ABD=2× AB?DE=AB?DE=3AB,21∵S△ ABC=2AC?BF,1∴AC?BF=3AB,2第 16 页(共 30 页)∵AC=AB,1∴BF=3,2∴BF=6.故答案为 6.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.17.( 3 分)(2018?娄底)如图,已知半圆O 与四边形 ABCD的边 AD、AB、BC都相切,切点分别为D、 E、C,半径 OC=1,则 AE?BE= 1 .【考点】 S9:相似三角形的判定与性质;M5 :圆周角定理; MC:切线的性质.【专题】 559:圆的有关概念及性质.【分析】想办法证明△ AEO∽△ OEB,可得???????? 2 = ,推出 AE?BE=OE .=1 ????????【解答】解:如图连接 OE.∵半圆 O 与四边形 ABCD的边 AD、AB、BC都相切,切点分别为D、E、C,∴OE⊥AB,AD⊥CD,BC⊥ CD,∠ OAD=∠OAE,∠ OBC=∠OBE,∴AD∥BC,∴∠ DAB+∠ABC=180°,∴∠ OAB+∠OBA=90°,∴∠ AOB=90°,∵∠ OAE+∠AOE=90°,∠ AOE+∠ BOE=90°,∴∠ EAO=∠EOB,第 17 页(共 30 页)∵∠ AEO=∠OEB=90°,∴△ AEO∽△ OEB,????????∴= ,????????2∴ AE?BE=OE=1,故答案为 1.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的性质等知识,解题的关键是正确寻找相似三角形解决问题.18.(3 分)(2018?娄底)设 a1,a2,a3⋯⋯是一列正整数,其中 a1 表示第一个数,a2 表示第二个数,依此类推,an 表示第 n 个数( n 是正整数).已知 a1 =1,4an= (a n+1﹣ 1)2﹣( a n﹣1)2,则 a2018= 4035 .【考点】 37:规律型:数字的变化类.【专题】 1 :常规题型.2 2 2 2(+1)【分析】由 4a ( + ﹣1)﹣( a ﹣1),可得(a + ﹣1)(﹣1) +4an= an 1 n n 1 = an n= an2,根据 a1,a2, a3⋯⋯是一列正整数,得出 an +1=an+2,根据 a1=1,分别求出a2=3,a3=5, a4=7,a5=9,进而发现规律 a n=2n﹣ 1,即可求出 a2018=4035.【解答】解:∵4a n=(a n+1﹣1)2﹣( a n﹣ 1)2,∴( a n+1﹣1)2=(a n﹣1)2+4a n =( a n +1)2,∵a1,a2,a3⋯⋯是一列正整数,∴ a n+1﹣ 1=a n+1,∴ an+1=an+2,∵a1=1,∴a2=3,a3=5,a4=7, a5=9,⋯,∴a n=2n﹣1,∴a2018=4035.故答案为 4035.【点评】本题是一道找规律的题目,要求学生通过计算,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出式子a n+1=a n+2.第 18 页(共 30 页)三、解答题(本大题共 2 小题,每小题 6 分,共 12 分)19.( 6 分)(2018?娄底)计算:(π﹣ 3.14)0+(1)﹣2﹣| ﹣ 12|+ 4cos30°.3【考点】 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂; T5:特殊角的三角函数值.【专题】 11 :计算题.【分析】根据零指数幂、负整数指数幂、绝对值和特殊角的三角函数值可以解答本题.【解答】解:(π﹣3.14)0+(1)﹣2﹣| ﹣ 12|+ 4cos30° 33=1+9﹣2 3+4×2=1+9﹣2 3+2 3=10.【点评】本题考查实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.1 1 ??,其中 x= 2.20.(6 分)(2018?娄底)先化简,再求值:(+ 2)÷ 2??+1??- 1 ?? +2 ??+1【考点】 6D:分式的化简求值.【专题】 11 :计算题; 513:分式.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.??-1+1 ( ??+1) 2??+1【解答】解:原式 = ? =,( ??+1)( ??-1)?? ??-12+12.当 x= 2时,原式 ==3+22 - 1【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共 2 小题,每小题 8 分,共 16 分)21.( 8 分)(2018?娄底)为了取得贫工作的胜利,某市对扶贫工作人员进行了第 19 页(共 30 页)扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为 A、B、C、D 四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:( 1)求样本容量;( 2)补全条形图,并填空: n= 10 ;( 3)若全市有 5000 人参加了本次测试,估计本次测试成绩为 A 级的人数为多少?【考点】 VC:条形统计图; V3:总体、个体、样本、样本容量;V5:用样本估计总体; VB:扇形统计图.【专题】 1 :常规题型; 542:统计的应用.【分析】(1)用 B 等级人数除以其所占百分比可得;(2)总人数减去 A、B、D 人数求得 C 的人数即可补全条形图,用 D 等级人数除以总人数可得 n 的值;(3)总人数乘以样本中 A 等级人数所占比例即可得.【解答】解:(1)样本容量为 18÷30%=60;6(2) C 等级人数为 60﹣( 24+18+6)=12 人, n%= ×100%=10%,60补全图形如下:第 20 页(共 30 页)故答案为: 10;24( 3)估计本次测试成绩为 A 级的人数为 5000×60 =2000 人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.( 8 分)(2018?娄底)如图,长沙九龙仓国际金融中心主楼BC高达 452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE 高 340m,为了24测量高楼 BC上发射塔 AB 的高度,在楼 DE底端 D 点测得 A 的仰角为α,sin α=,在25顶端 E 点测得 A 的仰角为 45°,求发射塔 AB 的高度.【考点】 TA:解直角三角形的应用﹣仰角俯角问题.【专题】 11 :计算题.【分析】作 EH⊥AC 于 H,设 AC=24x,根据正弦的定义求出 AD,根据勾股定理求出 CD,根据题意列出方程求出 x,结合图形计算即可.【解答】解:作 EH⊥ AC于 H,则四边形 EDCH为矩形,∴EH=CD,设AC=24x,24在Rt△ADC中, sin α=,25∴AD=25x,第 21 页(共 30 页)由勾股定理得, CD= 22 ,????- ????=7x∴EH=7x,在Rt△AEH中,∠ AEH=45°,∴ AH=EH=7x,由题意得, 24x=7x+340,解得, x=20,则 AC=24x=480,∴ AB=AC﹣BC=480﹣452=28,答:发射塔 AB 的高度为 28m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.五、解答题(本大题共 2 小题,每小题 9 分,共 18 分)23.( 9 分)(2018?娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买 A、B 两种型号的垃圾处理设备共 10 台.已知每台 A 型设备日处理能力为 12 吨;每台 B 型设备日处理能力为 15 吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买 A、B 两种设备的方案;(2)已知每台 A 型设备价格为 3 万元,每台 B 型设备价格为 4.4 万元.厂家为了促销产品,规定货款不低于 40 万元时,则按 9 折优惠;问:采用( 1)设计的哪种方案,使购买费用最少,为什么?【考点】 FH:一次函数的应用; CE:一元一次不等式组的应用.第 22 页(共 30 页)【专题】 1 :常规题型.【分析】(1)设购买 A 种设备 x 台,则购买 B 种设备( 10﹣ x)台,根据购回的设备日处理能力不低于 140 吨列出不等式 12x+15(10﹣ x)≥ 140,求出解集,再根据 x 为正整数,得出 x=1,2,3.进而求解即可;( 2)分别求出各方案实际购买费用,比较即可求解.【解答】解:(1)设购买 A 种设备 x 台,则购买 B 种设备( 10﹣x)台,根据题意,得 12x+15(10﹣x)≥ 140,1解得 x≤3 ,3∵ x 为正整数,∴x=1, 2, 3.∴该景区有三种设计方案:方案一:购买 A 种设备 1 台, B 种设备 9 台;方案二:购买 A 种设备 2 台, B 种设备 8 台;方案三:购买 A 种设备 3 台, B 种设备 7 台;( 2)各方案购买费用分别为:方案一: 3× 1+4.4×9=42.6> 40,实际付款: 42.6× 0.9=38.34(万元);方案二: 3× 2+4.4×8=41.2> 40,实际付款: 41.2× 0.9=37.08(万元);方案三: 3× 3+4.4×7=39.8< 40,实际付款: 39.8(万元);∵37.08<38.04<39.8,∴采用( 1)设计的第二种方案,使购买费用最少.【点评】本题考查了一次函数的应用,一元一次不等式的应用,分析题意,找到合适的不等关系是解决问题的关键.24.( 9 分)( 2018?娄底)如图,已知四边形ABCD中,对角线 AC、BD 相交于点O,且 OA=OC,OB=OD,过 O 点作 EF⊥BD,分别交 AD、 BC于点 E、F.(1)求证:△ AOE≌△ COF;(2)判断四边形 BEDF的形状,并说明理由.第 23 页(共 30 页)【考点】 KD:全等三角形的判定与性质.【专题】 555:多边形与平行四边形.【分析】(1)首先证明四边形 ABCD是平行四边形,再利用 ASA证明△ AOE≌△ COF;(2)结论:四边形 BEDF是菱形.根据邻边相等的平行四边形是菱形即可证明;【解答】(1)证明:∵ OA=OC, OB=OD,∴四边形 ABCD是平行四边形,∴AD∥BC,∴∠ EAO=∠FCO,在△ AOE和△ COF中,∠??????= ∠ ??????????= ????,∠??????= ∠ ??????∴△ AOE≌△ COF.(2)解:结论:四边形 BEDF是菱形,∵△AOE≌△ COF,∴AE=CF,∵ AD=BC,∴ DE=BF,∵ DE∥BF,∴四边形 BEDF是平行四边形,∵OB=OD, EF⊥BD,∴EB=ED,∴四边形 BEDF是菱形.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.第 24 页(共 30 页)六、解答题(木本大题共 2 小题,每小题 10 分,共 20 分)25.( 10 分)( 2018?娄底)如图, C、 D 是以 AB 为直径的⊙ O 上的点, ????=????,弦CD交 AB于点 E.( 1)当 PB 是⊙ O 的切线时,求证:∠ PBD=∠ DAB;2 2(2)求证: BC﹣ CE=CE?DE;(3)已知 OA=4,E 是半径 OA 的中点,求线段 DE 的长.【考点】 MR:圆的综合题.【专题】15 :综合题; 559:圆的有关概念及性质; 55A:与圆有关的位置关系;55D:图形的相似.【分析】(1)由 AB是⊙ O 的直径知∠ BAD+∠ABD=90°,由 PB是⊙ O 的切线知∠PBD+∠ABD=90°,据此可得答案;( 2 )连接OC,设圆的半径为r ,则OA=OB=OC=r,证△ ADE∽ △ CBE 得2 2DE?CE=AE?BE=r﹣ OE ,由 ????=????知∠ AOC=∠ BOC=90°,根据勾股定理知2 2 2 2 2 2 2 2 2CE=OE +r 、 BC =2r ,据此得 BC ﹣CE=r ﹣OE ,从而得证;2 2(3)先求出 BC=4 2、CE=2 5,根据 BC ﹣CE=CE?DE计算可得.【解答】解:(1)∵ AB 是⊙ O 的直径,∴∠ ADB=90°,即∠ BAD+∠ ABD=90°,∵ PB是⊙ O 的切线,∴∠ ABP=90°,即∠ PBD+∠ ABD=90°,∴∠ BAD=∠PBD;(2)∵∠ A=∠C、∠ AED=∠CEB,∴△ ADE∽△ CBE,第 25 页(共 30 页)???????? ∴ = ,即 DE?CE=AE?BE , ???????? 如图,连接 OC ,设圆的半径为 r ,则 OA=OB=OC=r ,22则 DE?CE=AE?BE=(OA ﹣OE )( OB+OE )=r ﹣ OE , ∵ ????=????,∴∠ AOC=∠BOC=90°,2 2 2 2 2 2 2 2 2 ∴ CE=OE +OC =OE+r ,BC =BO +CO =2r ,2 2 2 2 2 2 2 则 BC ﹣CE =2r ﹣( OE +r ) =r ﹣OE , 2 2∴ BC ﹣ CE=DE?CE ;( 3)∵ OA=4, ∴ OB=OC=OA=4,2 2∴ BC= ????+ ????=4 2, 又∵ E 是半径 OA 的中点,∴ AE=OE=2,则 CE= 2 2 2 + 2 2 ,????+ ????= 4 =2 52 2∵ BC ﹣ CE=DE?CE ,∴( 4 2)2﹣(2 5)2=DE?2 5,6 5解得: DE= .5【点评】 本题主要考查圆的综合问题,解题的关键是熟练掌握圆的切线的性质、圆心角定理、相似三角形的判定与性质、勾股定理等知识点.第 26 页(共 30 页)26.( 10 分)(2018?娄底)如图,抛物线y=ax2+bx+c 与两坐标轴相交于点A(﹣1,0)、B(3,0)、 C( 0, 3),D 是抛物线的顶点, E 是线段 AB 的中点.(1)求抛物线的解析式,并写出 D 点的坐标;(2) F(x,y)是抛物线上的动点:①当 x>1,y>0 时,求△ BDF的面积的最大值;②当∠ AEF=∠DBE时,求点 F 的坐标.【考点】 HF:二次函数综合题.【专题】 537:函数的综合应用.【分析】(1)根据点 A、B、 C 的坐标,利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点 D 的坐标;(2)①过点 F 作 FM∥ y 轴,交 BD 于点 M ,根据点 B、 D 的坐标,利用待定系数法可求出直线 BD 的解析式,根据点 F 的坐标可得出点 M 的坐标,利用三角形的面积公式可得出 S△BDF=﹣ x2+4x﹣3,再利用二次函数的性质即可解决最值问题;②过点 E作 EN∥BD交 y 轴于点 N,交抛物线于点 F1,在 y 轴负半轴取 ON′=ON,连接 EN′,射线 EN′交抛物线于点 F ,则∠ AEF ∠、∠∠,根据2 1= DBE AEF2 = DBEEN ∥BD结合点 E 的坐标可求出直线 EF1的解析式,联立直线 EF1、抛物线的解析式成方程组,通过解方程组即可求出点 F1的坐标,同理可求出点 F2的坐标,此题得解.【解答】解:(1)将 A(﹣ 1, 0)、B(3,0)、C(0,3)代入 y=ax2+bx+c,??- ??+ ??= 0 ??=-19??+ 3??+ ??= 0,解得: ??= 2 ,??= 3 ??= 3第 27 页(共 30 页)。
(完整)2018年湖南省娄底市中考数学试卷(含答案解析版),推荐文档

2018年湖南省娄底市中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.(3分)(2018•娄底)2018的相反数是( )A .12018B .2018C .﹣2018D .﹣120182.(3分)(2018•娄底)一组数据﹣3,2,2,0,2,1的众数是( )A .﹣3B .2C .0D .13.(3分)(2018•娄底)随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )A .0.21×107B .2.1×106C .21×105D .2.1×1074.(3分)(2018•娄底)下列运算正确的是( )A .a 2•a 5=a 10B .(3a 3)2=6a 6C .(a +b )2=a 2+b 2D .(a +2)(a ﹣3)=a 2﹣a ﹣65.(3分)(2018•娄底)关于x 的一元二次方程x 2﹣(k +3)x +k=0的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定6.(3分)(2018•娄底)不等式组{2−x ≥x −23x −1>−4的最小整数解是( ) A .﹣1 B .0 C .1 D .27.(3分)(2018•娄底)如图所示立体图形的俯视图是( )A .B .C .D.8.(3分)(2018•娄底)函数y=√x−2x−3中自变量x的取值范围是()A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠39.(3分)(2018•娄底)将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣210.(3分)(2018•娄底)如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A 处顺时针方向旋转60°到AB位置,则AB中水柱的长度约为()A.4cm B.6√3cm C.8cm D.12cm11.(3分)(2018•娄底)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=()A.513B.﹣513C.713D.﹣71312.(3分)(2018•娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[k+14]﹣[k4](k是正整数).例:f(3)=[3+14]﹣[34]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k) C.f(k+1)≥f(k)D.f(k)=0或1二、填空题(木大题共6小题,每小题3分,满分18分)13.(3分)(2018•娄底)如图,在平面直角坐标系中,O为坐标原点,点P是反比例函数y=2x图象上的一点,PA⊥x轴于点A,则△POA的面积为.14.(3分)(2018•娄底)如图,P是△ABC的内心,连接PA、PB、PC,△PAB、△PBC、△PAC的面积分别为S1、S2、S3.则S1S2+S3.(填“<”或“=”或“>”)15.(3分)(2018•娄底)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.16.(3分)(2018•娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB 于点E,BF⊥AC于点F,DE=3cm,则BF=cm.17.(3分)(2018•娄底)如图,已知半圆O与四边形ABCD的边AD、AB、BC 都相切,切点分别为D、E、C,半径OC=1,则AE•BE=.18.(3分)(2018•娄底)设a 1,a 2,a 3……是一列正整数,其中a 1表示第一个数,a 2表示第二个数,依此类推,a n 表示第n 个数(n 是正整数).已知a 1=1,4a n =(a n +1﹣1)2﹣(a n ﹣1)2,则a 2018= .三、解答题(本大题共2小题,每小题6分,共12分)19.(6分)(2018•娄底)计算:(π﹣3.14)0+(13)﹣2﹣|﹣√12|+4cos30°. 20.(6分)(2018•娄底)先化简,再求值:(1x+1+1x −1)÷x x +2x+1,其中x=√2.四、解答题(本大题共2小题,每小题8分,共16分)21.(8分)(2018•娄底)为了取得贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为A 、B 、C 、D 四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:(1)求样本容量;(2)补全条形图,并填空:n= ;(3)若全市有5000人参加了本次测试,估计本次测试成绩为A 级的人数为多少?22.(8分)(2018•娄底)如图,长沙九龙仓国际金融中心主楼BC 高达452m ,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE 高340m ,为了测量高楼BC 上发射塔AB 的高度,在楼DE 底端D 点测得A 的仰角为α,sinα=2425,在顶端E 点测得A 的仰角为45°,求发射塔AB 的高度.五、解答题(本大题共2小题,每小题9分,共18分)23.(9分)(2018•娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?24.(9分)(2018•娄底)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.六、解答题(木本大题共2小题,每小题10分,共20分)25.(10分)(2018•娄底)如图,C、D是以AB为直径的⊙O上的点,AĈ=BĈ,弦CD交AB于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;(2)求证:BC2﹣CE2=CE•DE;(3)已知OA=4,E是半径OA的中点,求线段DE的长.26.(10分)(2018•娄底)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.2018年湖南省娄底市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.(3分)(2018•娄底)2018的相反数是()A.12018B.2018 C.﹣2018 D.﹣12018【考点】14:相反数.【专题】11 :计算题.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:C.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)(2018•娄底)一组数据﹣3,2,2,0,2,1的众数是()A.﹣3 B.2 C.0 D.1【考点】W5:众数.【专题】1 :常规题型;542:统计的应用.【分析】众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【解答】解:这组数据中2出现次数最多,有3次,所以众数为2,故选:B.【点评】本题主要考查众数,解题的关键是掌握众数是指一组数据中出现次数最多的数据.3.(3分)(2018•娄底)随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A.0.21×107B.2.1×106C.21×105D.2.1×107【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:210万=2.1×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2018•娄底)下列运算正确的是()A.a2•a5=a10B.(3a3)2=6a6C.(a+b)2=a2+b2D.(a+2)(a﹣3)=a2﹣a﹣6【考点】4I:整式的混合运算.【专题】11 :计算题;512:整式.【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=a7,不符合题意;B、原式=9a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a2﹣a﹣6,符合题意,故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.(3分)(2018•娄底)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C .无实数根D .不能确定【考点】AA :根的判别式.【专题】11 :计算题.【分析】先计算判别式得到△=(k +3)2﹣4×k=(k +1)2+8,再利用非负数的性质得到△>0,然后可判断方程根的情况.【解答】解:△=(k +3)2﹣4×k=k 2+2k +9=(k +1)2+8,∵(k +1)2≥0,∴(k +1)2+8>0,即△>0,所以方程有两个不相等的实数根.故选:A .【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c=0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.(3分)(2018•娄底)不等式组{2−x ≥x −23x −1>−4的最小整数解是( ) A .﹣1 B .0 C .1 D .2【考点】CC :一元一次不等式组的整数解.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣x ≥x ﹣2,得:x ≤2,解不等式3x ﹣1>﹣4,得:x >﹣1,则不等式组的解集为﹣1<x ≤2,所以不等式组的最小整数解为0,故选:B .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)(2018•娄底)如图所示立体图形的俯视图是( )A .B .C .D .【考点】U2:简单组合体的三视图.【专题】1 :常规题型.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上边看立体图形得到俯视图即可得立体图形的俯视图是,故选:B . 【点评】本题考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.8.(3分)(2018•娄底)函数y=√x−2x−3中自变量x 的取值范围是( ) A .x >2 B .x ≥2 C .x ≥2且x ≠3 D .x ≠3【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:根据题意得:{x −2≥0x −3≠0, 解得:x ≥2且x ≠3.故选:C .【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(3分)(2018•娄底)将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣2【考点】F9:一次函数图象与几何变换.【专题】46 :几何变换.【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:y=2(x﹣2)﹣3+3=2x﹣4.化简,得y=2x﹣4,故选:A.【点评】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.10.(3分)(2018•娄底)如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A 处顺时针方向旋转60°到AB位置,则AB中水柱的长度约为()A.4cm B.6√3cm C.8cm D.12cm【考点】R2:旋转的性质.【专题】11 :计算题.【分析】AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,易得AC=2CH=x,细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,利用水的体积不变得到x•S+x•2S=6•S+6•S,然后求出x后计算出AC即可.【解答】解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,∵∠BAH=90°﹣60°=30°,∴AC=2CH=x,∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,∵x•S+x•2S=6•S+6•S,解得x=4,∴AC=2x=8,即AB中水柱的长度约为8cm.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.(3分)(2018•娄底)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=()A.513B.﹣513C.713D.﹣713【考点】KR:勾股定理的证明;T7:解直角三角形.【专题】1 :常规题型.【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求sinα和cosα的值,进而可求出sinα﹣cosα的值.【解答】解:∵小正方形面积为49,大正方形面积为169,∴小正方形的边长是7,大正方形的边长是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC﹣60=0,解得AC=5,AC=﹣12(舍去),∴BC=√AB 2−AC 2=12,∴sinα=AC AB =513,cosα=BC AB =1213, ∴sinα﹣cosα=513﹣1213=﹣713, 故选:D .【点评】本题考查了勾股定理的证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键.12.(3分)(2018•娄底)已知:[x ]表示不超过x 的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k 的函数f (k )=[k+14]﹣[k 4](k 是正整数).例:f (3)=[3+14]﹣[34]=1.则下列结论错误的是( ) A .f (1)=0 B .f (k +4)=f (k ) C .f (k +1)≥f (k ) D .f (k )=0或1【考点】CB :解一元一次不等式组;E5:函数值.【专题】11 :计算题.【分析】根据题意可以判断各个选项是否正确,从而可以解答本题.【解答】解:f (1)=[1+14]﹣[14]=0﹣0=0,故选项A 正确; f (k +4)=[k+4+14]﹣[k+44]=[k+14+1]﹣[k 4+1]=[k+14]﹣[k 4]=f (k ),故选项B 正确;C 、当k=3时,f (3+1)=[4+14]﹣[44]=1﹣1=0,而f (3)=1,故选项C 错误; D 、当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,所以D 选项的结论正确;故选:C .【点评】本题考查解一元一次不等式组、函数值,解答本题的关键是明确题意,可以判断各个选项中的结论是否成立.二、填空题(木大题共6小题,每小题3分,满分18分)13.(3分)(2018•娄底)如图,在平面直角坐标系中,O为坐标原点,点P是反比例函数y=2x图象上的一点,PA⊥x轴于点A,则△POA的面积为1.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.【专题】1 :常规题型.【分析】直接利用反比例函数的性质结合系数k的几何意义得出答案.【解答】解:∵点P是反比例函数y=2x图象上的一点,PA⊥x轴于点A,∴△POA的面积为:12AO•PA=12xy=1.故答案为:1.【点评】此题主要考查了反比例函数系数k的几何意义,正确表示出△POA的面积是解题关键.14.(3分)(2018•娄底)如图,P是△ABC的内心,连接PA、PB、PC,△PAB、△PBC、△PAC的面积分别为S1、S2、S3.则S1<S2+S3.(填“<”或“=”或“>”)【考点】MI:三角形的内切圆与内心;K6:三角形三边关系;KF:角平分线的性质.【专题】552:三角形;559:圆的有关概念及性质.【分析】过P点作PD⊥AB于D,作PE⊥AC于E,作PF⊥BC于F,根据内心的定义可得PD=PE=PF,再根据三角形面积公式和三角形三边关系即可求解.【解答】解:过P点作PD⊥AB于D,作PE⊥AC于E,作PF⊥BC于F,∵P是△ABC的内心,∴PD=PE=PF,∵S1=12AB•PD,S2=12BC•PF,S3=12AC•PE,AB<BC+AC,∴S1<S2+S3.故答案为:<.【点评】考查了三角形的内切圆与内心,三角形面积和三角形三边关系,关键是由内心的定义得PD=PE=PF.15.(3分)(2018•娄底)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为16.【考点】X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】先画出树状图展示所有6种等可能的结果数,再找出选修地理和生物的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有6种等可能结果,其中选修地理和生物的只有1种结果,所以选修地理和生物的概率为16, 故答案为:16. 【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2018•娄底)如图,△ABC 中,AB=AC ,AD ⊥BC 于D 点,DE ⊥AB 于点E ,BF ⊥AC 于点F ,DE=3cm ,则BF= 6 cm .【考点】KH :等腰三角形的性质;K3:三角形的面积.【专题】1 :常规题型.【分析】先利用HL 证明Rt △ADB ≌Rt △ADC ,得出S △ABC =2S △ABD =2×12AB•DE=AB•DE=3AB ,又S △ABC =12AC•BF ,将AC=AB 代入即可求出BF . 【解答】解:在Rt △ADB 与Rt △ADC 中,{AB =AC AD =AD, ∴Rt △ADB ≌Rt △ADC ,∴S △ABC =2S △ABD =2×12AB•DE=AB•DE=3AB , ∵S △ABC =12AC•BF , ∴12AC•BF=3AB ,∵AC=AB ,∴12BF=3, ∴BF=6.故答案为6.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.17.(3分)(2018•娄底)如图,已知半圆O 与四边形ABCD 的边AD 、AB 、BC 都相切,切点分别为D 、E 、C ,半径OC=1,则AE•BE= 1 .【考点】S9:相似三角形的判定与性质;M5:圆周角定理;MC :切线的性质.【专题】559:圆的有关概念及性质.【分析】想办法证明△AEO ∽△OEB ,可得AE OE =OE BE,推出AE•BE=OE 2=1. 【解答】解:如图连接OE .∵半圆O 与四边形ABCD 的边AD 、AB 、BC 都相切,切点分别为D 、E 、C , ∴OE ⊥AB ,AD ⊥CD ,BC ⊥CD ,∠OAD=∠OAE ,∠OBC=∠OBE ,∴AD ∥BC ,∴∠DAB +∠ABC=180°,∴∠OAB +∠OBA=90°,∴∠AOB=90°,∵∠OAE +∠AOE=90°,∠AOE +∠BOE=90°,∴∠EAO=∠EOB ,∵∠AEO=∠OEB=90°,∴△AEO∽△OEB,∴AEOE =OE BE,∴AE•BE=OE2=1,故答案为1.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的性质等知识,解题的关键是正确寻找相似三角形解决问题.18.(3分)(2018•娄底)设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a n﹣1)2,则a2018=4035.【考点】37:规律型:数字的变化类.【专题】1 :常规题型.【分析】由4a n=(a n+1﹣1)2﹣(a n﹣1)2,可得(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,根据a1,a2,a3……是一列正整数,得出a n+1=a n+2,根据a1=1,分别求出a2=3,a3=5,a4=7,a5=9,进而发现规律a n=2n﹣1,即可求出a2018=4035.【解答】解:∵4a n=(a n+1﹣1)2﹣(a n﹣1)2,∴(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,∵a1,a2,a3……是一列正整数,∴a n+1﹣1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n﹣1,∴a2018=4035.故答案为4035.【点评】本题是一道找规律的题目,要求学生通过计算,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出式子a n+1=a n+2.三、解答题(本大题共2小题,每小题6分,共12分)19.(6分)(2018•娄底)计算:(π﹣3.14)0+(13)﹣2﹣|﹣√12|+4cos30°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂、负整数指数幂、绝对值和特殊角的三角函数值可以解答本题.【解答】解:(π﹣3.14)0+(13)﹣2﹣|﹣√12|+4cos30°=1+9﹣2√3+4×√3 2=1+9﹣2√3+2√3=10.【点评】本题考查实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.20.(6分)(2018•娄底)先化简,再求值:(1x+1+1x2−1)÷xx2+2x+1,其中x=√2.【考点】6D:分式的化简求值.【专题】11 :计算题;513:分式.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x−1+1(x+1)(x−1)•(x+1)2x=x+1x−1,当x=√2时,原式=√2+1√2−1=3+2√2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共2小题,每小题8分,共16分)21.(8分)(2018•娄底)为了取得贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为A、B、C、D四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:(1)求样本容量;(2)补全条形图,并填空:n=10;(3)若全市有5000人参加了本次测试,估计本次测试成绩为A级的人数为多少?【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)用B等级人数除以其所占百分比可得;(2)总人数减去A、B、D人数求得C的人数即可补全条形图,用D等级人数除以总人数可得n的值;(3)总人数乘以样本中A等级人数所占比例即可得.【解答】解:(1)样本容量为18÷30%=60;(2)C等级人数为60﹣(24+18+6)=12人,n%=660×100%=10%,补全图形如下:故答案为:10;(3)估计本次测试成绩为A 级的人数为5000×2460=2000人. 【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2018•娄底)如图,长沙九龙仓国际金融中心主楼BC 高达452m ,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE 高340m ,为了测量高楼BC 上发射塔AB 的高度,在楼DE 底端D 点测得A 的仰角为α,sinα=2425,在顶端E 点测得A 的仰角为45°,求发射塔AB 的高度.【考点】TA :解直角三角形的应用﹣仰角俯角问题.【专题】11 :计算题.【分析】作EH ⊥AC 于H ,设AC=24x ,根据正弦的定义求出AD ,根据勾股定理求出CD ,根据题意列出方程求出x ,结合图形计算即可.【解答】解:作EH ⊥AC 于H ,则四边形EDCH 为矩形,∴EH=CD ,设AC=24x ,在Rt △ADC 中,sinα=2425, ∴AD=25x ,由勾股定理得,CD=√AD2−AC2=7x,∴EH=7x,在Rt△AEH中,∠AEH=45°,∴AH=EH=7x,由题意得,24x=7x+340,解得,x=20,则AC=24x=480,∴AB=AC﹣BC=480﹣452=28,答:发射塔AB的高度为28m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)23.(9分)(2018•娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【专题】1 :常规题型.【分析】(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据购回的设备日处理能力不低于140吨列出不等式12x+15(10﹣x)≥140,求出解集,再根据x为正整数,得出x=1,2,3.进而求解即可;(2)分别求出各方案实际购买费用,比较即可求解.【解答】解:(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据题意,得12x+15(10﹣x)≥140,解得x≤31 3,∵x为正整数,∴x=1,2,3.∴该景区有三种设计方案:方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,∴采用(1)设计的第二种方案,使购买费用最少.【点评】本题考查了一次函数的应用,一元一次不等式的应用,分析题意,找到合适的不等关系是解决问题的关键.24.(9分)(2018•娄底)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.【考点】KD:全等三角形的判定与性质.【专题】555:多边形与平行四边形.【分析】(1)首先证明四边形ABCD是平行四边形,再利用ASA证明△AOE≌△COF;(2)结论:四边形BEDF是菱形.根据邻边相等的平行四边形是菱形即可证明;【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,{∠EAO=∠FCO OA=OC∠AOE=∠COF,∴△AOE≌△COF.(2)解:结论:四边形BEDF是菱形,∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形,∵OB=OD,EF⊥BD,∴EB=ED,∴四边形BEDF是菱形.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.六、解答题(木本大题共2小题,每小题10分,共20分)25.(10分)(2018•娄底)如图,C、D是以AB为直径的⊙O上的点,AĈ=BĈ,弦CD交AB于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;(2)求证:BC2﹣CE2=CE•DE;(3)已知OA=4,E是半径OA的中点,求线段DE的长.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质;55A:与圆有关的位置关系;55D:图形的相似.【分析】(1)由AB是⊙O的直径知∠BAD+∠ABD=90°,由PB是⊙O的切线知∠PBD+∠ABD=90°,据此可得答案;(2)连接OC,设圆的半径为r,则OA=OB=OC=r,证△ADE∽△CBE得DE•CE=AE•BE=r2﹣OE2,由AĈ=BĈ知∠AOC=∠BOC=90°,根据勾股定理知CE2=OE2+r2、BC2=2r2,据此得BC2﹣CE2=r2﹣OE2,从而得证;(3)先求出BC=4√2、CE=2√5,根据BC2﹣CE2=CE•DE计算可得.【解答】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠BAD+∠ABD=90°,∵PB是⊙O的切线,∴∠ABP=90°,即∠PBD+∠ABD=90°,∴∠BAD=∠PBD;(2)∵∠A=∠C、∠AED=∠CEB,∴△ADE∽△CBE,∴DE BE =AE CE,即DE•CE=AE•BE , 如图,连接OC ,设圆的半径为r ,则OA=OB=OC=r ,则DE•CE=AE•BE=(OA ﹣OE )(OB +OE )=r 2﹣OE 2,∵AĈ=BC ̂, ∴∠AOC=∠BOC=90°,∴CE 2=OE 2+OC 2=OE 2+r 2,BC 2=BO 2+CO 2=2r 2,则BC 2﹣CE 2=2r 2﹣(OE 2+r 2)=r 2﹣OE 2,∴BC 2﹣CE 2=DE•CE ;(3)∵OA=4,∴OB=OC=OA=4,∴BC=√OB 2+OC 2=4√2,又∵E 是半径OA 的中点,∴AE=OE=2,则CE=√OC 2+OE 2=√42+22=2√5,∵BC 2﹣CE 2=DE•CE ,∴(4√2)2﹣(2√5)2=DE•2√5,解得:DE=6√55. 【点评】本题主要考查圆的综合问题,解题的关键是熟练掌握圆的切线的性质、圆心角定理、相似三角形的判定与性质、勾股定理等知识点.26.(10分)(2018•娄底)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.【考点】HF:二次函数综合题.【专题】537:函数的综合应用.【分析】(1)根据点A、B、C的坐标,利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点D的坐标;(2)①过点F作FM∥y轴,交BD于点M,根据点B、D的坐标,利用待定系数法可求出直线BD的解析式,根据点F的坐标可得出点M的坐标,利用三角形的面积公式可得出S△BDF=﹣x2+4x﹣3,再利用二次函数的性质即可解决最值问题;②过点E作EN∥BD交y轴于点N,交抛物线于点F1,在y轴负半轴取ON′=ON,连接EN′,射线EN′交抛物线于点F2,则∠AEF1=∠DBE、∠AEF2=∠DBE,根据EN ∥BD结合点E的坐标可求出直线EF1的解析式,联立直线EF1、抛物线的解析式成方程组,通过解方程组即可求出点F1的坐标,同理可求出点F2的坐标,此题得解.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入y=ax2+bx+c,{a−b+c=09a+3b+c=0c=3,解得:{a=−1b=2c=3,。
2018年娄底市中考数学试题与答案

2018年娄底市中考数学试题与答案温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分; (2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上; (3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里) 1. 2018的相反数是( ) A .12018 B .2018 C .-2018 D .12018-2. 一组数据-3,2,2,0,2,1的众数是( ) A .-3B .2C .0D .13. 随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110´ B .62.110´ C .52110´ D .72.110´4. 下列运算正确的是( )A .2510a aa ?B .326(3a )6a = C .222()a b a b +=+D .2(2)(3)6a a a a +-=--5. 关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A.有两不相等实数根 B.有两相等实数根 C.无实数根D.不能确定6. 不等式组22314x x x ì-?ïïíï->-ïî的最小整数解是( )A .-1B .0C . 1D . 27.下图所示立体图形的俯视图是( )A BC D8. 函数y =中自变量x 的取值范围是( )A .2x >B .2x ³C .2x ³或D .3x ¹9. 将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+ C .22y x =+ D .22y x =- 10.如图,往竖直放置的在A 处山短软管连接的粗细均匀细管组成的“U 形装置中注入一定量的水,水面高度为6cm ,现将右边细管绕A 处顺时针方向旋转60o 到AB 位置,则AB 中水柱的长度约为( )A .4cmB .C .8cmD .12cm11.如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sin cos a a -=( )A .513B .513-C .713D .713-12.已知: []x 表示不超过x 的最大整数例: [3.9]3,[ 1.8]2=-=-令关于k 的函数1()[][]44k k f x +=- (k 是正整数)例:313()[][]44f x +=-则下列结论错误..的是( ) A .(1)0f = B .(4)()f k f k += C .(1)()f k f k +?D .()0f k =或1二、填空题(本大题共6小题,每小题3分,满分18分)13.如图,在平面直角坐标系中, O 为坐标原点,点P 是反比例函数2y x=二图像上的一点, PA x ^轴于点A ,则POA D 的面积为 .14.如图, P 是ABC D 的内心,连接PA PB PC 、、,PAB PBC PAC D D D 、、的面积分别为123S S S 、、,则1S 23S S +.(填“<”或“=”或“>”)15.从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科日参加等级考试.学生A 已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科日中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为 .16.如图,ABC D 中,AB AC =,AD BC ^于D 点,DE AB ^于点E ,BF AC ^于点F ,3cm DE =,则BF = cm .17.如图,已知半圆O 与四边形ABCD 的边AD AB BC 、、都相切,切点分别为D E C 、、,半径1OC =,则AE BE? .18.设123,,a a a K K 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数)已知11a =,2214(1)(1)n n n a a a +=---.则2018a = .三、解答题(本大题共2小题,每小题6分,共12分)19.计算: 021( 3.14)()3p --+-|4cos30-+o .20.先化简,再求值: 2211()1121xx x x x +?+-++,其中x =四、解答题(本大题2小题,每小题8分,共16分)21.为了取得扶贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为A B C D 、、、四个不同的等级,绘制成不完整统计图如下图,请根据图中的信息,解答下列问题;(1)求样本容量;(2)补全条形图,并填空: n = ;(3)若全市有5000人参加了本次测试,估计本次测试成绩为A 级的人数为多少?22.如图,长沙九龙仓国际金融中心主楼BC 高达452m ,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE 高340m ,为了测量高楼BC 上发射塔AB 的高度,在楼DE 底端D 点测得A 的仰角为45o, 求发射塔AB 的高度.五、解答题(本大题共2小题,每小题9分,共18分)23.“绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买A B 、两种型号的垃圾处理设备共10台,已知每台A 型设备日处理能力为12吨:;每台B 型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A B 、两种设备的方案;(2)已知每台A 型设备价格为3万元,每台B 型设备价格为44万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么? 24.如图,已知四边形ABCD 中,对角线AC BC 、相交于点O ,且O A =O C ,OB OD =,过O 点作EF BD ^,分别交AD BC 、于点E F 、.(1)求证: AOE COF D @D ;(2)判断四边形BEDF 的形状,并说明理由.六、解答题(本大题共2小题,每小题10分,共20分)25.如图, C D 、是以AB 为直径的O e 上的点, »»ACBC =,弦CD 交AB 于点E .(1)当PB 是O e 的切线时,求证: PBD DAB ??;(2)求证: 22BC CE CE DE -=?;(3)已知OA=4,E 是半径OA 的中点,求线段DE 的长.26.如图,抛物线2y ax bx c =++与两坐标轴相交于点(1,0)(3,0)(0,3)A B C -、、,D 是抛物线的顶点, E 是线段AB 的中点.(1)求抛物线的解析式,并写出D 点的坐标; (2) (,)F x y 是抛物线上的动点;①当1,0x y >>时,求BDF D 的面积的最大值; ②当AEF DBE ??时,求点F 的坐标.参考答案一、选择题1—5 CBBDA 6—10 BBCAC 11—12 DC二、填空题⒀、1 ⒁、<⒂、⒃、6 ⒄、1 ⒅、4035三、解答题19、1020、=3+221、(1)60 (2)10 (3)200022、解:设AB的高度为x米,过点E作EF⊥AC于F,则FC=DE=340米∴BF=452-340=112米∴AF=(112+x)米在Rt△AEF中,∠FAB=∠AEF=45°∴EF=AF=CD=(112+x)米Rt△ACD中,sina=,则tana=Rt△ACD中,AC=(452+x)米tana=AC/CD=解得X=2823、解:(1)设购买x台A型,则购买(10-x)台B型12x+15(10-x)≥140解得x≤∵x是非负整数∴x=3,2,1,0∴B型相应的台数分别为7,8,9,10∴共有3种方案:方案一,A 3台、 B 7台方案二,A 2台、B 8台方案三,A 1台、B 9台方案四,A 0台、B 10台(2)3x+4.4(10-x)≥40解得x≤∴x=2,1∴当x=2时,2×3+4.4×8=41.2(万元)41.2×0.9=37.08(万元)当x=1时 1×3+4.4×9=42.6(万元)42.6×0.9=38.34(万元)∵37.08<38.34∴购买2台A型,8台B型费用最少24、(1)易证四边形ABCD是平行四边形,得AD∥BC则∠DAC=∠BCA,易证△AOE≌△COF(ASA)(2)四边形BEDF是菱形理由如下:先证△DOE≌△BOF∴DE=BF∴DE∥=BF∴四边形DEBF是平行四边形又∵EF⊥BD∴平行四边形DEBF是菱形25、(1)∵AB是直径∴∠ADB=90°即∠DAB+∠ABD=90°又∵ PB是⊙O的切线,∴PB⊥AB∴∠ABP=90°,即∠ABD+∠PBD=90°∴∠PBD=∠DAB(2)、∵弧AC=弧BC∴∠BDC=∠EBC又∵∠BCE=BCD∴△BCE∽△DCB∴BC/CE=CD/BC∴BC2=CE×CD∴BC2=CE(CE+DE)∴BC2=CE2+CE×DE∴BC2- CE2= CE×DE(3)连接OC∵E是OA的中点∴AE=OE=2∴BE=4+2=6∵弧AC=弧BC∴∠AOC=∠BOC=90°Rt△ACD中,OC=4由勾股定理得CE=2√5∵弧BD=弧BD∴∠DAB=∠BCD又∵∠AED=∠BEC∴△ADE∽△BCE∴AE/CE=DE/BE∴=∴DE= (1.2)26、(1)y=-x2+2x+3D(1,4)(2) ∵x>1,y>0∴点F是直线BD上方抛物线上的动点则F(x, -x2+2x+3)过点F作FH⊥x轴交直线BD于M∵B(3,0) D(1,4)∴y BD=-2x+6则M(x, -2x+6)∴FM=-x2+2x+3-(-2x+6)= -x2+4x-3=-(x-2)2+1∴当x=2时,S最大值=1(3)①当 FE∥BD,且点F在x轴上方抛物线上时,设CE的解析式为y=-2x+b∵直线CE过点E(1,0)∴b=2y CE=-2x+2联立y=-2x+2与y=-x2+2x+3解得F(2-√5,-2+2√5)②当F在x轴下方、y轴左侧抛物线上时,设直线EF与直线BD交于点H ∵∠AEF=∠HEB又∵∠AEF=∠DBE∴∠HEB=∠DBEHE=HB∴点H的横坐标为2又∵点H在直线y BD=-2x+6上∴H(2,2)∴yEH=2x-2联立y=2x-2与y=-x2+2x+3解得F(-,-2-2)综上所述F(-,-2-2)或(2-,-2+2)。
2018年湖南省娄底市中考数学试卷(含详细答案解析及总结)中考真题

2018年湖南省娄底市中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.(3.00分)2018的相反数是()A.B.2018 C.﹣2018 D.﹣2.(3.00分)一组数据﹣3,2,2,0,2,1的众数是()A.﹣3 B.2 C.0 D.13.(3.00分)随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A.0.21×107B.2.1×106C.21×105D.2.1×1074.(3.00分)下列运算正确的是()A.a2•a5=a10B.(3a3)2=6a6C.(a+b)2=a2+b2D.(a+2)(a﹣3)=a2﹣a﹣65.(3.00分)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定6.(3.00分)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.27.(3.00分)如图所示立体图形的俯视图是()A. B. C.D.8.(3.00分)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠39.(3.00分)将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣210.(3.00分)如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度约为()A.4cm B.6cm C.8cm D.12cm11.(3.00分)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=()A.B.﹣C.D.﹣12.(3.00分)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k) C.f(k+1)≥f(k)D.f(k)=0或1二、填空题(木大题共6小题,每小题3分,满分18分)13.(3.00分)如图,在平面直角坐标系中,O为坐标原点,点P是反比例函数y=图象上的一点,PA⊥x轴于点A,则△POA的面积为.14.(3.00分)如图,P是△ABC的内心,连接PA、PB、PC,△PAB、△PBC、△PAC的面积分别为S1、S2、S3.则S1S2+S3.(填“<”或“=”或“>”)15.(3.00分)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.16.(3.00分)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF ⊥AC于点F,DE=3cm,则BF=cm.17.(3.00分)如图,已知半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,半径OC=1,则AE•BE=.18.(3.00分)设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a﹣1)2,则a2018=.n三、解答题(本大题共2小题,每小题6分,共12分)19.(6.00分)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°.20.(6.00分)先化简,再求值:(+)÷,其中x=.四、解答题(本大题共2小题,每小题8分,共16分)21.(8.00分)为了取得扶贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为A、B、C、D四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:(1)求样本容量;(2)补全条形图,并填空:n=;(3)若全市有5000人参加了本次测试,估计本次测试成绩为A级的人数为多少?22.(8.00分)如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了测量高楼BC 上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,sinα=,在顶端E 点测得A的仰角为45°,求发射塔AB的高度.五、解答题(本大题共2小题,每小题9分,共18分)23.(9.00分)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?24.(9.00分)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.六、解答题(木本大题共2小题,每小题10分,共20分)25.(10.00分)如图,C、D是以AB为直径的⊙O上的点,=,弦CD交AB 于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;(2)求证:BC2﹣CE2=CE•DE;(3)已知OA=4,E是半径OA的中点,求线段DE的长.26.(10.00分)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B (3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.2018年湖南省娄底市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.(3.00分)2018的相反数是()A.B.2018 C.﹣2018 D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:C.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)一组数据﹣3,2,2,0,2,1的众数是()A.﹣3 B.2 C.0 D.1【分析】众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【解答】解:这组数据中2出现次数最多,有3次,所以众数为2,故选:B.【点评】本题主要考查众数,解题的关键是掌握众数是指一组数据中出现次数最多的数据.3.(3.00分)随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A.0.21×107B.2.1×106C.21×105D.2.1×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:210万=2.1×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)下列运算正确的是()A.a2•a5=a10B.(3a3)2=6a6C.(a+b)2=a2+b2D.(a+2)(a﹣3)=a2﹣a﹣6【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=a7,不符合题意;B、原式=9a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a2﹣a﹣6,符合题意,故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.(3.00分)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定【分析】先计算判别式得到△=(k+3)2﹣4×k=(k+1)2+8,再利用非负数的性质得到△>0,然后可判断方程根的情况.【解答】解:△=(k+3)2﹣4×k=k2+2k+9=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,所以方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.(3.00分)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣x≥x﹣2,得:x≤2,解不等式3x﹣1>﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的最小整数解为0,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3.00分)如图所示立体图形的俯视图是()A. B. C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上边看立体图形得到俯视图即可得立体图形的俯视图是,故选:B.【点评】本题考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.8.(3.00分)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:x≥2且x≠3.故选:C.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(3.00分)将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣2【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:y=2(x﹣2)﹣3+3=2x﹣4.化简,得y=2x﹣4,故选:A.【点评】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.10.(3.00分)如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度约为()A.4cm B.6cm C.8cm D.12cm【分析】AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,易得AC=2CH=2x,细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,利用水的体积不变得到x•S+x•2S=6•S+6•S,然后求出x后计算出AC即可.【解答】解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,∵∠BAH=90°﹣60°=30°,∴AC=2CH=2x,∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,∵x•S+x•2S=6•S+6•S,解得x=4,∴AC=2x=8,即AB中水柱的长度约为8cm.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.(3.00分)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=()A.B.﹣C.D.﹣【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求sinα和cosα的值,进而可求出sinα﹣cosα的值.【解答】解:∵小正方形面积为49,大正方形面积为169,∴小正方形的边长是7,大正方形的边长是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC﹣60=0,解得AC=5,AC=﹣12(舍去),∴BC==12,∴sinα==,cosα==,∴sinα﹣cosα=﹣=﹣,故选:D.【点评】本题考查了勾股定理的证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键.12.(3.00分)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k) C.f(k+1)≥f(k)D.f(k)=0或1【分析】根据题意可以判断各个选项是否正确,从而可以解答本题.【解答】解:f(1)=[]﹣[]=0﹣0=0,故选项A正确;f(k+4)=[]﹣[]=[+1]﹣[+1]=[]﹣[]=f(k),故选项B正确;C、当k=3时,f(3+1)=[]﹣[]=1﹣1=0,而f(3)=1,故选项C错误;D、当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,所以D选项的结论正确;故选:C.【点评】本题考查解一元一次不等式组、函数值,解答本题的关键是明确题意,可以判断各个选项中的结论是否成立.二、填空题(木大题共6小题,每小题3分,满分18分)13.(3.00分)如图,在平面直角坐标系中,O为坐标原点,点P是反比例函数y=图象上的一点,PA⊥x轴于点A,则△POA的面积为1.【分析】直接利用反比例函数的性质结合系数k的几何意义得出答案.【解答】解:∵点P是反比例函数y=图象上的一点,PA⊥x轴于点A,∴△POA的面积为:AO•PA=xy=1.故答案为:1.【点评】此题主要考查了反比例函数系数k的几何意义,正确表示出△POA的面积是解题关键.14.(3.00分)如图,P是△ABC的内心,连接PA、PB、PC,△PAB、△PBC、△PAC的面积分别为S1、S2、S3.则S1<S2+S3.(填“<”或“=”或“>”)【分析】过P点作PD⊥AB于D,作PE⊥AC于E,作PF⊥BC于F,根据内心的定义可得PD=PE=PF,再根据三角形面积公式和三角形三边关系即可求解.【解答】解:过P点作PD⊥AB于D,作PE⊥AC于E,作PF⊥BC于F,∵P是△ABC的内心,∴PD=PE=PF,∵S1=AB•PD,S2=BC•PF,S3=AC•PE,AB<BC+AC,∴S1<S2+S3.故答案为:<.【点评】考查了三角形的内切圆与内心,三角形面积和三角形三边关系,关键是由内心的定义得PD=PE=PF.15.(3.00分)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.【分析】先画出树状图展示所有6种等可能的结果数,再找出选修地理和生物的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有6种等可能结果,其中选修地理和生物的只有1种结果,所以选修地理和生物的概率为,故答案为:.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.16.(3.00分)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF ⊥AC于点F,DE=3cm,则BF=6cm.【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S=2S△ABD=2×△ABCA B•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S=2S△ABD=2×AB•DE=AB•DE=3AB,△ABC=AC•BF,∵S△ABC∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.17.(3.00分)如图,已知半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,半径OC=1,则AE•BE=1.【分析】想办法证明△AEO∽△OEB,可得=,推出AE•BE=OE2=1.【解答】解:如图连接OE.∵半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,∴OE⊥AB,AD⊥CD,BC⊥CD,∠OAD=∠OAE,∠OBC=∠OBE,∴AD∥BC,∴∠DAB+∠ABC=180°,∴∠OAB+∠OBA=90°,∴∠AOB=90°,∵∠OAE+∠AOE=90°,∠AOE+∠BOE=90°,∴∠EAO=∠EOB,∵∠AEO=∠OEB=90°,∴△AEO∽△OEB,∴=,∴AE•BE=OE2=1,故答案为1.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的性质等知识,解题的关键是正确寻找相似三角形解决问题.18.(3.00分)设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a﹣1)2,则a2018=4035.n【分析】由4a n=(a n+1﹣1)2﹣(a n﹣1)2,可得(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,根据a,a2,a3……是一列正整数,得出a n+1=a n+2,根据a1=1,分别求出1a2=3,a3=5,a4=7,a5=9,进而发现规律a n=2n﹣1,即可求出a2018=4035.【解答】解:∵4a n=(a n+1﹣1)2﹣(a n﹣1)2,∴(a n﹣1)2=(a n﹣1)2+4a n=(a n+1)2,+1∵a1,a2,a3……是一列正整数,﹣1=a n+1,∴a n+1=a n+2,∴a n+1∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n﹣1,∴a2018=4035.故答案为4035.【点评】本题是一道找规律的题目,要求学生通过计算,分析、归纳发现其中的=a n+2.规律,并应用发现的规律解决问题.解决本题的难点在于得出式子a n+1三、解答题(本大题共2小题,每小题6分,共12分)19.(6.00分)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°.【分析】根据零指数幂、负整数指数幂、绝对值和特殊角的三角函数值可以解答本题.【解答】解:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°=1+9﹣+4×=1+9﹣2+2=10.【点评】本题考查实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.20.(6.00分)先化简,再求值:(+)÷,其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=时,原式==3+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共2小题,每小题8分,共16分)21.(8.00分)为了取得扶贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为A、B、C、D四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:(1)求样本容量;(2)补全条形图,并填空:n=10;(3)若全市有5000人参加了本次测试,估计本次测试成绩为A级的人数为多少?【分析】(1)用B等级人数除以其所占百分比可得;(2)总人数减去A、B、D人数求得C的人数即可补全条形图,用D等级人数除以总人数可得n的值;(3)总人数乘以样本中A等级人数所占比例即可得.【解答】解:(1)样本容量为18÷30%=60;(2)C等级人数为60﹣(24+18+6)=12人,n%=×100%=10%,补全图形如下:故答案为:10;(3)估计本次测试成绩为A级的人数为5000×=2000人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8.00分)如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了测量高楼BC 上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,sinα=,在顶端E 点测得A的仰角为45°,求发射塔AB的高度.【分析】作EH⊥AC于H,设AC=24x,根据正弦的定义求出AD,根据勾股定理求出CD,根据题意列出方程求出x,结合图形计算即可.【解答】解:作EH⊥AC于H,则四边形EDCH为矩形,∴EH=CD,设AC=24x,在Rt△ADC中,sinα=,∴AD=25x,由勾股定理得,CD==7x,∴EH=7x,在Rt△AEH中,∠AEH=45°,∴AH=EH=7x,由题意得,24x=7x+340,解得,x=20,则AC=24x=480,∴AB=AC﹣BC=480﹣452=28,答:发射塔AB的高度为28m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)23.(9.00分)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【分析】(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据购回的设备日处理能力不低于140吨列出不等式12x+15(10﹣x)≥140,求出解集,再根据x为正整数,得出x=1,2,3.进而求解即可;(2)分别求出各方案实际购买费用,比较即可求解.【解答】解:(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据题意,得12x+15(10﹣x)≥140,解得x≤3,∵x为正整数,∴x=1,2,3.∴该景区有三种设计方案:方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,∴采用(1)设计的第二种方案,使购买费用最少.【点评】本题考查了一次函数的应用,一元一次不等式的应用,分析题意,找到合适的不等关系是解决问题的关键.24.(9.00分)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.【分析】(1)首先证明四边形ABCD是平行四边形,再利用ASA证明△AOE≌△COF;(2)结论:四边形BEDF是菱形.根据邻边相等的平行四边形是菱形即可证明;【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形BEDF是菱形,∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形,∵OB=OD,EF⊥BD,∴EB=ED,∴四边形BEDF是菱形.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.六、解答题(木本大题共2小题,每小题10分,共20分)25.(10.00分)如图,C、D是以AB为直径的⊙O上的点,=,弦CD交AB 于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;(2)求证:BC2﹣CE2=CE•DE;(3)已知OA=4,E是半径OA的中点,求线段DE的长.【分析】(1)由AB是⊙O的直径知∠BAD+∠ABD=90°,由PB是⊙O的切线知∠PBD+∠ABD=90°,据此可得答案;(2)连接OC,设圆的半径为r,则OA=OB=OC=r,证△ADE∽△CBE得DE•CE=AE•BE=r2﹣OE2,由=知∠AOC=∠BOC=90°,根据勾股定理知CE2=OE2+r2、BC2=2r2,据此得BC2﹣CE2=r2﹣OE2,从而得证;(3)先求出BC=4、CE=2,根据BC2﹣CE2=CE•DE计算可得.【解答】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠BAD+∠ABD=90°,∵PB是⊙O的切线,∴∠ABP=90°,即∠PBD+∠ABD=90°,∴∠BAD=∠PBD;(2)∵∠A=∠C、∠AED=∠CEB,∴△ADE∽△CBE,∴=,即DE•CE=AE•BE,如图,连接OC,设圆的半径为r,则OA=OB=OC=r,则DE•CE=AE•BE=(OA﹣OE)(OB+OE)=r2﹣OE2,∵=,∴∠AOC=∠BOC=90°,∴CE2=OE2+OC2=OE2+r2,BC2=BO2+CO2=2r2,则BC2﹣CE2=2r2﹣(OE2+r2)=r2﹣OE2,∴BC2﹣CE2=DE•CE;(3)∵OA=4,∴OB=OC=OA=4,∴BC==4,又∵E是半径OA的中点,∴AE=OE=2,则CE===2,∵BC2﹣CE2=DE•CE,∴(4)2﹣(2)2=DE•2,解得:DE=.【点评】本题主要考查圆的综合问题,解题的关键是熟练掌握圆的切线的性质、圆心角定理、相似三角形的判定与性质、勾股定理等知识点.26.(10.00分)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B (3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.【分析】(1)根据点A、B、C的坐标,利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点D的坐标;(2)①过点F作FM∥y轴,交BD于点M,根据点B、D的坐标,利用待定系数法可求出直线BD的解析式,根据点F的坐标可得出点M的坐标,利用三角形=﹣x2+4x﹣3,再利用二次函数的性质即可解决最值问题;的面积公式可得出S△BDF②过点E作EN∥BD交y轴于点N,交抛物线于点F1,在y轴负半轴取ON′=ON,连接EN′,射线EN′交抛物线于点F2,则∠AEF1=∠DBE、∠AEF2=∠DBE,根据EN ∥BD结合点E的坐标可求出直线EF1的解析式,联立直线EF1、抛物线的解析式成方程组,通过解方程组即可求出点F1的坐标,同理可求出点F2的坐标,此题得解.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入y=ax2+bx+c,,解得:,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4).(2)①过点F作FM∥y轴,交BD于点M,如图1所示.设直线BD的解析式为y=mx+n(m≠0),将(3,0)、(1,4)代入y=mx+n,,解得:,∴直线BD的解析式为y=﹣2x+6.∵点F的坐标为(x,﹣x2+2x+3),∴点M的坐标为(x,﹣2x+6),∴FM=﹣x2+2x+3﹣(﹣2x+6)=﹣x2+4x﹣3,=FM•(y B﹣y D)=﹣x2+4x﹣3=﹣(x﹣2)2+1.∴S△BDF∵﹣1<0,取最大值,最大值为1.∴当x=2时,S△BDF②过点E作EN∥BD交y轴于点N,交抛物线于点F1,在y轴负半轴取ON′=ON,连接EN′,射线EN′交抛物线于点F2,如图2所示.∵EF1∥BD,∴∠AEF1=∠DBE.∵ON=ON′,EO⊥NN′,∴∠AEF2=∠AEF1=∠DBE.∵E是线段AB的中点,A(﹣1,0),B(3,0),∴点E的坐标为(1,0).设直线EF1的解析式为y=﹣2x+b1,将E(1,0)代入y=﹣2x+b1,﹣2+b1=0,解得:b1=2,∴直线EF1的解析式为y=﹣2x+2.联立直线EF1、抛物线解析式成方程组,,解得:,(舍去),∴点F1的坐标为(2﹣,2﹣2).当x=0时,y=﹣2x+2=2,∴点N的坐标为(0,2),∴点N′的坐标为(0,﹣2).同理,利用待定系数法可求出直线EF2的解析式为y=2x﹣2.联立直线EF2、抛物线解析式成方程组,,解得:,(舍去),∴点F2的坐标为(﹣,﹣2﹣2).综上所述:当∠AEF=∠DBE时,点F的坐标为(2﹣,2﹣2)或(﹣,﹣2﹣2).【点评】本题考查了待定系数法求二次(一次)函数解析式、三角形的面积、平行线的性质以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线解析式;(2)①根据三角形的面积公式找出S=﹣x2+4x﹣3;△BDF②联立直线与抛物线的解析式成方程组,通过解方程组求出点F的坐标.。
2018年湖南省娄底市中考数学试题(含答案解析)

娄底市2018年初中毕业学业考试数学试题卷一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.2018的相反数是()1 1A. B. 2018 C. -2018 D. ——2018 2018【答案】C【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键2. 一组数据-3,2,2,0,2,1的众数是()A. -3B. 2C. 0D. 1【答案】B【解析】【分析】一组数据中次数出现最多的数据是众数,根据众数的定义进行求解即可得【详解】数据数据-3,2,2,0,2,1中,2出现了3次,出现次数最多,其余的都出现了1次,所以这组数据的众数是2,故选B.【点睛】本题考查了众数的定义,熟练掌握众数的定义是解题的关键3. 随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“ 210万”用科学记数法表示为()A. 0 ■ .B. '汀'Ju"C. ■■■.. 1D.【答案】B【解析】【分析】科学记数法的表示形式为a x 10n的形式,其中1W|a|<10,n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【详解】210万=2100000,2100000=2.1 x 106,故选B.a x 10n的形式,其中K |a|<10 , n 【点睛】本题考查科学记数法的表示方法•科学记数法的表示形式为为整数,表示时关键要正确确定a的值以及n的值.4. 下列运算正确的是( )A. H■ ::厂B. ;.i ■'■.C. : - I: ■:■ i ■D. ::- ■-1; J “【答案】D【解析】【分析】根据同底数幕的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. :■:?;、:计,故B选项错误,不符合题意;C. ;:■ - i:F 故C选项错误,不符合题意;D. )]-.::•正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幕的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5. 关于-;芝的一兀二次方程:I - I:::的根的情况是( )A.有两不相等实数根B. 有两相等实数根C.无实数根D. 不能确定【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可【详解】汁.":上1△ =[-(k+3)] 2-4k=k 2+6k+9-4k=(k+1) 2+8,•/ (k+1) 2>0,•••(k+1) 2+8>0,即厶>0,•方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0 (0, a, b, c为常数)的根的判别式△ =b2-4ac .当△>0时,方程有两个不相等的实数根;当厶=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6. 不等式组| .的最小整数解是( )A. -1B. 0C. 1D. 2【答案】B【解析】【分析】分别求出不等式组中每一个不等式的解集,然后确定出不等式组的解集,即可求出最小的整数解.【详解,解不等式①得,X W 2,解不等式②得,x>-1 ,所以不等式组的解集是:-1<x w 2,所以最小整数解为0,故选B.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,熟练掌握一元一次不等式组的解法是关键7. 下图所示立体图形的俯视图是()【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,根据俯视图是从物体上面看得到的视图即可.【详解】从物体上面看可看到有两列小正方形,左边的一列有1个,右边一列有两个,B.得到的图形如图所示:【点睛】本题考查了几何体的三视图,明确每个视图是从几何体的哪一面看得到的是解题的关键8. 函数:丄二中自变量的取值范围是()x - 3A. B. :上J C.;上J且x^3 D. :企:【答案】C【解析】【分析】根据二次根式有意义的条件、分式有意义的条件进行求解即可得【详解】由题意得:「、,解得:x>2且X M3, 故选C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2) 当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9. 将直线:.:-向右平移2个单位,再向上平移 3个单位后,所得的直线的表达式为( )A. ■-"•- -! B. ■'■ ■■ - -! C.卞 - m D. :2 ■. J【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可. 【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7 ,由“上加下减”原则可知,将直线 y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4 , 故选A.【点睛】本题考查了一次函数图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 10. 如图,往竖直放置在处的由软管连接的粗细均匀细管组成的“形装置中注入一定量的水,水面高度为.,现将右边细管绕 处顺时针方向旋转 到.位置,则•中水柱的长度约为( )【解析】【分析】根据旋转后两侧液面的高度相等,而且软管中液体的总长度与原来是一样的,结合已知 可知此时AB 中水柱的长度为左边水柱长度的2倍,据此即可得.【详解】如图,旋转后 AB 中水柱的长度为 AD 左侧软管中水柱的长度为 EF ,由题意则有EF+AD=Z 6=12cm•••/ DAM=90 - 60° =30°,/ AMD=90 ,二 AD=2DM •/ EF=DM /• AD=8cm 故选C.D. 12cm【答案】C【点睛】本题主要考查了30度角所对直角边是斜边的一半,旋转的性质等,解本题的关键是明确旋转前后软管中水柱的长度是不变的•11.如图,由四个全等的直角二角形围成的大正方形的面积是 169,小正方形的面积为 49,则,-ig ;-..:::•-7 —D. 13 【答案】D【解析】【分析】设直角三角形的直角边长分别为x 、y (x>y ),根据大正方形的面积为 169,小正方形的面积为49可得关于x 、y 的方程组,解方程组求得 x 、y 的值,然后利用正弦、余弦的定义进行求解即可 得• 【详解】设直角三角形的直角边长分别为x 、y ( x>y ),由题意得[甲我 二转lx I y = 169解得:二 或; (舍去),•••直角三角形的斜边长为 13, 5 12 7• - sin a -COS a= ,13 1313故选D.【点睛】本题考查了解直角三角形的应用,根据题意求出直角三角形的三边长是解题的关键k I 1 k12.已知: 表示不超过 的最大整数,例:|- I..■:- ',令关于 的函数i.k : | |.|(.是正整数),例:盼)=[匕■卜右=1,则下列结论错误 的是()4 4 • • A. B.二;-勺上:C.D. ■ 或 1【答案】C【解析】【分析】根据新定义的运算逐项进行计算即可做出判断1 I 11【详解】A. =|.| =0-0=0,故A 选项正确,不符合题意;k i- 4 + 1 k | 4 k i l k k i 1 k k-i 1 kB.= ==, • = — ' T 4 4 4444 44713 1313C.所以;故B 选项正确,不符合题意;此时:L i •,故C 选项错误,符合题意;D.设n 为正整数,所以. 或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键 二、填空题(本大题共6小题,每小题3分,满分18分) 一 一213.如图,在平面直角坐标系中, 为坐标原点,点P 是反比例函数;、:=图象上的一点,.“ I 「轴于点,x则APOA 的面积为 ____________【答案】1【解析】【分析】设P 点坐标为(m n ),根据三角形的面积公式以及点 P 在反比例函数图象上即可得【详解】设 P 点坐标为(m n ),则有mn=2, OA=|m|, PA=|n| , I 1S ^PO/= 、0A?PA=|m|?|n|=1 , 故答案为:1. 【点睛】本题考查了反比例函数比例系数 k 的几何意义,有到的知识为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数. 14. 如图, 是为三二的内心,连接 灯朋:八二乂的面积分别为•,贝yS1 ___________ 辿+%•(填或“=”或“ >”) =0,3 | 1 3-=I「F 1,当 k=4 n+1 时,当 k=4 n+2 时,当 k=4 n+3 时, =n-n=0,4n I-2-4n 卜】-• 4 . -.4 .4n I- 34n 卜 2' • 4 ..4 . 4n i- 4-4n 卜 3- • 4 ..4 .当 k=4n 时,丫1:.;==n_n=O ,= = =n_n=O ,==n+1-n=1 ,O A【答案】v【解析】【分析】根据点P是厶ABC的内心,可知点P到厶ABC三边的距离相等,设这个距离为h,根据三角形的面积公式表示出S i、S2+S3,然后再根据三角形三边关系进行判断即可【详解】•••点P是厶ABC的内心,•••点P到厶ABC三边的距离相等,设这个距离为h,1 1 1• S i= AB?h S2+S3= BC?h+ AC?h2 22•/ AB< BC+ACS i< S2+S3,故答案为:< •【点睛】本题考查了三角形内心的性质,三角形三边关系,熟知三角形的内心到三角形三边距离相等是解本题的关键•15. 从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生已选物理,还想从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为_____________________________ .【解析】【分析】列表格得出所有等可能的情况,然后再找出符合题意的情况,根据概率公式进行计算即可得•【详解】列表格:政治历史地理化学化学,政治化学,历史化学,地理生物生物,政治生物,历史生物,地理从表格中可以看出一共有6种等可能的情况,选择地理和生物的有1种情况,所以选择地理和生物的概率是,故答案为:【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.16.如图中,-F•-汇〕,匚丄I「于点,I _ .k:5于点,:「丄于点F ,「.. ■cm,则BF = _________ cm .【答案】6【解析】【分析】由等腰三角形的性质可得/ C =Z ABC BD=DC=BC,再根据/ BED* CFB=90,可证2△ BED^^ CFB根据相似三角形的对应边成比例即可求得【详解】••• AB=AC•••/ C =Z ABC ,又••• AD丄BC于D点,1• BD=DC= BC,2又DE 丄AB, BF 丄AC,•••/ BED/ CFB=90 ,•••△ BED^A CFB• DE BF=BD BC=1: 2,• BF=2DE=Z 3=6cm ,故答案为:6.【点睛】本题考查了等腰三角形的性质、相似三角形的判定与性质,得到△BED^A CFB是解本题的关键17•如图,已知半圆与四边形的边A3..A.7: F<:都相切,切点分别为•、,半径,贝UAE ” BE = __________ .【答案】11 1【解析】【分析】连接0E,由切线长定理可得/ AOE= / DOE / BOE= / EOC再根据/ DOE+/ EOC=180 ,可得/ AOB=90,继而可证△ AE3A OEB根据相似三角形对应边成比例即可得【详解】连接0E,••• AD AB与半圆0相切,••• 0E丄AB 0A平分/ DOE•••/ AOE= / DOE2同理/ BOE= / EOC2•••/ DOE# EOC=180 ,•••/ AOE# BOE=90 ,即/ AOB=90 ,•••/ ABO# BAO=90 ,•••/ BAO# AOE=90 ,•••/ ABO# AOE•••# OEA# BEO=90 ,•△AE3A OEB• AE: OE=OE BE,• AE?BE=OE2=1故答案为:1.【点睛】本题考查了切线长定理、相似三角形的判定与性质等,证得△AE3A OEB是解题的关键.18. 设' - •是一列正整数,其中“表示第一个数,表示第二个数,依此类推,表示第“个数(••是正整数)已知旳=丨,姐广但卄厂1产(^-1)2.贝怯佃= ________________ .【答案】4035【解析】【分析】「整理得I - ;•叫-I ■',从而可得a n+1-a n=2或a n=-a n+1,再根据题意进行取舍后即可求得a n的表达式,继而可得a2018.【详解】•••= —”、-汎-「--a n+1=a n+1-1 ^或a n+1=-a n+1+1 ,--a n+1-a n=2 ^或a n=-a n+1 ,又•••是一列正整数,a n=-a n+1不符合题意,舍去,--a n+i-a n=2 ,又T a i=1,--a2=3, a3=5, ........ , a n= 2n-1 ,a2oi8=2X 2018-1=4035 ,故答案为:4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n=2.三、解答题19. 计算:.1 「; " ,、- '■•、、•;'.【答案】10【解析】【分析】先分别进行0次幕的计算、负指数幕的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可=10- . +■..=10.【点睛】本题考查了实数的混合运算,涉及到0指数幕、负指数幕、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.1 ] x 厂20. 先化简,再求值: ,其中X 十J 丄丄1X i 1 ,【答案】原式= =3+2..x- 1■【解析】【分斯J括号内先通分进行加减运算・然后再进行分式的乘除陆运算・最后把数值代入化简昼■■ «的或壬进彳亍计迴亚___________________________ •___________________________________________ J X-1 + 1 (X + 1)"【详解】原式=(x+- l)(x-l) X_ X (X 十if=(x+ lXx- 1) Xx-i 1【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的法则是解题的关键21. 为了取得扶贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为 2. ?.匚.二四个不同的等级,绘制成不完整统计图如下图,请根据图中的信息,解答下列问题;(1) 求样本容量;(2) 补全条形图,并填空:;(3) 若全市有5000人参加了本次测试,估计本次测试成绩为级的人数为多少?【答案】(1)60 ; (2)10 ;⑶2000【解析】【分析】(1)根据B等级的人数为18,占比为30%!卩可求得样本容量;(2 )用样本容量减去A等级、B等级、D等级的人数求得C等级的人数,补全条形图,用D等级的人数除以样本容量再乘以100%!可求得n;(3)用5000乘以A等级所占的比即可求得•【详解】(1)样本容量为:18-30%=60(2) C等级的人数为:60-24-18-6=12,补全条形图如图所示:6-60 X 100%=10%所以n=10,故答案为:10; (24)(3)估计本次测试成绩为级的人数为:5000X =2000 (人).【点睛】本题考查了条形统计图、扇形统计图、禾U用样本估计总体,能从统计图中得到必要信息是解题的关键•22. 如图,长沙九龙仓国际金融中心主楼高达•,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼二4高」,为了测量高楼上发射塔丘段的高度,在楼底端点测得的仰角为a,"匚=,在顶端E测得A的仰角为.•,求发射塔.的高度.【答案】AB的高度为28米【解析】【分析】设AB的高度为x米,过点E作EF丄AC于F,贝U FC= DE= 340米,继而可得BF= 112米, 从而可得AF=( 112+x)米,在Rt△ AEF中,根据等腰直角三角形的性质可得EF= AF= CD-( 112+x)米,Rt△ ACD中,由sin a =,可得tan a =,再由tan a= 得到关于x的方程,解方程即可求得AB的25 7 CD长•【详解】设AB的高度为x米,过点E作EF丄AC于F,贝U FC= DE= 340米,BF= 452- 340 = 112 米,••• AF=( 112+x)米,在Rt△ AEF中,/ FAB=Z AEF= 45°,EF= AF= CD=( 112+x)米,24ACRt △ ACD中, sin a ==-25AD设AC=24k, AD=25k(k>0),由勾股定理则有CD^ =7k,AC 24• tan a = = ,DC 7AC 452 t xRt△ ACD中, AC=(452+x)米,tan a= = ——解得x=28,答:发射塔AB的高度是28米..D【点睛】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.23. “绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买.两种型号的垃圾处理设备共台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1) 请你为该景区设计购买.两种设备的方案;(2) 已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【答案】(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.■【解析1【分析1 (1设该景区购买A种设备为X合.则B种设备訥丈(10-x)台•其中0三冥S10:tI 粮抵购买的设爺日处理能力不低于140吋.列不蒔式.求岀解集后再根据x的范悶以及x犬呼数即可确定世县佟方乗;…… ............................................................................... J (2)针对(1 )中的方案逐一进行计算即可做出判断.【详解】(1)设该景区购买设计A型设备为x台、贝U B型设备购买(10-x )台,其中0 <x < 10, 由题意得:12X+15 (10 —x)> 140,10解得xw .,•/ 0 w x w 10,且x是整数,••• x = 3, 2, 1, 0,••• B型相应的台数分别为7, 8, 9, 10,•共有4种方案:方案一:A型设备3台、B型设备7台;10万案二:A型设备2台、B型设备8台;万案三:A型设备1台、B型设备9台;方案四:A型设备0台、B型设备1台(2 )方案二费用最少,理由如下:方案一购买费用:3 X 3+4.4 X 7=39.8 (万元)V 方案二购买费用:2 X 3+4.4 X 8=41.2 (万元)〉•••费用为 41.2 X 90%=37.08 (万元)方案三购买费用:3 X 1+4.4 X 9=42.6 (万元)〉•费用为 42.6 X90%=38.34(万元)方案四购买费用:4.4 X10=44 (万元) •••方案二费用最少,即A 型设备2台、 【点睛】本题考查了一元的关键.24. 如图,已知四边形■:./ 中,对角线 y 相交于点,且二咗-C<:,二丘-二二,过 点作■. .1.-.U ,分 别交.辽于点*匚.(1)求证:mi 二比皿⑵判断四边形苛二二的形状,并说明理由.【答案】(1)证明见解析;(2)四边形BED 是菱形,理由见解析.【解析】【分析】(1)根据对角线互相平分的四边形是平行四边形, 由已知可得四边形 ABCD 是平行四边形, 继而可根据 ASA 证明△ AOE^A COF(2)由A AOE^A COF 可得OE=OF 再根据0B=0两得四边形BEDF 是平行四边形,再根据对角线互相垂直 的平行四边形是菱形即可证得四边形BEDF 是菱形.【详解】(1 )T OA=OC OB=OD•四边形ABCD 是平行四边形,• AD// BC •••/ DAC=Z BCA又•••/ AOE M COF OA=OC• △ AOE^A COF ( ASA );(2)四边形BEDF 是菱形,理由如下:40 (万元).••费用为 39.8 (万元), 40 (万元) 40 (万元) (万元)•费用为44 X 90%=39.6(万元) 8台时费用最少. > 40 B 型设备 次不等式的应用、最优购买方案,弄清题意,找到不等关系列出不等式是解题•/△AOE^A COF • OE=OF 又••• OB=OD•••四边形DEBF 是平行四边形,又••• EF 丄 BD,•平行四边形DEBF 是菱形•【点睛】本题考查了平行四边形的判定与性质、菱形的判定,熟记平行四边形的判定与性质定理、菱形的 判定定理是解本题的关键 .25. 如图, .是以.述为直径的• 上的点,弦交绩于点.⑶ 已知 , 是半径 的中点,求线段 的长.【解析】【分析】(1 )由AB 是直径,可得/ DAB+Z ABD= 90°,再根据PB 是O O 的切线,可得/ ABD+Z PBD =90°,根据同角的余角相等即可证得Z PBD=Z DAB(2)证明△ BC0A DCB 根据相似三角形对应边成比例可得BC = CE?CD 再根据 CD=CE+D 经过推导即可 得 BC f - CE 2= CE?DE⑶ 连接0C 由一4 =此,AB 是直径,可得Z AOC Z BOC=90,根据勾股定理则有 CE2=OE2+CO2BC2=OB2+CO 2再根据 0A=4 , E 是半径OA 的中点,继而可得 BC=4 , CE=2,再根据(2)中 BC2-CE2=CE DE 即可求得 DE 的长.【详解】(1 )••• AB 是直径,• Z ADB= 90°,即 Z DAB+Z ABD= 90°,又•/ PB 是O O 的切线,• PB 丄 AB• Z ABP = 90°,即Z ABD+Z PBD= 90°,• Z PBD=Z DAB(2)T • ,• Z BDC=Z EBC 又T Z BCE= BCD【答案】(1)证明见解析;(2)证明见解析; 6(3) DE =⑵求证:二匚’匚三「 CE• △ BCE^^ DCB••• BC: CE=CD BC,••• B C=CE?CD•B C= CE(CE+DE,•B C=CE2+CE?DE•B C- CE 2= CE?DE⑶连接OC•••声:「壬,AB是直径,•/ AOC M BOC=90 ,• CE2=OE2+CO2 BC2=OB2+CO2•/ OA=4 , E是半径OA的中点,• BC=4 , CE=2 ,厂6^5 由(2)中BC2- CE2=CE DE 所以DE=(BC2CE2)+ CE=12^2 =,【点睛】本题是综合题,考查了切线的性质、相似三角形的判定与性质、圆周角定理等,解题的关键是正确添加辅助线、熟练应用切线的性质、相似三角形的判定与性质是解题的关键26. 如图,抛物线与两坐标轴相交于点:宀;是抛物线的顶点,是线段故DE=—.的中点•(1) 求抛物线的解析式,并写出 点的坐标;(2)是抛物线上的动点; ① 当 时,求的面积的最大值;② 当丄;I 丄.:|订时,求点0的坐标.【答案】(1) y=-x 2+2x+3, D(1,4) ; (2)①当 x=2 时,S 最大值=1;② F2 —2)或(2 — ,-2+2 )【解析】【分析】(1)利用待定系数法可求得抛物线的解析式,然后再配方成顶点式即可得点 D 的坐标; (2)①由x > 1, y > 0,可以确定点 F 是直线BD 上方抛物线上的动点, F (x, -x 2+2x+3),过点F 作FH 丄x 轴交直线BD 于M 由B D 的坐标易得y BD =-2x+6,继而得M(x , -2x+6 ),从而得到FM=-(x-2) 2+1,再根据 S ^BDF =S A DFM + S A BFM 从而可得S ^ BDF =-(X-2) +1 ,根据—次函数的性质即可得;②分点F 在x 轴上方抛物线上,点 F 在x 轴下方、y 轴左侧抛物线上两种情况进行讨论即可得【详解】(1)抛物线「八与两坐标轴相交于点 .•?<■■■..<;.二二Ta-b I c = 0汽=-19a + 3b + c = 0 ,解得:< b = 2 ,e = 3 ( c = 3 所以抛物线的解析式为: y=-x 2+2x+3,配方得y=-(x-1) 2+4,二抛物线顶点 D 的坐标为(1, 4);(2)①T x > 1, y >0,•••点F 是直线BD 上方抛物线上的动点,则 F (x, -x 2+2x+3),过点F 作FH 丄x 轴交直线BD 于M••• B ( 3 , 0), D (1 , 4),• y BD =-2x+6 ,则 M (x , -2x+6 ),2 --FM=-x +2x+3-(-2x+6)= -x S A BDF =S A DFM +S A BFM•••当x=2时,S 最大值=1 ;S 2+4x-3=-(x-2) 2+1 ,• S A BDF = FM?( x-1| ) + FM?( 3-x )FM?(x-1+3-x)=FM =-(x-2)—4^H②当FE // BD,且点F在x轴上方抛物线上时,设FE的解析式为y=-2x+b ,•••直线FE过点E (1, 0),••• b=2,y FE=-2x+2 ,联立y=-2x+2 与y=-x 2+2x+3,解得 F (2 —2+2 );当F在x轴下方、y轴左侧抛物线上时,设直线EF与直线BD交于点N,•••/ AEF=Z NEB又•••/ AEF=Z DBE•••/ NEB=Z DBE• NE=NB•••点N的横坐标为2 ,又•••点N在直线y BD=-2x+6上,•- N (2 , 2),•- y E N= 2x-2 ,联立y=2x-2 与y=-x 2+2x+3 ,解得 F ( , —2、—2),综上所述 F (—, — 2 — 2 )或(2 —. , —2+2:.;」).【点睛】本题是二次函数的综合题,涉及到待定系数法、二次函数的最值、解方程组、分类讨论等,解题的关键是正确添加辅助线20。
2018年湖南省娄底市中考数学试卷含答案解析版

1 / 302018年湖南省娄底市中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.(3分)(2018?娄底)2018的相反数是()A B.2018 C.﹣2018 D.﹣2.(3分)(2018?娄底)一组数据﹣3,2,2,0,2,1的众数是()A.﹣3 B.2C.0D.13.(3分)(2018?娄底)随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A.0.21×107 B.2.1×106 C.21×105 D.2.1×1074.(3分)(2018?娄底)下列运算正确的是()A.a2?a5=a10 B.(3a3)2=6a6C.(a+b)2=a2+b2 D.(a+2)(a﹣3)=a2﹣a﹣65.(3分)(2018?娄底)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定6.(3分)(2018?娄底)不等式组的最小整数解是()A.﹣1 B.0C.1D.27.(3分)(2018?娄底)如图所示立体图形的俯视图是()A B C. 2 / 30D8.(3分)(2018?娄底)函数y=中自变量x的取值范围是()A.x>2B.x≥2 C.x≥2且x≠3 D.x≠39.(3分)(2018?娄底)将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣210.(3分)(2018?娄底)如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度约为()A.4cm B.6cm C.8cm D.12cm11.(3分)(2018?娄底)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=()A B.﹣C D.﹣12.(3分)(2018?娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0B.f(k+4)=f(k)C.f(k+1)≥f(k)D.f(k)=0或1二、填空题(木大题共6小题,每小题3分,满分18分)13.(3分)(2018?娄底)如图,在平面直角坐标系中,O为坐标原点,点P是3 / 30反比例函数y=图象上的一点,PA⊥x轴于点A,则△POA的面积为14.(3分)(2018?娄底)如图,P是△ABC的内心,连接PA、PB、PC,△PAB、△PBC、△PAC的面积分别为S1、S2、S3.则S1S2+S3.(填“<”或“=”或“>”)15.(3分)(2018?娄底)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为16.(3分)(2018?娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=cm..17.(3分)(2018?娄底)如图,已知半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,半径OC=1,则AE?BE=4 / 3018.(3分)(2018?娄底)设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a n﹣1)2,则a2018=三、解答题(本大题共2小题,每小题6分,共12分)19.(6分)(2018?娄底)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°20.(6分)(2018?娄底)先化简,再求值:(+)÷,其中x=..四、解答题(本大题共2小题,每小题8分,共16分)21.(8分)(2018?娄底)为了取得贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为A、B、C、D四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:(1)求样本容量;(2)补全条形图,并填空:n=;(3)若全市有5000人参加了本次测试,估计本次测试成绩为A级的人数为多少?22.(8分)(2018?娄底)如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了5 / 30测量高楼BC上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,sinα=,在顶端E点测得A的仰角为45°,求发射塔AB的高度.五、解答题(本大题共2小题,每小题9分,共18分)23.(9分)(2018?娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?24.(9分)(2018?娄底)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.六、解答题(木本大题共2小题,每小题10分,共20分)25.(10分)(2018?娄底)如图,C、D是以AB为直径的⊙O上的点,=,6 / 30弦CD交AB于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;(2)求证:BC2﹣CE2=CE?DE;(3)已知OA=4,E是半径OA的中点,求线段DE的长.26.(10分)(2018?娄底)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.2018年湖南省娄底市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.(3分)(2018?娄底)2018的相反数是()7 / 30A B.2018 C.﹣2018 D.﹣【考点】14:相反数.【专题】11 :计算题.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:C.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)(2018?娄底)一组数据﹣3,2,2,0,2,1的众数是()A.﹣3 B.2C.0D.1【考点】W5:众数.【专题】1 :常规题型;542:统计的应用.【分析】众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【解答】解:这组数据中2出现次数最多,有3次,所以众数为2,故选:B.【点评】本题主要考查众数,解题的关键是掌握众数是指一组数据中出现次数最多的数据.3.(3分)(2018?娄底)随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为()A.0.21×107 B.2.1×106 C.21×105 D.2.1×107【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.8 / 30【解答】解:210万=2.1×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2018?娄底)下列运算正确的是()A.a2?a5=a10 B.(3a3)2=6a6C.(a+b)2=a2+b2 D.(a+2)(a﹣3)=a2﹣a﹣6【考点】4I:整式的混合运算.【专题】11 :计算题;512:整式.【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=a7,不符合题意;B、原式=9a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a2﹣a﹣6,符合题意,故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.(3分)(2018?娄底)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定【考点】AA:根的判别式.【专题】11 :计算题.【分析】先计算判别式得到△=(k+3)2﹣4×k=(k+1)2+8,再利用非负数的性质得到△>0,然后可判断方程根的情况.【解答】解:△=(k+3)2﹣4×k=k2+2k+9=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,所以方程有两个不相等的实数根.故选:A.9 / 30【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.(3分)(2018?娄底)不等式组的最小整数解是()A.﹣1 B.0C.1D.2【考点】CC:一元一次不等式组的整数解.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣x≥x﹣2,得:x≤2,解不等式3x﹣1>﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的最小整数解为0,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)(2018?娄底)如图所示立体图形的俯视图是()A B C.D【考点】U2:简单组合体的三视图.【专题】1 :常规题型.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.10 / 30【解答】解:从上边看立体图形得到俯视图即可得立体图形的俯视图是,故选:B.【点评】本题考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.8.(3分)(2018?娄底)函数y=中自变量x的取值范围是()B.x≥2 C.x≥2且x≠3 D.x≠3【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:x≥2且x≠3.故选:C.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(3分)(2018?娄底)将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣2【考点】F9:一次函数图象与几何变换.【专题】46 :几何变换.【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:y=2(x﹣2)﹣3+3=2x﹣4.化简,得y=2x﹣4,11 / 30【点评】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.10.(3分)(2018?娄底)如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度约为()A.4cm B.6cm C.8cm D.12cm【考点】R2:旋转的性质.【专题】11 :计算题.【分析】AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,易得AC=2CH=x,细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,利用水的体积不变得到x?S+x?2S=6?S+6?S,然后求出x后计算出AC即可.【解答】解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,∵∠BAH=90°﹣60°=30°,∴AC=2CH=x,∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,∵x?S+x?2S=6?S+6?S,解得x=4,∴AC=2x=8,即AB中水柱的长度约为8cm..故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.(3分)(2018?娄底)如图,由四个全等的直角三角形围成的大正方形的面12 / 30积是169,小正方形的面积为49,则sinα﹣cosα=()A B.﹣C D.﹣【考点】KR:勾股定理的证明;T7:解直角三角形.【专题】1 :常规题型.【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求sinα和cosα的值,进而可求出sin α﹣cosα的值.【解答】解:∵小正方形面积为49,大正方形面积为169,∴小正方形的边长是7,大正方形的边长是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC﹣60=0,解得AC=5,AC=﹣12(舍去),∴BC==12,∴sinα==,cosα==,∴sinα﹣cosα=﹣=﹣,故选:D.【点评】本题考查了勾股定理的证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键.12.(3分)(2018?娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣13 / 301.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0B.f(k+4)=f(k)C.f(k+1)≥f(k)D.f(k)=0或1【考点】CB:解一元一次不等式组;E5:函数值.【专题】11 :计算题.【分析】根据题意可以判断各个选项是否正确,从而可以解答本题.【解答】解:f(1)=[]﹣[]=0﹣0=0,故选项A正确;f(k+4)=[]﹣[]=[+1]﹣[+1]=[]﹣[]=f (k),故选项B正确;C、当k=3时,f(3+1)=[]﹣[]=1﹣1=0,而f(3)=1,故选项C 错误;D、当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,所以D选项的结论正确;故选:C.【点评】本题考查解一元一次不等式组、函数值,解答本题的关键是明确题意,可以判断各个选项中的结论是否成立.二、填空题(木大题共6小题,每小题3分,满分18分)13.(3分)(2018?娄底)如图,在平面直角坐标系中,O为坐标原点,点P是反比例函数y=图象上的一点,PA⊥x轴于点A,则△POA的面积为1【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标14 / 30特征.【专题】1 :常规题型.【分析】直接利用反比例函数的性质结合系数k的几何意义得出答案.【解答】解:∵点P是反比例函数y=图象上的一点,PA⊥x轴于点A,∴△POA的面积为:AO?PA=xy=1.故答案为:1.【点评】此题主要考查了反比例函数系数k的几何意义,正确表示出△POA 的面积是解题关键.14.(3分)(2018?娄底)如图,P是△ABC的内心,连接PA、PB、PC,△PAB、△PBC、△PAC的面积分别为S1、S2、S3.则S1<S2+S3.(填“<”或“=”或“>”)【考点】MI:三角形的内切圆与内心;K6:三角形三边关系;KF:角平分线的性质.【专题】552:三角形;559:圆的有关概念及性质.【分析】过P点作PD⊥AB于D,作PE⊥AC于E,作PF⊥BC于F,根据内心的定义可得PD=PE=PF,再根据三角形面积公式和三角形三边关系即可求解.【解答】解:过P点作PD⊥AB于D,作PE⊥AC于E,作PF⊥BC于F,∵P是△ABC的内心,∴PD=PE=PF,∵S1=AB?PD,S2=BC?PF,S3=AC?PE,AB<BC+AC,∴S1<S2+S3.故答案为:<.15 / 30【点评】考查了三角形的内切圆与内心,三角形面积和三角形三边关系,关键是由内心的定义得PD=PE=PF.15.(3分)(2018?娄底)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为【考点】X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】先画出树状图展示所有6种等可能的结果数,再找出选修地理和生物的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有6种等可能结果,其中选修地理和生物的只有1种结果,所以选修地理和生物的概率为,故答案为:.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;16 / 30解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2018?娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=6cm..【考点】KH:等腰三角形的性质;K3:三角形的面积.【专题】1 :常规题型.【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB?DE=AB?DE=3AB,又S△ABC=AC?BF,将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB?DE=AB?DE=3AB,∵S△ABC=AC?BF,∴AC?BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面17 / 30积,利用面积公式得出等式是解题的关键.17.(3分)(2018?娄底)如图,已知半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,半径OC=1,则AE?BE=1【考点】S9:相似三角形的判定与性质;M5:圆周角定理;MC:切线的性质.【专题】559:圆的有关概念及性质.【分析】想办法证明△AEO∽△OEB,可得=,推出AE?BE=OE2=1.【解答】解:如图连接OE.∵半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,∴OE⊥AB,AD⊥CD,BC⊥CD,∠OAD=∠OAE,∠OBC=∠OBE,∴AD∥BC,∴∠DAB+∠ABC=180°,∴∠OAB+∠OBA=90°,∴∠AOB=90°,∵∠OAE+∠AOE=90°,∠AOE+∠BOE=90°,∴∠EAO=∠EOB,∵∠AEO=∠OEB=90°,∴△AEO∽△OEB,∴=,∴AE?BE=OE2=1,18 / 30故答案为1.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的性质等知识,解题的关键是正确寻找相似三角形解决问题.18.(3分)(2018?娄底)设a1,a2,a3……是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数).已知a1=1,4a n=(a n+1﹣1)2﹣(a n﹣1)2,则a2018=4035【考点】37:规律型:数字的变化类.【专题】1 :常规题型.【分析】由4a n=(a n+1﹣1)2﹣(a n﹣1)2,可得(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,根据a1,a2,a3……是一列正整数,得出a n+1=a n+2,根据a1=1,分别求出a2=3,a3=5,a4=7,a5=9,进而发现规律a n=2n﹣1,即可求出a2018=4035.【解答】解:∵4a n=(a n+1﹣1)2﹣(a n﹣1)2,∴(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,∵a1,a2,a3……是一列正整数,∴a n+1﹣1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n﹣1,∴a2018=4035.故答案为4035.【点评】本题是一道找规律的题目,要求学生通过计算,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出式子a n+1=a n+2.三、解答题(本大题共2小题,每小题6分,共12分)19.(6分)(2018?娄底)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.19 / 30【专题】11 :计算题.【分析】根据零指数幂、负整数指数幂、绝对值和特殊角的三角函数值可以解答本题.【解答】解:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°=1+9﹣+4×=1+9﹣2+2=10.【点评】本题考查实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.20.(6分)(2018?娄底)先化简,再求值:(+)÷,其中x=..【考点】6D:分式的化简求值.【专题】11 :计算题;513:分式.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=?=,当x=时,原式==3+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共2小题,每小题8分,共16分)21.(8分)(2018?娄底)为了取得贫工作的胜利,某市对扶贫工作人员进行了扶贫知识的培训与测试,随机抽取了部分人员的测试成绩作为样本,并将成绩划分为A、B、C、D四个不同的等级,绘制成不完整统计图如图,请根据图中的信息,解答下列问题:20 / 30(1)求样本容量;(2)补全条形图,并填空:n=10;(3)若全市有5000人参加了本次测试,估计本次测试成绩为A级的人数为多少?【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)用B等级人数除以其所占百分比可得;(2)总人数减去A、B、D人数求得C的人数即可补全条形图,用D等级人数除以总人数可得n的值;(3)总人数乘以样本中A等级人数所占比例即可得.【解答】解:(1)样本容量为18÷30%=60;(2)C等级人数为60﹣(24+18+6)=12人,n%=×100%=10%,补全图形如下:故答案为:10;(3)估计本次测试成绩为A级的人数为5000×=2000人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不21 / 30同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2018?娄底)如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE高340m,为了测量高楼BC上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,sinα=,在顶端E点测得A的仰角为45°,求发射塔AB的高度.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】11 :计算题.【分析】作EH⊥AC于H,设AC=24x,根据正弦的定义求出AD,根据勾股定理求出CD,根据题意列出方程求出x,结合图形计算即可.【解答】解:作EH⊥AC于H,则四边形EDCH为矩形,∴EH=CD,设AC=24x,在Rt△ADC中,sinα=,∴AD=25x,由勾股定理得,CD==7x,∴EH=7x,在Rt△AEH中,∠AEH=45°,∴AH=EH=7x,22 / 30由题意得,24x=7x+340,解得,x=20,则AC=24x=480,∴AB=AC﹣BC=480﹣452=28,答:发射塔AB的高度为28m..【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)23.(9分)(2018?娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【专题】1 :常规题型.【分析】(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据购回的设备日处理能力不低于140吨列出不等式12x+15(10﹣x)≥140,求出解集,再根据x为正整数,得出x=1,2,3.进而求解即可;(2)分别求出各方案实际购买费用,比较即可求解.【解答】解:(1)设购买A种设备x台,则购买B种设备(10﹣x)台,23 / 30根据题意,得12x+15(10﹣x)≥140,解得x≤3,∵x为正整数,∴x=1,2,3.∴该景区有三种设计方案:方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.04<39.8,∴采用(1)设计的第二种方案,使购买费用最少.【点评】本题考查了一次函数的应用,一元一次不等式的应用,分析题意,找到合适的不等关系是解决问题的关键.24.(9分)(2018?娄底)如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.【考点】KD:全等三角形的判定与性质.【专题】555:多边形与平行四边形.【分析】(1)首先证明四边形ABCD是平行四边形,再利用ASA证明△AOE ≌△COF;24 / 30(2)结论:四边形BEDF是菱形.根据邻边相等的平行四边形是菱形即可证明;【解答】(1)证明:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形BEDF是菱形,∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形,∵OB=OD,EF⊥BD,∴EB=ED,∴四边形BEDF是菱形.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.六、解答题(木本大题共2小题,每小题10分,共20分)25.(10分)(2018?娄底)如图,C、D是以AB为直径的⊙O上的点,=,弦CD交AB于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;(2)求证:BC2﹣CE2=CE?DE;(3)已知OA=4,E是半径OA的中点,求线段DE的长.25 / 30【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质;55A:与圆有关的位置关系;55D:图形的相似.【分析】(1)由AB是⊙O的直径知∠BAD+∠ABD=90°,由PB是⊙O的切线知∠PBD+∠ABD=90°,据此可得答案;(2)连接OC,设圆的半径为r,则OA=OB=OC=r,证△ADE∽△CBE得DE?CE=AE?BE=r2﹣OE2,由=知∠AOC=∠BOC=90°,根据勾股定理知CE2=OE2+r2、BC2=2r2,据此得BC2﹣CE2=r2﹣OE2,从而得证;(3)先求出BC=4、CE=2,根据BC2﹣CE2=CE?DE计算可得.【解答】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠BAD+∠ABD=90°,∵PB是⊙O的切线,∴∠ABP=90°,即∠PBD+∠ABD=90°,∴∠BAD=∠PBD;(2)∵∠A=∠C、∠AED=∠CEB,∴△ADE∽△CBE,∴=,即DE?CE=AE?BE,如图,连接OC,26 / 30设圆的半径为r,则OA=OB=OC=r,则DE?CE=AE?BE=(OA﹣OE)(OB+OE)=r2﹣OE2,∵=,∴∠AOC=∠BOC=90°,∴CE2=OE2+OC2=OE2+r2,BC2=BO2+CO2=2r2,则BC2﹣CE2=2r2﹣(OE2+r2)=r2﹣OE2,∴BC2﹣CE2=DE?CE;(3)∵OA=4,∴OB=OC=OA=4,∴BC==4,又∵E是半径OA的中点,∴AE=OE=2,则CE===2,∵BC2﹣CE2=DE?CE,∴(4)2﹣(2)2=DE?2,解得:DE=..【点评】本题主要考查圆的综合问题,解题的关键是熟练掌握圆的切线的性质、圆心角定理、相似三角形的判定与性质、勾股定理等知识点.26.(10分)(2018?娄底)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:27 / 30①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.【考点】HF:二次函数综合题.【专题】537:函数的综合应用.【分析】(1)根据点A、B、C的坐标,利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点D的坐标;(2)①过点F作FM∥y轴,交BD于点M,根据点B、D的坐标,利用待定系数法可求出直线BD的解析式,根据点F的坐标可得出点M的坐标,利用三角形的面积公式可得出S△BDF=﹣x2+4x﹣3,再利用二次函数的性质即可解决最值问题;②过点E作EN∥BD交y轴于点N,交抛物线于点F1,在y轴负半轴取ON′=ON,连接EN′,射线EN′交抛物线于点F2,则∠AEF1=∠DBE、∠AEF2=∠DBE,根据EN∥BD结合点E的坐标可求出直线EF1的解析式,联立直线EF1、抛物线的解析式成方程组,通过解方程组即可求出点F1的坐标,同理可求出点F2的坐标,此题得解.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入y=ax2+bx+c,,解得:,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4).(2)①过点F作FM∥y轴,交BD于点M,如图1所示.28 / 30设直线BD的解析式为y=mx+n(m≠0),将(3,0)、(1,4)代入y=mx+n,,解得:,∴直线BD的解析式为y=﹣2x+6.∵点F的坐标为(x,﹣x2+2x+3),∴点M的坐标为(x,﹣2x+6),∴FM=﹣x2+2x+3﹣(﹣2x+6)=﹣x2+4x﹣3,∴S△BDF=FM?(y B﹣y D)=﹣x2+4x﹣3=﹣(x﹣2)2+1.∵﹣1<0,∴当x=2时,S△BDF取最大值,最大值为1.②过点E作EN∥BD交y轴于点N,交抛物线于点F1,在y轴负半轴取ON′=ON,连接EN′,射线EN′交抛物线于点F2,如图2所示.∵EF1∥BD,∴∠AEF1=∠DBE.∵ON=ON′,EO⊥NN′,∴∠AEF2=∠AEF1=∠DBE.∵E是线段AB的中点,A(﹣1,0),B(3,0),∴点E的坐标为(1,0).设直线EF1的解析式为y=﹣2x+b1,将E(1,0)代入y=﹣2x+b1,﹣2+b1=0,解得:b1=2,∴直线EF1的解析式为y=﹣2x+2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省娄底市2018年中考数学试卷
数学答案解析
一、选择题
1.【答案】C
【解析】直接利用相反数的定义分析得出答案.解:2018的相反数是:.故选:C.
2018-【考点】相反数
2.【答案】B
【解析】众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.解:这组数据中2出现次数最多,有3次,所以众数为2,故选:B.
【考点】众数.
3.【答案】B
【解析】科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数10n a ⨯11|0|a ≤<变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当1>原数的绝对值时,n 是负数.解:,故选:B.
1<6210 2.110=⨯万【考点】科学记数法—表示较大的数
4.【答案】D
【解析】各式计算得到结果,即可作出判断.解:A 、原式,不符合题意;B 、原式,不符合题意;
7a =69a =C 、原式,不符合题意;D 、原式,符合题意,故选:D.
222a ab b =++26a a =--【考点】整式的混合运算.
5.【答案】A
【解析】先计算判别式得到,再利用非负数的性质得到,然后可判断2234(1)8k k k ∆=+⨯=+-+()0∆>方程根的情况.解:,
222342918k k k k k ∆=+⨯=+-+=++()()∵,
210k +()≥∴,即,
2180k ++()>0△>所以方程有两个不相等的实数根.
故选:A.
【考点】根的判别式.
6.【答案】B
【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式,得:,
22x x -≥-2x ≤
解不等式,得:,
314x ->-1x ->则不等式组的解集为,
12x -<≤所以不等式组的最小整数解为0,
故选:B.
【考点】一元一次不等式组的整数解.
7.【答案】B
【解析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上边看立体图形得到俯视图即可得立体图形的俯视图是
, 故选:B.
【考点】简单组合体的三视图.
8.【答案】C
【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出的范围.解:x 根据题意得:,
2030
x x -≥⎧⎨-≠⎩解得:且
2x ≥ 3.x ≠故选:C.
【考点】函数自变量的取值范围.
9.【答案】A
【解析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.解:.
223324y x x =--+=-()化简,得
,
24y x =-故选:A.
【考点】一次函数图象与几何变换.
10.【答案】C
【解析】AB 中水柱的长度为AC ,CH 为此时水柱的高,设,竖直放置时短软管的底面积为S ,易CH x =得,细管绕A 处顺时针方向旋转到AB 位置时,底面积为2S ,利用水的体积不变得到2AC CH x ==60︒,然后求出x 后计算出AC 即可.解:AB 中水柱的长度为AC ,CH 为此时水柱的高,266x S x S S S ⋅+⋅=⋅+⋅设,竖直放置时短软管的底面积为S ,
CH x =∵,
906030BAH ∠=︒-︒=︒
∴,
2AC CH x ==∴细管绕A 处顺时针方向旋转到AB 位置时,底面积为2S ,
60︒∵,解得,
266x S x S S S ⋅+⋅=⋅+⋅4x =∴,
28AC x ==即中水柱的长度约为8 cm.
AB 故选:C.
【考点】旋转的性质.
11.【答案】D
【考点】勾股定理的证明、解直角三角形.
【解析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC ,然后根据正弦和余弦的定义即可求和的值,进而可求出的值.解:∵小正方形面积为49,大正方形面积为169, sin αcos αsin αcos α-∴小正方形的边长是7,大正方形的边长是13,
在中,,
Rt ABC 222
AC BC AB +=即, ()22AC 7AC 132++=整理得,,
AC27AC 600+-=解得,(舍去),
AC 5=AC 12=-
∴, 12BC =
=∴,, 5sin 13AC AB α==12cos 13
BC AB α==∴, 5127sin αcos α131313-=
-=-故选:D.
12.【答案】C
【解析】根据题意可以判断各个选项是否正确,从而可以解答本题.解: ,()110101404f ⎡⎤⎡⎤-=-=⎢
⎥⎢⎥⎦⎣⎦
+⎣=故选项A 正确; ,故选项B 正确;C 、当时, 4141141444()(44)k k k k k f k f k ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-==-=⎢⎥⎢⎥⎢++++⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣=⎦
+++k =3,而,故选项C 错误; 41131110()44f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦
()31f =D 、当(n 为自然数)时,,当k 为其它的正整数时,,所以D 选项的结论正确; 34k n =+()1f k =()0f k =故选:C.
【考点】解一元一次不等式组、函数值.
二、填空题
13.【答案】1
【解析】直接利用反比例函数的性质结合系数k 的几何意义得出答案.解:∵点P 是反比例函数图象2y x =上的一点,轴于点A ,
PA x ⊥∴的面积为:. POA △11•122AO PA xy ==故答案为:1.
【考点】反比例函数系数k 的几何意义、反比例函数图象上点的坐标特征.
14.【答案】
<【解析】过点作于,作于,作于,根据内心的定义可得P PD AB ⊥D PE AC ⊥E PF BC ⊥F ,再根据三角形面积公式和三角形三边关系即可求解.解:过点作于D ,作PD PE PF ==P PD AB ⊥于,作于,
PE AC ⊥E PF BC ⊥F ∵是的内心,
P ABC △∴,
PD PE PF ==∵,,,, 112S AB PD = 212S BC PF = 312
S AC PE = AB BC AC +<∴.
123S S S +<故答案为:.
<
【考点】三角形的内切圆与内心、三角形三边关系、角平分线的性质.
15.【答案】. 16
【解析】先画出树状图展示所有6种等可能的结果数,再找出选修地理和生物的结果数,然后根据概率公式求解.解:画树状图如下:
由树状图可知,共有6种等可能结果,其中选修地理和生物的只有1种结果, 所以选修地理和生物的概率为, 16
故答案为:. 16
【考点】列表法与树状图法. 16.【答案】6.
【解析】先利用证明,得出,HL Rt Rt ADB ADC △≌△12232ABC ABD S S AB DE AB DE AB ==⨯
⋅=⋅= 又,将代入即可求出.解:在与中, 12
ABC S AC BF =⋅ AC AB =BF Rt ADB △Rt ADC △, AB AC AD AD =⎧⎨=⎩
∴,
R Rt ADB ADC △≌△。