北师大版八年级下册《多边形的内角和与外角和》

合集下载

北师大版数学八年级下册6.4《多边形的内角和与外角和》说课稿

北师大版数学八年级下册6.4《多边形的内角和与外角和》说课稿

北师大版数学八年级下册6.4《多边形的内角和与外角和》说课稿一. 教材分析北师大版数学八年级下册6.4《多边形的内角和与外角和》这一节主要讲述了多边形的内角和与外角和的概念及其计算方法。

多边形的内角和是指多边形所有内角的度数之和,而外角和则是指多边形所有外角的度数之和。

这部分内容是初中数学的重要知识点,对于学生来说,掌握这部分内容对于理解和掌握整个初中数学知识体系具有重要意义。

二. 学情分析在教学之前,我们需要对学生的学习情况进行分析。

学生们在学习了多边形的概念、四边形的性质等基础知识后,对于多边形的内角和与外角和的学习已具备了一定的基础。

然而,由于多边形的内角和与外角和的概念较为抽象,部分学生可能对其理解和运用存在一定的困难。

因此,在教学过程中,我们需要关注学生的学习情况,针对性地进行教学,帮助学生理解和掌握这部分内容。

三. 说教学目标1.知识与技能目标:使学生理解和掌握多边形的内角和与外角和的概念及其计算方法,能够运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的团队合作意识,使学生在解决实际问题的过程中感受到数学的价值。

四. 说教学重难点1.教学重点:多边形的内角和与外角和的概念及其计算方法。

2.教学难点:多边形内角和与外角和计算方法的推导过程,以及如何运用所学知识解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生通过观察、操作、推理等过程主动学习,提高学生的学习兴趣和参与度。

2.教学手段:利用多媒体课件、实物模型等教学辅助手段,帮助学生直观地理解多边形的内角和与外角和的概念及其计算方法。

六. 说教学过程1.导入新课:通过展示一些多边形的图片,引导学生观察多边形的特征,从而引出多边形的内角和与外角和的概念。

2.自主学习:让学生通过阅读教材,了解多边形的内角和与外角和的概念及其计算方法。

北师大版八年级数学多边形的内角和与外角和

北师大版八年级数学多边形的内角和与外角和

多边形【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形。

如图:要点进阶:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为(3)2n n;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.知识点二、多边形内角和定理n边形的内角和为(n-2)·180°(n≥3).凸多边形凹多边形要点进阶:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180nn°;知识点三、多边形的外角和多边形的外角和为360°.要点进阶:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念例1.观察下面图形,解答下列问题:(1)观察规律,把下表填写完整:(2)若一个多边形的内角和为1440°,求这个多边形的边数和对角线的条数.举一反三:【变式1】如图,四边形ABCD中,∠B=40°,沿直线MN剪去∠B,则所得五边形AEFCD中,∠1+∠2=。

北师大版八年级下册4 多边形的内角和与外角和

北师大版八年级下册4  多边形的内角和与外角和

4 多边形的内角和与外角和
题型二 多边形中的截角问题
例题3 在一个多边形截去一个角后 , 形成另 一个多边形的内角 和为2520 ° , 则原多边形的边数是 ( D ) . A .17 B .16 C .15 D .15 或 16 或 17
分析 n 边形的内角和可以表示成 ( n - 2) • 180 ° ( n ≥ 3 且 n 是整数 ) , 一个 多边形截去一个角后 , 多边形的边数可能增加了一条 , 也可能不变或减少 了一条 , 根据 ( n - 2) • 180 °= 2520 °, 解得 n = 16 , 则原多边形的边数是 15 或 16 或 17 . 故选 D .
4 多边形的内角和与外角和
答案 B
4 多边形的内角和与外角和
锦囊妙计
多边形内角和与外角和的实际应用
解决这类问题的关键是弄清题意 , 将实际问题转化为数
学问题 , 熟记多边形的内角和定理和外角和定理 .
4 多边形的内角和与外角和
题型五 多边形问题中的多角、少角问题
例题6 一个多边形除一个内角外其余内角的和为 1510 ° , 则 这个多边形对角线的条数是 ( C ) . A .27 B .35 C .44 D .54
4 多边形的内角和与外角和
锦囊妙计 计算不规则图形中各角之和的技巧
仔细分析图形特点 , 将不规则的图形转化为规则的多边形 , 再灵活运用多边形的内角和定理 , 这种方法体现了转化思想 .
4 多边形的内角和与外角和
题型四 与多边形内角和或外角和有关的实际应用
例题5 水泊花园社区里有一个五边形的小公园 (如图 6 - 4 - 4 所示) , 王老师每天晚饭后都要 到公园里去散步 . 已知图中的 ∠ 1 = 95 ° , 王老 师沿公园边由点 A 经 B → C → D → E 一直到点 F 时 , 他在行程中共转过了 ( ) . A .265 ° B .275 ° C .360 ° D .445 °

北师大版数学八年级下册6.4多边形的内角和与外角和(教案)

北师大版数学八年级下册6.4多边形的内角和与外角和(教案)
北师大版数学八年级下册6.4多边形的内角和与外角和(教案)
一、教学内容
北师大版数学八年级下册6.4多边形的内角和与外角和:
1.掌握多边形内角和的计算公式,并能运用公式解决相关问题;
2.理解多边形外角和的概念,掌握外角和的性质,并能应用于实际问题;
3.能够运用内角和与外角和的关系,解决多边形相关问题;
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个五边形的内角和与外角和,展示这两个概念在实际中的应用,以及如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调内角和计算公式和外角和的性质这两个重点。对于难点部分,我会通过实际例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
4.列举并理解多边形内角与外角在实际生活中的应用。
本节课将通过具体实例,引导学生发现多边形内角和与外角和的规律,培养学生的观察、分析和解决问题的能力。教学内容紧密联系教材,注重培养学生的实际应用能力。
二、核心素养目标
1.培养学生的逻辑推理能力,通过探索多边形内角和与外角和的计算方法,使学生能够运用数学语言进行严谨的逻辑推理;
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了多边形内角和与外角和的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

北师大版八年级数学下册多边形的内角和与外角和教案

北师大版八年级数学下册多边形的内角和与外角和教案

北师大版八年级数学下册多边形的内角和与外角和教案《4 多边形的内角和与外角和》教案第1课时教学目标(一)教学知识点:1.理解多边形及正多边形的定义.2.掌握多边形的内角和公式.(二)能力训练要求1.经历探索多边形内角和公式的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力.(三)情感与价值观要求经历探索多边形内角和的过程,进一步发展学生合情推理意识、主动探究习惯,进一步体会数学与现时生活的紧密联系.教学重难点教学重点:多边形的内角和.教学难点:探索多边形的内角和公式过程.教学过程:一.巧设情景问题,引入课题:引导学生回忆已经学过哪些图形?书桌面是什么形状?作业本的每一张是什么形状?提问:若把长方形的一张纸剪去一角,会出现什么形状的图形,并指导.(学生讨论并得出结论:三角形,四边形,五边形)二.讲授新课1.多边形的定义:在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形叫做多边形.在定义中应注意:①若干条;②首尾顺次相连,二者缺一不可.多边形有凸多边形和凹多边形之分,如图.把多边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的多边形叫做凸多边形(如图(2)),图(1)的多边形是凹多边形,我们探讨的一般都是凸多边形.多边形的边、内角、顶点、对角线、内角和的含义与三角形相同,即:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.对角线:在多边形中,连结不相邻两个顶点的线段叫做多边形的对角线.内角:多边形相邻两边组成的角叫多边形的内角.如图(3)多边形通常以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.多边形的表示方法与三角形、四边形类似.可以用表示它的顶点的字母来表示,如可顺时针方向表示,也可逆时针方向表示,如图(3),可表示为五边形ABCDE,也可表示为五形EDCBA.好,我们了解了多边形的有关概念后,看一幅图及问题.(1)一个五边形,你能设法求出它的五个内角的和吗?与同伴交流.(2)小明、小亮分别利用下面的图形求出了该五边形的五个内角的和.你知道他们是怎么做的吗?(3)还有其他的方法吗?(学生讨论、画图、归纳自己的方法)在求五边形的内角和时,先把五边形转化成三角形.进而求出内角和,这种由未知转化为已知的方法是我们数学中一种非常重要的方法.请同学们完成课本的“想一想”.(学生画图,归纳,猜想)(从n边形的一个顶点出发,向自身和相邻的两个顶点无法引对角线,向其他顶点共引(n -3)条对角线,这时n边形被分割成(n -2)个三角形,因为每个三角形的内角和是180°,所以n边形的内角和为(n-2)·180°)大家想一想,n边形的内角和公式中,字母n取值有没有范围?(必须是大于3的自然数.)同学们口答一下:12边形的内角和是多少呢?(1800°)请同学们“想一想”:观察下图中的多边形,它们的边、角有什么特点?1.在平面内,内角都相等,边也都相等的多边形叫做正多边形,如上图中的多边形分别为:正三角形、正四边形即正方形、正五边形、正六边形、正八边形.2.正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形.下面大家想一想,议一议:1.一个多边形的边都相等,它的内角一定都相等吗?2.一个多边形的内角都相等,它的边一定都相等吗?3.正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?分析:1.如菱形的四条边相等,但它的内角不一定都相等,所以应该说:一个多边形的边都相等,它的内角不一定都相等.2.一个多边形的内角都相等,它的边不一定都相等,如:矩形的内角都是直角,但它的边未必都相等.3.因为正多边形的每个内角都相等,且它的内角和为(n -2)·180°,所以,正n 边形的每个内角为:nn )2(-·180°.因此,正三角形的内角是:?=??-603180)23(;正方形的内角是:4)24(-·180°=90°;正五边形的内角是:________________;正六边形的内角是:________________;正八边形的内角是:________________.三.知识运用:1.一个多边形的内角和为2520°,则多边形的边数为________________.2.一个正方形缺去一个角后内角和为多少度?四.课堂练习课本“随堂练习”如下图.(1)作多边形所有过顶点A的对角线,并分别用字母表示出来.(2)求这个多边形的内角和.解:(1)如下图:过顶点A的对角线是AC、AD、AE.(2)从(1)图中可知:这个六边形被过顶点A的对角线分割成四个三角形,所以,这个多边形的内角和为180°×4=720°.也可以利用多边形的内角和公式进行计算即:(6-2)×180°=720°.五.课时小结本节课我们研究了多边形的定义及其内角和公式,重点探讨了多边形的内角和公式.即:n边形的内角和等于(n-2)·180°,它揭示了多边形内角和与边数之间的关系.第2课时教学目标(一)教学知识点1.了解多边形的外角定义,并能准确找出多边形的外角.2.掌握多边形的外角和公式,利用内角和与外角和公式解决实际问题.(二)能力训练要求1.经历探索多边形的外角和公式的过程.进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力.(三)情感与价值观要求1.经历多边形外角和的探索过程,培养学生主动探索的习惯;2.通过对内角、外交之间的关系,体会知识之间的内在联系.教学重难点教学重点:多边形的外角和公式及其应用.教学难点:多边形的外角和公式的应用.教学过程一.巧设情景问题,引入课题清晨,小明沿一个五边形广场周围的小跑,按逆时针方向跑步.(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们.(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5吗?你是怎样得到的?(请同学们探讨解决,教师总结)下面大家来看小亮的思考:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′、OB′、OC′、OD′、OE′,得到∠α、∠β、∠γ、∠δ、∠θ,其中:∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.大家看图,∠1、∠2、∠3、∠4、∠5不是五边形的角,那是什么角呢?它们的和叫什么呢?(这五个角是五边形的外角,它们的和叫外角和.)我们这节课就来探讨多边形的外角、外角和.二.讲授新课那什么是多边形的外角、外角和呢?我们可类似三角形的外角定义来定义多边形的外角.另一边的反向延长线所组成的角叫做这个多边形的外角.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和.一般地,在多边形的任一顶点处按顺(逆)时针方向可作外角,n 边形有n个外角.那多边形的外角和是多少呢?我们来回忆一下:三角形的外角和为多少?(360°)刚才我们又研究了五边形的外角和,它为360°,那大家想一想:如果广场的形状是六边形、八边形.它们的外角和也等于360°吗?(学生讨论,得出结论)(六边形的外角和是360°,八边形的外角和是360°.)那么能不能由此得出:多边形的外角和都等于360°呢?能得证吗?因为多边形的外角与它相邻的内角是邻补角,所以,n边形的外角和加内角和等于n·180°,内角和为(n-2)·180°,因此,外角和为:n·180°-(n-2)·180°=360°.性质:多边形的外角和都等于360°.由此可知,多边形的外角和与多边形的边数无关,它恒等于360°.下面大家来想一想、议一议:利用多边形外角和的结论,能不能推导多边形内角和的结论呢?(请学生思考后回答)(因为对于n(n是大于或等于3的整数)边形,每个顶点处的内角及其一个外角恰好组成一个平角.因此,n边形的内角和与外角和的和为n·180°,所以,n边形的内角和就等于n·180°-360°=n·180°-2×180°=(n-2)·180°).三.知识应用[例]一个多边形的内角和等于它的外角和的3倍,它是几边形?分析:这是多边形的内角和公式与外角和公式的简单应用.根据题意,可列方程解答.(让学生动手解答)解:设这个多边形是n边形,则它的内角和是(n-2)·180°,外角和等于360°,所以:(n-2)·180°=3×360°解得:n=8这个多边形是八边形.四.课堂练习(一)随堂练习1.一个多边形的外角都等于60°,这个多边形是n边形?解:因为多边形的外角和等于360°,所以根据题意,可知道这个多边形的边数是:360°÷60°=62.下图是三个完全相同的正多边形拼成的无缝隙不重叠的图形的一部分,这种多边形是几边形?为什么?解:这种正多边形是正六边形,理由是:设:这个正多边形的一个内角为x°,则由题图得:3x=360°.x=120°.再根据多边形的内角和公式得:n ×120°=(n -2)×180°.解得n =6.(二)试一试1.是否存在一个多边形,它的每个内角都等于相邻外角的51?为什么?解:不存在,理由是:如果存在这样的多边形,设它的一个外角为α,则对应的内角为180°-α,于是: 51×α=180°-α,解得α=150°.这个多边形的边数为:360°÷150°=2.4,而边数应是整数,因此不存在这样的多边形.2.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?解:最多能有三个钝角,最多能有三个锐角.理由是:设四边形的四个内角的度数分别为:α°,β°,γ°,δ°,则α+β+γ+δ=360°,α、β、γ、δ的值最多能有三个大于90°,否则α、β、γ、δ都大于90°.α+β+γ+δ>360°.同理最多能有三个小于90°.五.课时小结本节课我们探讨了多边形的外角及其外角和公式.知道多边形的外角和与多边形的边数无关,它恒等于360°,因而,求解有关多边形的角的计算题;有时直接应用外角和公式会比较简便.。

北师大版八年级下册数学《6.4 多边形的内角和与外角和》教案

北师大版八年级下册数学《6.4 多边形的内角和与外角和》教案

北师大版八年级下册数学《6.4 多边形的内角和与外角和》教案一. 教材分析《6.4 多边形的内角和与外角和》这一节主要让学生理解多边形的内角和、外角和的概念,掌握多边形内角和与外角和的计算方法。

教材通过生活实例引入多边形的内角和、外角和的概念,让学生在具体的情境中感受数学与生活的联系,激发学生的学习兴趣。

二. 学情分析八年级的学生已经学习了多边形的基本概念,对图形的认知有一定的基础。

但是,学生对多边形的内角和、外角和的概念可能还比较模糊,需要通过实例和活动加深理解。

此外,学生可能对多边形内角和与外角和的计算方法感到困惑,需要通过引导和练习掌握。

三. 教学目标1.知识与技能:理解多边形的内角和、外角和的概念,掌握多边形内角和与外角和的计算方法。

2.过程与方法:通过生活实例和数学活动,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度价值观:感受数学与生活的联系,增强学生对数学的兴趣和信心。

四. 教学重难点1.重点:多边形的内角和、外角和的概念及计算方法。

2.难点:多边形内角和与外角和的计算方法的灵活运用。

五. 教学方法1.情境教学法:通过生活实例引入多边形的内角和、外角和的概念,让学生在具体的情境中感受数学与生活的联系。

2.活动教学法:学生进行数学活动,引导学生动手操作、观察发现,培养学生的观察能力和思考能力。

3.引导发现法:教师引导学生发现问题、解决问题,培养学生的解决问题的能力。

六. 教学准备1.教具:多媒体课件、黑板、粉笔。

2.学具:学生每人一份多边形的内角和、外角和的计算练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的多边形图片,如自行车轮胎、篮球场等,引导学生观察多边形的特征。

然后提出问题:“你们认为多边形有哪些特征?”,让学生思考并回答。

2.呈现(10分钟)教师通过多媒体呈现多边形的内角和、外角和的概念,并用具体例子解释。

例如,一个四边形的内角和为360度,外角和为360度。

北师版八年级下册数学第6章 平行四边形 第1课时 多边形的内角和

北师版八年级下册数学第6章 平行四边形 第1课时 多边形的内角和

感悟新知
例2 如图,在四边形ABCD中,∠A+∠C=180°. ∠B与∠D有怎样的关系?
知1-练
解:∵∠A+∠B+∠C+∠D =(4-2)×180°=360°, ∴∠B+∠D =360°-(∠A+∠C) =360°-180°=180°.
感悟新知
归纳
如果四边形一组对角互补,那么另一组 对角也互补.
线条数
0
分割出 的三角 形的个 1数
知1-讲
多边形的 内角和
1×180º
1
2
2×180º
2
3
3×180º
3
4
4×180º
……
n-3
……
……
n-2
(n-2)×180º
感悟新知
一般地,从n边形的一个顶点出发,可以作(n-3) 条对角线,它们将n边形分为(n-2)个三角形,n边形 的内角和等于180°×(n-2).
形的边数是( ) B
A.6B.12
C.16D.18
知2-练
感悟新知
3. 若一个正n边形的每个内角为144°,则这个正
n边形的所有对角线的条数是( ) C
A.7B.10
C.35D.70
知2-练
课堂小结
多边形的内角和
(1)正n边形的每个内角都相等,都等于
n
2
180 .
(2)n边形的内角和与边数有关,每增加一条边,n 内角
感悟新知
归纳
知2-讲
(1)已知多边形的内角和求边数n的方法:根据多边形 内角和公式列方程:(n-2)×180°=内角和,解 方程求出n,即得多边形的边数;
(2)已知正多边形每个内角的度数k求边数n的方法:根据 多边形内角和公式列方程:(n-2)×180°=kn,解方 程求出n,即得多边形的边数.

2024北师大版数学八年级下册6.4《多边形的内角和与外角和》教学设计

2024北师大版数学八年级下册6.4《多边形的内角和与外角和》教学设计

2024北师大版数学八年级下册6.4《多边形的内角和与外角和》教学设计一. 教材分析《多边形的内角和与外角和》是北师大版数学八年级下册第6.4节的内容。

本节内容是在学生学习了多边形的定义、多边形的对角线等知识的基础上,进一步引导学生探究多边形的内角和与外角和,让学生通过自主探究、合作交流,发现多边形内角和与外角和的规律,培养学生的抽象思维能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了多边形的定义、多边形的对角线等知识,具备了一定的数学思维能力。

但部分学生对多边形的内角和与外角和的概念可能还不够清晰,因此,在教学过程中,教师需要关注这部分学生的学习情况,通过适当的引导和讲解,帮助他们理解和掌握知识。

三. 教学目标1.理解多边形的内角和与外角和的概念,掌握多边形内角和与外角和的计算方法。

2.培养学生的抽象思维能力和解决问题的能力。

3.引导学生通过自主探究、合作交流,提高学生的团队合作能力。

四. 教学重难点1.重点:多边形的内角和与外角和的概念及计算方法。

2.难点:多边形内角和与外角和的规律的发现和证明。

五. 教学方法1.引导法:教师通过问题引导,激发学生的思考,引导学生自主探究。

2.合作交流法:学生分组讨论,分享学习心得,互相帮助,共同提高。

3.实践操作法:学生通过动手操作,加深对知识的理解和记忆。

六. 教学准备1.教师准备:教材、多媒体教学设备、教案、学习资料。

2.学生准备:课本、练习本、学习用品。

七. 教学过程1.导入(5分钟)教师通过复习多边形的定义、对角线等知识,引出本节课的主题——多边形的内角和与外角和。

2.呈现(10分钟)教师通过多媒体展示多边形的内角和与外角和的概念,让学生初步了解并感知这两个概念。

3.操练(15分钟)教师引导学生分组讨论,每组尝试计算一个给定多边形的内角和与外角和,并分享计算结果和心得。

4.巩固(10分钟)教师选取一些具有代表性的多边形,让学生独立计算其内角和与外角和,并及时给予指导和反馈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、(1)一个十边形的每一个内角都相等,那么这
个十边形的每一外角等于( C )
A、144°
B、 72 °
C、 36°
D 、18°
(2)一个多边形每一个外角都等于45°,则这个多
边形的内角和等于( C )
A、 720°
B、 675°
C、 1080°
D、945°
课堂跟踪训练
1.八边形的内角和是__1_0_8_0____度.
在四边形的内角中,最多能有几个钝角? 最多能有几个锐角?
因四边形的内角和是360度,而一个钝角的度数大于90 度,所以360除以一个钝角度数的商小于4,所以最多能有3 个钝角。又,一个锐角的度数小于90度,如果四个内角均 是锐角,则其内角和小于360,显然是不可能的(因四边形 的内角和是360度),所以至少应有一个钝角,所以在四边 形的四个内角中,最多能有3个锐角。
B C
A D
巩固练习一:
1、七边形内角和为( 900°) 2、十边形内角和为(1440°) 3、十七边形内角和为(2700°) 4、二十边形内角和为(3240°) 5、八边形内角和为( 1080°)
例:已知一个多边形的内角和 是1440O,求这个多边形的边数。
解:设这个多边形为n边形。 (n-2)×180° =1440° n-2=1440°÷180° n-2=8 n=10
随堂演练
1、(1)每个内角都为144°的多边形为( 十 )边形。 (2)每个内角都为140°的多边形为( 九 )边形。 (3)每个外角都为30°的多边形为(十二)边形。 (4)每个外角都为36°的多边形为( 十 )边形。 (5)正八边形的内角为( 135°),外角为( 45°)。 (6)正十二边形的内角为( 150°),外角为( 30°)。
思考:
1、一个多边形的每个外角等于与它相 邻的内角,这个多边形是几边形? 四边形
2、是否存在一个多边形,它的每个
外角等于与它相邻的内角的
1 5

存在. 这是一个每个内角都相等的12边形.(不一定是正12边形)
3、若两个多边形的边数相差1,则它们 的内角和、外角和分别有什么异同?
内角和相差180度,外角和不变
一个多边形除了一个内角所有的内角和为 1748 °,求这个多边形的边数及缺少的内角的 度数?
解:多边形的内角和能被180°整除,且每个内角都小 于180° 而1748°除以180°的整数部分为9 设这个多边形的边数为n,则有: 180°(n-2)=180°×10 解得:n=12 所以这个多边形的内角和为1800°,这是个12边形,这 个内角为180°×10-1748°=52°
6.4 多边形的内角和与外角和
新课导入
多边形
在在在平平在平面面平面内内面内,,内,由由,由若四由5干条条三不不不条在在在不同同同在一一一同直直直一线线线直上上上线的的 线的线上段线段的首段首线尾首尾段顺尾顺首次顺次尾连次连顺接连接次组接组连成组成接的成的组封的封成闭封闭封图闭图闭形图形图叫形叫形做叫做叫 多做五做边四边三形边形角。形。形。。
答:这个多边形为十边形。
巩固练习二: 1、多边形内角和为1260°则它是 ( 九 )边形。
2、多边形内角和为1080°则它是 ( 八 )边形。 3、多边形内角和为1800°则它是 (十二)边形。
多边形的外角和
n边形的外角和为360 °
例: 一个多边形的内角和等于它 的外角和的3倍,它是几边形?
解:多边形的外角和是360°,根据题意得: 180°•(n-2)=3×360° 解得n=8. 答:它是八边形。
360 °
360 ° 360 °
360°
多边形的内角和
n边形的内角和为(n-2)×180°
例 求15边形内角和的度数。
解: (n-2)×180° =(15-2)×180° = 2340°
答:15边形的内角和是2340°
多边形的内角和
例 如图,在四边形ABCD中,∠A+ ∠ C
=180°。∠B与∠D有怎样的关系?
对角线:在多边形中,连接不相邻的两个顶
点的线段叫做多边形的对角线。
外角
:多边形的一边与另一边的反向延长线 所组成的角叫做这个多边形的外角。
图形
四边形 五边形 六边形 n边形
边数
4
过一个顶点
的对角线条 数
1
分成的三角 形个数
2
5
6
n
2 3 n-3
3 4 n-2
内角和 外角和
2×180° 3×180 ° 4×180 ° (n-2)×180°
2.四边形ABCD中,四个内角度数之比是 1:2:3:4,求出四个内角的度数.
解:∵四边形的内角和为360°, 1+2+3+4=10, ∴360°÷10=36°,
则这四个内角的度数分别为36°, 72°,108°,144°.
3.一个多边形的内角和是1440°,求这个多 边形的边数. 解:设这个多边形的边数为n,则: (n-2) ·180°=1440°,
想一想
定特义点::在它平们面的内边,(内都角相都等相等),边都 相等的多它边们形的叫角正(多边都形相.等 )
议一议
1、一个多边形的边相等,它的内角一定 相等吗?
不一定,如菱形.
2、一个多边形的内角都相等,它的边一 定相等吗?
不一定,如非正方形的矩形的四个内角都是 90度,四个内角都相等,但是它的四条边不相等, 非正方形的矩形不是正多边形。只有满足各边都 相等,各角也都相等的多边形才是正多边形 .
解得:n=10 答:这个多边形的边数为10.
4.已知两个多边形的内角和为1800°,且这两个 多边形的边数之比为2:5,求这两个多边形的 边数.
解:设两个多边形的边数分别是2x和5x,
则(2x-2)•180+(5x-2)•180=1800

解得:x=2,
答:这两个多边形的边数分别为4和10.
5.如图所示的模板,按规定,AB,CD的延长线相交
成80°的角,因交点不在板上,不便测量,质检员测 得∠BAE=122°,∠DCF=155°.如果你是质检 员,如何知道模板是否合格?为什么?
解:∵这块模板是五边形,它的 内角和为540°,
∴∠G=540°-90°-90° -122°-155°=83° 而83°>80°,
故这块模板不合格.
6.一个正方形瓷砖,截去一个角后: (1)还剩几个角? (2)剩下的多边形的内角和是多少度?
相关文档
最新文档