实际问题与一元二次方程的几种常见模型

合集下载

一元二次方程实际问题类型讲解

一元二次方程实际问题类型讲解

一元二次方程实际问题类型讲解
一元二次方程是一种形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,x为未知数。

一元二次方程在实际问题中的应用非常广泛,下面将介绍几个常见的实际问题类型:
1. 抛物线运动问题:例如一个抛出的物体在空中的运动轨迹可以用一元二次方程来描述。

方程的解可以告诉我们物体的最高点、落地时间等信息。

2. 面积和周长问题:比如求解一个长方形的边长或者一个圆的半径,可以通过建立一元二次方程来求解。

例如,已知长方形的周长为20米,要求长方形的面积最大,可以建立面积的一元二次函数并求解其最值。

3. 时间与距离问题:例如两个行人相向而行,一个以每小时4公里的速度前进,另一个以每小时6公里的速度前进,问多长时间他们相遇。

可以通过建立两个行人的距离关系的一元二次方程来解决问题。

4. 投影问题:例如一个人在斜坡上投掷物体,已知斜坡的高度和水平距离,求物体的飞行时间和最远的落点。

可以通过建立一元二次方程来求解。

5. 金融问题:一元二次方程也可以应用于金融领域,例如计算贷款的利率、还款时间等。

可以通过建立一元二次方程模型来帮助分析和解决金融问题。

这些只是一元二次方程在实际问题中的几个常见应用,实际上,一元二次方程具有广泛的应用领域,可以涉及物理、经济、工程等多个领域。

通过建立方程模型并求解方程,我们可以更好地理解和解决实际问题。

一元二次方程与实际问题

一元二次方程与实际问题

应用题常见的几种类型:1. 增长率问题 [增长率公式:b x a =2)1( ]例:某工厂在两年内将机床年产量由400台提高到900台。

求增长率。

1、某种产品的成本在两年内从16元降至9元,求平均每年降低的百分率。

2、某工厂一月份产值为50万元,采用先进技术后,第一季度共获产值182万元,二、三月份 平均每月增长的百分率是多少?3、某林场第一年造林100亩,以后造林面积逐年增长,第二年、第三年共造林375亩,后两年平均每年的增长率是多少?4、十月份营业额为5000元,十二月份上升到7200元,平均每月增长的百分率5、某商品连续两次降价10%后的价格为a 元,该商品的原价应为6、第一季度生产a 台,第二季度生产b 台,第二季度比第一季度增长的百分率?7、某工厂今年利润为a 万元,比去年增长10%,去年的利润为 万元。

2.面积问题 [提示:面积问题一定要画图分析]例:一张长方形铁皮,四个角各剪去一个边长为4cm的小正方形,再折起来做成一个无盖的小 盒子。

已知铁皮的长是宽的2倍,做成的小盒子的容积是1536cm 3,求长方形铁皮的长与宽 。

1、要建成一面积为130㎡的仓库,仓库的一边靠墙(墙宽16m ),并在与墙平行的一边开一个宽1m 的门,现有能围成32m 的木板。

求仓库的长与宽各是多少?2、两个正方形,小正方形的边长比大正方形的边长的一半多1cm ,大正方形的面积比小正方 形的面积的2倍还多4cm 2,求大、小两个正方形的边长。

3、要给一幅长30cm ,宽25cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的四分之一,设镜框边的宽度为xcm ,•则依据题 意列出的方程是_________. X2X3.定价问题[提示:单位利润×销量=总利润]例:某电视机专卖店出售一种新面市的电视机,平均每天售出50台,每台盈利400元。

为了扩大销售,增加利润,专卖店决定采取适当降价的措施。

一元二次方程解决问题的各种形式

一元二次方程解决问题的各种形式

一元二次方程解决问题的各种形式一元二次方程解决问题的各种形式一元二次方程是中学数学学习中的重要内容,它不仅在数学中有着广泛的应用,还能帮助我们解决实际生活中的问题。

在本文中,我们将从多个不同的角度探讨一元二次方程解决问题的各种形式,帮助读者更全面地理解这一重要的数学概念。

1. 一元二次方程的基本形式一元二次方程是指只含有一个未知数的二次方程,通常写作ax²+bx+c=0,其中a、b、c分别是常数且a≠0。

解一元二次方程的方法有很多种,如配方法、公式法、完全平方公式等。

我们先来看一个简单的例子,通过配方法来解一元二次方程。

我们要解方程x²+6x+5=0,我们可以通过配方法将其写成(x+1)(x+5)=0,进而得出方程的解为x=-1或x=-5。

这是解一元二次方程的基本形式,但实际问题往往不止这一种形式。

2. 几何解法除了代数方法外,一元二次方程还可以通过几何方法来解决实际问题。

一条电线和一根铁管构成一个角,已知铁管的长度比电线的长度多5米,且电线和铁管的夹角是45度。

我们可以建立一个关于铁管长度的一元二次方程,并通过几何解法求出铁管的长度。

这种几何解法可以帮助我们更直观地理解一元二次方程在实际问题中的应用。

3. 时间、速度与距离的问题在物理和工程学科中,一元二次方程经常用于描述时间、速度与距离之间的关系。

一个运动员以8m/s的速度沿着一条笔直的跑道奔跑,30秒后他跑了240米的路程。

我们可以建立一个关于时间和距离的一元二次方程,通过分析这个方程来解决实际问题。

这种应用形式使得一元二次方程成为了解决实际问题的重要工具。

4. 经济与商业问题一元二次方程也被广泛地应用于经济学和商业领域。

某公司生产一种产品,生产成本和销售数量之间存在着一定的关系。

我们可以建立一个关于销售数量的一元二次方程,通过求解这个方程来找到最优的生产数量,使得利润最大化。

这种经济与商业问题的应用形式,让一元二次方程成为了决策分析中的有力工具。

一元二次方程与实际问题的公式

一元二次方程与实际问题的公式

一元二次方程与实际问题的公式一、引言在数学学科中,一元二次方程是一种经典的数学概念。

它在代数学和实际问题中有着重要的应用。

本文将深入探讨一元二次方程及其在实际问题中的应用,帮助读者更加全面地理解这一数学概念。

二、一元二次方程的基本形式和求解方法一元二次方程通常写作ax²+bx+c=0的形式,其中a、b和c是已知的常数,而x是未知数。

解一元二次方程可以使用因式分解、配方法和求根公式等方法。

这些方法能够帮助我们找到方程的根,进而解决各种实际问题。

三、一元二次方程在几何中的应用以一元二次方程为基础的二次函数能够描述抛物线的形状。

抛物线在现实生活和几何中都有广泛的应用,比如天文学中的行星运动轨迹、物理学中的抛体运动等。

一元二次方程在几何中有着重要的地位。

四、一元二次方程在经济学中的应用在经济学中,成本、收益和利润往往是与生产量或销售量相关的。

这些关系通常可以用一元二次方程来描述。

通过求解一元二次方程,我们可以找到最大化利润或最小化成本的最优解,这对企业经营和管理有着重要的指导意义。

五、一元二次方程在物理学中的应用在物理学中,一元二次方程经常出现在描述运动、力学和波动等方面。

比如自由落体运动、弹簧振动系统的频率等问题,都可以用一元二次方程来建模和求解。

六、总结与展望通过对一元二次方程的深入探讨,我们可以看到它在数学、几何、经济学和物理学中都有着广泛的应用。

它不仅是一种抽象的数学概念,更是解决实际问题的有力工具。

希望本文能够帮助读者更好地理解一元二次方程及其在实际问题中的应用,让数学变得更加具体和生动。

七、个人观点在我看来,数学中的一元二次方程不仅是一种工具,更是一种思维方式。

通过对实际问题的抽象和建模,我们可以运用数学的知识和方法来解决各种复杂的问题。

我认为掌握一元二次方程及其应用是非常重要的。

希望读者能够通过本文的阅读,对一元二次方程有更深入的理解和应用。

通过本文对一元二次方程的探讨,我们可以深刻地理解这一数学概念所蕴含的丰富内涵。

实际问题与一元二次方程(简析版)

实际问题与一元二次方程(简析版)

实际问题与一元二次方程一、“握手问题”1、节日聚会中,每人都和其他人握手一次,现在有若干人共握手45次,问共有多少人参加聚会?分析:设共有x 人参加聚会,可列方程:45)1(21=-x x 2、某校足球联赛,采用单循环的赛制,一共比赛10场,问一共有多少支球队参加比赛? 分析:设共有x 支球队参加比赛,可列方程:10)1(21=-x x 3、参加商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45分合同,问共有多少家公司参加商品交易会?分析:共有x 家公司参加商品交易会,可列方程:45)1(21=-x x 4、新年到来,几位朋友相互赠送贺卡,共送出贺卡72张,问这群朋友共有几人? 分析:设这群朋友共有x 人,可列方程:72)1(=-x x二、“平均增长率”问题。

1、某电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率. 分析:设平均增长率为x ,可列方程:950)1(200)1(2002002=++++x x2、某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少? 分析:设二月份、三月份生产电视机平均增长的百分率是x 可列方程: 31.3)1()1(12=++++x x3、一只感染病毒的白鼠经过两天传染后发现共有256只小白鼠患病,问在每天的传染中平均一只小白鼠传染多少只白鼠?分析:设平均一只小白鼠传染x 只白鼠,可列方程:256)1(2=+x4、某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.分析:设种存款方式的年利率为x ,利息=本金×利率×存期到期后的本息和=本金+利息=(第一年剩余的1000元+第一年的利息)+第二年的利息 可列方程:1320)20001000(20001000=+++x x x5、两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品的年平均下降额较大?哪种药品的年平均下降率较大? 分析:甲种药品的平均下降额为:1000230005000=-元乙种药品的平均下降额为:1200236006000=-元设甲种药品的平均下降率为x ,乙种药品的平均下降率为y可列方程:3000)1(50002=-x ;3600)1(60002=-y6.一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体xL ,则列出的方程是________ 分析:原有纯药液:63升,容器容积63升第一次操作:倒出纯药液x 升,容器内还有纯药液)63(x -升,溶液浓度%1006363⨯-x第二次操作:倒出纯药液6363xx -⋅升, 容器内还有纯药液63)63(63)63()63(2x x x x -=---升,由此可列方程:2863)63(2=-x三、商品营销问题1、某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,那么商场平均每天可多售出34张.如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的幅度大?(每每问题)分析:设甲种贺年卡每张降价x 元,乙种贺年卡每张降价y 元 每天的盈利=单张贺卡的利润×每天的销量 可列方程:120)1001.0500)(3.0(=⨯+-x x ,120)3425.0200)(75.0(=⨯+-y y2、两年前生产1t 甲种药品的成本是5000元,生产1t 乙种药品的成本是6000元,随着生产技术的进步,现在生产1t 甲种药品的成本是3000元,生产1t 乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?3、新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少? 分析:设甲种冰箱每台定价x 元,则:每台冰箱可盈利)2500(-x 元;比原售价降低)2900(x -元; 实际每天销量比原来增加:4502900⨯-x从而列方程:5000)45029008)(2500(=⨯-+-xx 同理可求出乙种冰箱的定价。

一元二次方程的应用8类模型(增长率,与图形有关,数字,营销,动态几何,工程,行程问题)(解析版)

一元二次方程的应用8类模型(增长率,与图形有关,数字,营销,动态几何,工程,行程问题)(解析版)

专题09一元二次方程的应用压轴题八种模型全攻略(传播,增长率,与图形有关,数字,营销,动态几何,工程,行程问题)【考点导航】目录【典型例题】 (1)【题型一一元二次方程的应用--传播问题】 (1)【题型二一元二次方程的应用--增长率问题】 (3)【题型三一元二次方程的应用--与图形有关的问题】 (4)【题型四一元二次方程的应用--数字问题】 (6)【题型五一元二次方程的应用--营销问题】 (8)【题型六一元二次方程的应用--动态几何问题】 (10)【题型七一元二次方程的应用--工程问题】 (13)【题型八一元二次方程的应用--行程问题】 (14)【过关检测】 (17)【典型例题】【题型一一元二次方程的应用--传播问题】例题:(2023春·广东汕头·九年级统考阶段练习)有一人感染了某种病毒,经过两轮传染后,共有256人感染了该种病毒,求每轮传染中平均每人传染了多少个人.【答案】15人【分析】有一人感染了某种病毒,经过两轮传染后,共有256人感染了该种病毒,设每轮传染中平均每人传染了x 人,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设每轮传染中平均每人传染了x 人,依题意,得1(1)256x x x +++=,即2(1)256x +=,解方程,得115x =,217x =-(舍去).【题型二一元二次方程的应用--增长率问题】【分析】(1)设这两个月藏书的月平均增长率为x ,利用该校“阅读公园”5月底的藏书量=该校“阅读公园”3月的藏书量×21+月(藏书的平均增长率),即可得出关于x 的一元二次方程,解之,取其正值即可得出结论;(2)利用该校“阅读公园”6月的藏书量=该校“阅读公园”5月的藏书量×(1+藏书的月平均增长率),即可求出该校“阅读公园”6月的藏书量.【详解】(1)解:设该校这两个月藏书的月均增长率为x ,根据题意,得()2500017200x +=解得10.220%x ==,2 2.2x =-(不合题意,舍去)该校这两个月藏书的月均增长率为20%;(2)()7200120%8640⨯+=(册),所以,预测到6月该校“阅读公园”的藏书量是8640册.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【题型三一元二次方程的应用--与图形有关的问题】例题:(2023春·北京石景山·八年级统考期末)如图,矩形草地ABCD 中,16AB =m ,10AD =m ,点O 为边AB 中点,草地内铺了一条长和宽分别相等直角折线甬路(PO PQ =,OM QN =),若草地总面积(两部分阴影之和)为2132m ,求甬路的宽.【答案】2m【分析】设甬路的宽为x m ,先得出8PQ OB ==,即8MB OB OM x =-=-,再据题意列一元二次方程,解方程即可求解.【详解】解:设甬路的宽为x m ,∵矩形ABCD 中,PO PQ =,OM QN =,∴四边形OPQB 是正方形,∵点O 为边AB 中点,16AB =m ,【答案】()()20218x x --=【分析】由花园的长、宽及雨道的宽,可得出种植花卉的部分可合成长为形,结合花卉种植面积共为【详解】解:∵花园长20直于墙的木栏隔开,分成面积相等的两个区域,并在两个区域中各留1米宽的门(门不用木栏),修建所用木栏总长28米,设矩形ABCD 的一边长CD 为x 米.(1)求矩形ABCD 的另一边长BC 是多少米?(用含x 的代数式表示)(2)矩矩形ABCD 的面积能否为272m ?若能,求出CD 的长;若不能,请说明理由.【答案】(1)(30﹣3x )米(2)能,6m【分析】(1)根据题中条件即可求出BC 的长;(2)根据矩形ABCD 的面积为272m ,列出一元二次方程,解方程,即可解决问题.【详解】(1) 修建所用木栏总长28米,且两处各留1米宽的门(门不用木栏),2283(303)BC x x ∴=+-=-米,即另一边长BC 是(303)x -米;(2)矩形ABCD 的面积能为272m ,理由如下:由题意得:(303)72x x -=,整理得:210240x x -+=,解得:14x =,26x =,当4x =时,30330341815x -=-⨯=>,不符合题意,舍去;当6x =时,30330361215x -=-⨯=<,符合题意;答:矩形ABCD 的面积能为272m ,CD 的长为6m .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【题型四一元二次方程的应用--数字问题】例题:(2023·全国·九年级假期作业)一个两位数等于它个位数字的平方,且个位数字比十位数字大3,则这个两位数是()A .25B .36C .25或36D .64【答案】C【分析】设十位数字为x ,表示出个位数字,根据题意列出方程求解即可.【详解】设这个两位数的十位数字为x ,则个位数字为()3x +.依题意得:2103(3)x x x ++=+,解得:122,3x x ==.∴这个两位数为25或36.故选C .【点睛】本题考查一元二次方程的应用,根据题意列出一元二次方程是解题的关键.【变式训练】1.(2023秋·江苏镇江·九年级统考期末)两个连续奇数的积为323,设其中的一个奇数为x ,可得方程________.【答案】()2323x x ⋅+=或()2323x x ⋅-=【分析】已知设其中的一个奇数为x ,且设其中的一个奇数为x ,分两种情况讨论:若x 为较小的奇数,则另一个奇数为(2)x +,即可列出方程()2323x x ⋅+=;若x 为较大的奇数,则另一个奇数为(2)x -,即可列出方程()2323x x ⋅-=,即可正确解答.【详解】①若x 为较小的奇数,则另一个奇数为(2)x +,∵两个连续奇数的积为323,∴()2323x x ⋅+=;②若x 为较大的奇数,则另一个奇数为(2)x -,∴()2323x x ⋅-=;故答案为:()2323x x ⋅+=或()2323x x ⋅-=【点睛】本题主要考查由实际问题抽象出一元二次方程,正确的理解题意,找出题目中的等量关系是解题的关键.2.(2023·全国·九年级假期作业)一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是_____.【答案】98【分析】设这个两位数个位上的数字为x ,则十位上的数字为()1x +,根据“个位数字与十位数字的乘积等于72,”列出方程,即可求解.【详解】解∶设这个两位数个位上的数字为x ,则十位上的数字为()1x +,依题意,得:()172x x +=,整理,得:2720x x +-=,解得:19x =-(不合题意,舍去),28x =,∴()()1011081898x x ++=⨯++=.故答案为:98【点睛】本题主要考查了一元二次方程的应用,正确表示出这个两位数的十位数字是解题的关键.【题型五一元二次方程的应用--营销问题】例题:(2023春·安徽合肥·八年级统考期中)某水果批发商店经销一种高档水果,如果每千克盈利5元,每天可售出600千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商店要保证每天盈利5000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?【答案】每千克水果应涨价5元【分析】设每千克应涨价x 元,根据每千克盈利5元,每天可售出600千克,每天盈利5000元,列出方程,求解即可.【详解】解:设每千克应涨价x 元,由题意列方程得:(5)(60020)5000x x +-=,解得:5x =或20x =,为了使顾客得到实惠,那么每千克应涨价5元;答:每千克水果应涨价5元.【点睛】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.【变式训练】1.(2023秋·广东惠州·九年级统考期末)某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;【详解】(1)解:由题意可把2020年新能源汽车的销售总量看作单位“1”,则设该汽车企业这两年新能源汽车销售总量的平均年增长率为x ,则有:()21196x +=+%,解得:120.4, 2.4x x ==-(不符合题意,舍去),答:该汽车企业这两年新能源汽车销售总量的平均年增长率为40%.(2)解:设下调后每辆汽车的售价为m 万元,由题意得:()()15822596m m -+-=⎡⎤⎣⎦解得:1223,21m m ==,∵尽量让利于顾客,∴21m =;答:下调后每辆汽车的售价为21万元.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.【题型六一元二次方程的应用--动态几何问题】例题:(2023春·上海静安·八年级上海市回民中学校考期中)在ABC 中,9016cm 12cm ACB AC BC ∠=︒==,,,动点M 、N 分别从点A 和点C 同时开始移动,点M 的速度为2cm /秒,点N 的速度为3cm /秒,点M 移动到点C 后停止,点N 移动到点B 后停止.问经过几秒钟,MCN △的面积为236cm【答案】2秒【分析】设经过x 秒钟后,MCN △的面积为236cm ,则()162cm 3cm CM AC AM x CN x =-=-=,,据此利用三角形面积公式建立方程求解即可.【详解】解:设经过x 秒钟后,MCN △的面积为236cm ,【答案】4cm【分析】设cm AP x =,则形面积公式求解出AP 的值即可.【详解】设cm AP x =,则(1)若点P从点A移动到点B停止,点Q 是10cm?(2)若点P沿着AB BC CD→→移动,点探求经过多长时间PBQ的面积为12cm【答案】(1)8s5或24s5;【题型七一元二次方程的应用--工程问题】例题:(2023·重庆开州·校联考一模)某工程队采用A ,B 两种设备同时对长度为3600米的公路进行施工改造.原计划A 型设备每小时铺设路面比B 型设备的2倍多30米,则30小时恰好完成改造任务.(1)求A 型设备每小时铺设的路面长度;(2)通过勘察,此工程的实际施工里程比最初的3600米多了750米.在实际施工中,B 型设备在铺路效率不变的情况下,时间比原计划增加了()25m +小时,同时,A 型设备的铺路速度比原计划每小时下降了3m 米,而使用时间增加了m 小时,求m 的值.【答案】(1)A 型设备每小时铺设的路面长度为90米(2)m 的值为10【分析】(1)设B 型设备每小时铺设路面x 米,则A 型设备每小时铺设路面()230x +米,根据题意列出方程求解即可;(2)根据“A 型设备铺设的路面长度B +型设备铺设的路面长度3600750=+”列出方程,求解即可.【详解】(1)解:设B 型设备每小时铺设路面x 米,则A 型设备每小时铺设路面()230x +米,根据题意得,()30302303600x x ++=,解得:30x =,则23090x +=,答:A 型设备每小时铺设的路面长度为90米;(2)根据题意得,()()()303025903303600750m m m +++-+=+,整理得,2100m m -=,解得:110m =,20m =(舍去),∴m 的值为10.【点睛】本题主要考查一元一次方程、一元二次方程的应用,解题关键是读懂题意,找准等量关系并列出方程.【变式训练】1.(2023春·八年级课时练习)全球疫情爆发时,口罩极度匮乏,中国许多企业都积极地生产口罩以应对疫情,经调查发现:1条口罩生产线最大产能是78000个/天,每增加1条生产线,每条生产线减少1625个/天,工厂的产线共x 条(1)该工厂最大产能是_____个/天(用含x 的代数式表示).(2)若该工厂引进的生产线每天恰好能生产口702000个,该工厂引进了多少条生产线?【答案】(1)2780001625x x -;(2)12或36【分析】(1)根据题意,根据代数式的性质计算,即可得到答案;(2)结合(1)的结论,列一元二次方程并求解,即可得到答案.【详解】(1)根据题意,得该工厂最大产能是:()2780001625780001625x x x x -=-个/天故答案为:2780001625x x -;(2)根据题意,得:2780001625702000x x -=12x =或36x =∴即该工厂引进了12或36条生产线.【点睛】本题考查了一元二次方程、代数式的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.【题型八一元二次方程的应用--行程问题】例题:(2023春·浙江·八年级专题练习)《九章算术》中有一题:“今有二人同立,甲行率六,乙行率四,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,甲、乙各走了多少步?”请问乙走的步数是()【过关检测】一、单选题1.(2023春·安徽淮北·八年级统考期末)要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,则应邀请()个球队参加比赛.A .6B .7C .8D .9【答案】C【分析】设应邀请x 个球队参加比赛,则总共需安排()112x x -场比赛,根据计划安排28场比赛建立方程,解方程即可得.【详解】解:设应邀请x 个球队参加比赛,则总共需安排()112x x -场比赛,由题意得:()11282x x -=,解得8x =或70x =-<(不符合题意,舍去),故选:C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.2.(2023秋·辽宁葫芦岛·九年级统考期末)电影《长津湖之水门桥》以抗美援朝战争第二次战役中的长津湖战役的一部分为背景,上演了一段可歌可泣的历史,一上映就获得全国人民的追捧,第一天票房约6亿元,以后每天票房按相同的增长率增长;三天后累计票房收入达14.7亿元,若设平均每天票房的增长率为x ,则可以列方程为()A .()6114.7x +=B .26(1)14.7x +=C .266(1)14.7x ++=D .()26616(1)14.7x x ++++=【答案】D【分析】设平均每天票房的增长率为x ,根据一元二次方程增长率问题,列出方程即可求解.【详解】设平均每天票房的增长率为x ,则可以列方程为()()26616114.7x x ++++=,故选:D .【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.3.(2023春·河南驻马店·七年级校考阶段练习)小明在某书店购买数学课外读物《几何原本》,已知每本《几何原本》的定价为40元,若按八折出售,该书店仍可获利10元,则每本《几何原本》的进价为()A .22元B .24元C .26元D .28元【答案】A 【分析】根据题意可知:标价⨯(折数÷10)-成本=利润,可以列出相应方程,然后求解即可;【详解】设每本《几何原本》的进价为x 元,则:由题意可得:400.810x ⨯-=,解得:22x =;故选:A .【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程;对于本题运用到的公式:标价⨯(折数÷10)-成本=利润,一定要熟记并能够在题目中合理运用.4.(2023秋·山西阳泉·九年级统考期末)如图,某景区计划在一个长为72m ,宽为40m 的矩形空地上修建一个停车场,停车场中修建三块相同的矩形停车区域,它们的面积之和为21792m ,三块停车区域之间以及周边留有宽度相等的行车通道,问行车通道的宽度是多少m ?设行车通道的宽度是m x ,则可列方程为()A .()()72401792x x --=B .()()7244021792x x --=C .()()7234021792x x --=D .()()724401792x x --=【答案】B 【分析】设行车通道的宽度为m x ,再根据停车区域面积之和为21792m 列出一元二次方程,然后求解即可.【详解】解:设行车通道的宽度为m x .根据题意,得()()7244021792x x --=.故选:B .【点睛】本题主要考查了一元二次方程的应用,根据题意列出一元二次方程是解答本题的关键.5.(2023春·浙江·八年级专题练习)《九章算术》中有一题:“今有二人同立,甲行率六,乙行率四,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,甲、乙各走了多少步?”请问乙走的步数是()A .36B .26C .24D .10【答案】C【分析】设甲、乙两人相遇的时间为t ,则乙走了4t 步,甲斜向北偏东方向走了(610)t -步,利用勾股定理即可得出关于t 的一元二次方程,解之即可得出t 值,将其值代入4t 中即可求出结论.【详解】解:设甲、乙两人相遇的时间为t ,则乙走了4t 步,甲斜向北偏东方向走了(610)t -步,依题意得:22210(4)(610)t t +=-,整理得:2201200t t -=,解得:126,0t t ==(不合题意,舍去),∴44624t =⨯=.故乙走的步数是24.故选:C .【点睛】本题考查了一元二次方程的应用以及勾股定理,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(1)BC=三、解答题11.(2023春·安徽六安·八年级校联考期中)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【答案】若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.【分析】本题可设每轮感染中平均一台会感染x 台电脑,则第一轮后共有(1)x +台被感染,第二轮后共有(1)(1)x x x +++即2(1)x +台被感染,利用方程即可求出x 的值,并且3轮后共有3(1)x +台被感染,比较该数同700的大小,即可作出判断.【详解】解:设每轮感染中平均一台电脑会感染x 台电脑,则经过1轮后有()1x +台被染上病毒,2轮后就有()21x +台被感染病毒,依题意,得()2181x +=,解得18x =,210x =-(舍去).所以每轮感染中平均一台电脑会感染8台电脑.由此规律,经过3轮后,有()()33118729x +=+=台电脑被感染.由于729700>,所以若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.【点睛】本题只需仔细分析题意,利用方程即可解决问题.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.12.(2023秋·河南驻马店·九年级统考期末)2022年北京冬季奥运会于2月4日至2月20日在北京市和河北省张家口市联合举行,冬奥会吉祥物为“冰墩墩”.(1)据市场调研发现,某工厂今年二月份共生产500个“冰墩墩”,该工厂连续两个月增加生产量后四月份生产720个“冰墩墩”,求平均每月的增长率是多少?(2)已知某商店“冰墩墩”平均每天可销售20个,每个盈利20元,在每个降价幅度不超过8元的情况下,每下降2元,则每天可多售10件.如果每天要盈利700元,则每个“冰墩墩”应降价多少元?【答案】(1)20%(2)6元【分析】(1)设该工厂平均每月生产量增长率为x ,利用该工厂四月份生产“冰墩墩”的数量=该工厂二月份生产“冰墩墩”的数量⨯(1+该工厂平均每月生产量的增长率)的平方,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设每个“冰墩墩”降价y 元,则每个盈利()20y -元,平均每天可售出(20)5y +个,利用该商店每天销售“冰墩墩”获得的利润=每个的销售利润⨯平均每天的销售量,即可得出关于y 的一元二次方程,解之取其符合(1)DC=___________米(用含(2)若长方形围栏ABCD(3)长方形围栏ABCD面积是否有可能达到(1)用含t 的式子表示线段的长:CQ =__________;PB =__________.(2)当t 为何值时,P 、Q 两点间的距离为13cm ?(3)当t 为何值时,四边形APQD 的形状可能为矩形吗?若可能,求出t 的值;若不可能,请说明理由.【答案】(1)2cm t ,()153cmt -(2)P 、Q 出发0.6和5.4秒时,P ,Q 间的距离是13cm(3)P 、Q 出发3秒时四边形APQD 为矩形【分析】(1)根据题意可直接进行求解;(2)可通过构建直角三角形来求解.过Q 作QM AB ⊥于M ,如果设出发t 秒后,13cm QP =.那么可根据路程=速度⨯时间,用未知数表示出PM 的值,然后在直角三角形PMQ 中,求出未知数的值.(3)利用矩形的性质得出当AP DQ =时,四边形APQD 为矩形求出即可【详解】(1)解:由题意得:2cm,3cm CQ t AP t ==,∵15cm AB =,∴()153cm PB t =-;故答案为2cm t ,()153cm t -;(2)解:设出发t 秒后P 、Q 两点间的距离是13cm .则3AP t =,2CQ t =,作QM AB ⊥于M ,∵四边形ABCD 是矩形,。

一元二次方程的解法及应用

一元二次方程的解法及应用

一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。

解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。

本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。

一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。

具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。

例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。

二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。

其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。

例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。

三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。

一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。

具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。

例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。

(完整)实际问题与一元二次方程类型

(完整)实际问题与一元二次方程类型

实际问题与一元二次方程
1、在长方形钢片上冲去一个长方形,制成一个四周宽相等的长方形框。

已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2,求这个长方形框的框边宽.
2、在一块长为92m,宽为60m的矩形耕地上挖三条水渠,水渠的宽都相等,水渠把耕地分成面积均为885m2的6个矩形小块,水渠应挖多宽?
3、某工厂一月份的产值是5万元, 三月份的产值是7.2万元,求月平均增长率是多少?
4、某经济开发区今年一月份工业产值达50亿元,第一季度总产值达175亿元,问二、三月份平均每月的增长率为多少?设平均每月增长率为x,根据题意得方程:
5、某种药剂原售价为4元,经过两次降价, 现在每瓶售价为2.56元,问平均每次降价百分之几?
6、新亚商场销售某种冰箱,每台进价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销价每降低50元时,平均每天能多售4台.商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?(只列方程)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 实际问题与一元二次方程的几种常见模型实际问题与一元二次方程的几种常见模型繁殖问题 1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有 81 台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制, 3 轮感染后,被感染的电脑会不会超过 700 台?解:1 设每轮感染中平均一台电脑会感染x 台电脑,依题意得 1+x+(1+x)x=81 整理得: X2 +2x-80=0 解得X1=8 x2=-10(舍去) 三轮后被感染的电脑总数为: 1+ x+ x(x +1)+x(x +1)2=739(台) 答:每轮感染中平均一台电脑会感染 8 台电脑,3 轮感染后,被感染的电脑为 739 台,超过 700 台 2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是 91,每个支干长出多少小分支?解:设每个支干长出 x 小分支,依题意得 1+x(x +1)=91 解得:X1=9 x2=-10(舍去) 答:每个支干长出 9 小分支1
1/ 7
单(双)循环问题 1.参加一次足球赛的每两队之间都进行两次比赛,共赛 90 场,共有多少队参加?解:设共有 x 队参加依题意列方程得 x(x -1)=90 解得:X1=10 x2=-9(舍去) 答:共有 10 队参加2.参加一次聚会的每两人都握了一次手,所有人共握手 66 次,有多少人参加聚会? 解:设共有 x 人参加聚会,依题意列方程得 x(x ?1) =662解得:X1=12 x2=-11(舍去) 答:共有 12 人参加聚会 3.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排 28 场比赛,应邀请多少个球队参加比赛? 解:设应邀 x 个球队参加,依题意列方程得 x(x ?1) =282解得:X1=8 x2=-7(舍去) 答:应邀 8 个球队参加 4.初三毕业晚会时每人互相送照片一张,一共要90 张照片,有多少人? 解:有 x 人,依题意列方程得2
---------------------------------------------------------------最新资料推荐------------------------------------------------------
x(x -1)=90 解得:X1=10 x2=-9(舍去) 答:共有 10 人数字问题1.两个相邻偶数的积为 168,则这两个偶数是多少?解:设其中一个偶数为 x,则另一个为(x+2)依题意列方程得 x(x+2)=168 解得:X1=12 x2=-14 则这两个偶数是 12 各 14 或-12-14 2.一个两位数,十位数字与个位数字之和为 5,把这个数的十位数字与个位数字对调后,所得的新两位数与原两位数乘积为 736,求原两位数。

解:设原两位数的个位为 x,则十位为 10(5-x) 依题意列方程得[10(5-x)+x][10x+(5-x)] 解得:X1=2 x2=3 当 X=2 时,原两位数为32,当 X=3 原两位数为 23 增长率问题 1. 某厂去年 3 月份的产值为 50 万元,5 月份上升到 72 万元,这两个月平均每月增长的百分率是多少?解:设平均每月增长的百分率是 x 依题意列方程得50(1+x)2=72 解得:X1=0.2 x2=-2(舍去)3
3/ 7
答:平均每月增长的百分率是 20%2.某厂一月份产值为 10 万元,第一季度产值共 33.1 万元。

若每个月比上月的增长百分数相同,求这个百分数。

解:设平均每月增长的百分率是 x 依题意列方程得10+10(1+x)+10(1+x)2=33.1解得:X1=0.1 x2=-3.1(舍去) 答:这个百分数为 10%销售问题1.将进价为 40 元的商品按 50 元的价格出售时,能卖出500 个,已知该商品每涨价 1 元,其销售量就要减少 10 个,为了赚取 8000元的利润,售价应定为多少元?解:设每件商品涨 x 元依题意列方程得(50-40+x)(500-10x)=8000单件商品涨涨价后卖出价后的利润商品的数量解得 X1=10 x2=30(考虑到促销应舍去)答每件商品就定价为 50+10=60 元2.商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利40 元,已知这种衬衫每件降价 1 元,商场平均每天可多售出 2件,若商场要想平均每天盈利 1200 元,那么每件衬衫应降价多少元?解:设每件衬衫应降价 x 元依题意列方程得4
---------------------------------------------------------------最新资料推荐------------------------------------------------------ (20+2x)(40-x)=1200 解得 X1=20 x2=10(考虑到促销应舍去) 答每件衬衫应降价 20 元围圈问题1.借助一面长 6 米的墙,用一根 13 米长的铁丝围成一个面积为20 平方米的长方形,求长方形的两边?解:设长方形的一边为 x,则另一边为 13 ? x 依题意列方程得2X( 13 ? x )=20 或 x(13-2x)=202解得 X1=5 x2=8(不符合题意舍去)当一边长为 5 米时,另一边为 4 米2.如图所示,利用 22 米长的墙为一边,用篱笆围成一个长方形养鸡场,中间用篱笆分割出两个小长方形,总共用去篱笆 36 米,为了使这个长方形 ABCD的面积为 96 平方米,问 AB 和 BC 边各应是多少?AED解:设 BC 为 x,则 AB 为 36 ? x 依题意列方程得3X( 36 ? x )=963解得 X1=12 x2=24(不符合题目舍去)BFC∴BC 的长为 12 米,AB 为 36 ?12 =8 米3边框问题在一幅长为 80cm,宽为 50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽为多少?解:设金色纸边的宽为 x 依题意列方程得5
5/ 7
(80+2x)(50+2x)=5400 解得 X1=5 x2=-70(不符合题目舍去) 答:金色纸边的宽为 5cm 面积问题 1.要在长 32m,宽 20m 的长方形绿地上修建宽度相同的道路,六块绿地面积共 570m2,问道路宽应为多宽?解:设道路宽应为 x 依题意列方程得 (32-2x)(20-x) 解得X1=1 x2=35(不符合题目舍去) 答:道路宽应为 1 米 2.在宽为 20m、长为 30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要 551m2,则修建的路宽应为多少?解:设道路宽应为 x 依题意列方程得 (30-x)(20-x) 解得 X1=1 x2=49(不符合题目舍去) 答:道路宽应为 1 米工程问题 1.甲、乙两建筑队完成一项工程,若两队同时开工,12 天可以完成全部工程,乙队单独完成该工程比甲队单独完成该工程多用 10 天,问单独完成该工程,甲、乙各需多少天?解:设甲单独完成要用 x 天,乙单独完成要用 x+10 天依题意列6
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 方程得 1+ 1 = 1x x ?10 12解得 X1=20 x2=6(不符合题目舍去) ∴甲单独完成要用 20 天,乙单独完成要用 30 天行程问题汽车需行驶 108km 的距离,当行驶到 36km 处时发生故障,以后每小时的速度减慢 9km,到达时比预定时间晚 24min,求汽车原来的速度。

解:设汽车原来的速度为 xkm/小时依题意列方程得 36 + 108 ? 36 = 108 + 24x x ? 9 x 60整理得: X2-9x-1620=0 解得 X1=45 x2=-36(不符合题目舍去) 答:汽车原来的速度为 45 千米/小时7
7/ 7。

相关文档
最新文档