程序框图与算法.算法的含义与描述
小学数学程序框图与算法.板块一.算法的含义与描述.学生版

题型一:算法的含义【例1】 下面对算法描述正确的一项是( )A .算法只能用自然语言来描述B .算法只能用图形方式来表示C .同一问题可以有不同的算法D .同一问题的算法不同,结果必然不同【例2】 关于算法的说法中,正确的是( )A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止【例3】 下面四种叙述能称为算法的是( )A .在家里一般是妈妈做饭B .做米饭要需要刷锅.添水.加热这些步骤C .在野外做饭叫野炊D .做饭必需要有米【例4】 下面的结论正确的是( )A .一个程序算法步骤是可逆的B .一个算法可以无止境的运算下去C .完成一件事的算法有且只有一种D .设计算法要本着简单方便的原则【例5】 算法的有穷性是指( )A .算法最后包含输出B .算法的每个操作步骤都是可执行的C .算法的步骤必须有限D .以上都不正确【例6】 指出下列哪一个不是算法 ( )A .解方程260x -=的过程是移项和系数化为1B .从济南到温哥华需要先乘火车到北京,再从北京乘飞机到温哥华C .解方程2210x x +-=D .利用公式2πS r =,计算半径为3的圆的面积为2π3⨯【例7】 看下面的四段话,其中不是解决问题的算法的是( )A .从济南到北京旅游,先坐火车,再坐飞机抵达B .解一元一次方程的步骤是去分母.去括号.移项.合并同类项.系数化为1C .方程210x -=有两个实根典例分析板块一.算法的含义与描述D.求12345+=,10515+=,最终结+=,6410+=,再由于336++++的值,先计算123果为15【例8】不能描述算法的是()A.流程图B.伪代码C.数据库D.自然语言【例9】早上从起床到出门需要洗脸刷牙(5min).刷水壶(2min).烧水(8min).泡面(3min).吃饭(10min).听广播(8min)几个步骤,下列选项中最好的一种算法为()A.s1洗脸刷牙s2刷水壶s3烧水s4泡面s5吃饭s6听广播B.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭s5听广播C.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭的同时听广播D.s1吃饭的同时听广播s2泡面s3烧水的同时洗脸刷牙s4刷水壶【例10】已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c=;②输入直角三角形两直角边长a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③题型二:算法分析(自然语言与数学语言)【例11】算法:S1 输入nS2 判断n是否是2,若2n=,则n满足条件,若2n>,则执行S3S3 依次从2到1n-检验能不能整除n,若不能整除n,满足上述条件的是()A.质数B.奇数C.偶数D.约数【例12】“鸡兔同笼“是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何.用方程组的思想不难解决这一问题,请你设计一个这类问题的通用算法.【例13】某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼.羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜,设计安全过河的算法.【例14】人鬼过河现在河的岸边有三个人和三个鬼,河上只有一条小船,船上最多能坐两个“人”,在河的任何一边,当鬼的个数比人多时,鬼就会吃掉人.请问如何才能使人和鬼都平安的到达对岸.【例15】 现在有三个油瓶,分别能装8kg .5kg .3kg 的油,当8kg 的瓶子装满油时,设计一个用这三个瓶子倒油的算法,怎样倒能使这些油被平分到两个瓶子里.(注:没有其它瓶子)【例16】 设计一个算法求解方程组374513x y x y +=⎧⎨+=⎩【例17】 用二分法设计一个求方程220x -=的近似根的算法.【例18】 分别用自然语言.数学语言写出对任意四个整数a .b .c .d ,求出最小值的算法.【例19】 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下:S1 输入订单数额x (单位:件);输入单价A (单位:元); S2 若250x <,则折扣率0d =;若250500x <≤,则折扣率0.05d =; 若5001000x <≤,则折扣率0.10d =; 若1000x ≥,则折扣率0.15d =;S3 计算应付货款()1T Ax d =-(单位:元);S4 输出应付货款T .已知一客户买400件时付款38000元,则应付货款为88200元时订单数额是 .题型三:算法的三种基本逻辑结构与程序框图【例20】 流程图中表示判断框的是 ( )A .矩形框B .菱形框C .圆形框D .椭圆形框【例21】 框图与算法相比,下列判断正确的是( )A .程序框图将算法的基本逻辑展现得很清楚B .算法使用自然语言描述解决问题的步骤,程序框图使得这些步骤更为直观C .实质不变,形势变复杂了D .程序框图更接近于计算机理解【例22】 尽管算法千差万别,程序框图按逻辑结构分类有( )类A .2B .3C .4D .5【例23】 算法的三种基本结构是( )A .顺序结构、选择结构、循环结构B .顺序结构、流程结构、循环结构C .顺序结构、分支结构、流程结构.D .流程结构、循环结构、分支结构【例24】下列关于框图的逻辑结构正确的是()A.用顺序结构画出电水壶烧开水的框图是唯一的B.条件结构中不含顺序结构C.条件结构中一定含有循环结构D.循环结构中一定含有条件结构【例25】下面的问题中必须用条件结构才能实现的个数是()(1)已知三角形三边长,求三角形的面积;(2)求方程0+=(,ax ba b为常数)的根;(3)求三个实数,,a b c中的最大者;(4)求123100++++的值.A.4个B.3个C.2个D.1个【例26】已知函数()|3|=-,以下程序框图表示的是给定x值,求相应的函数值的算法,请将该程f x x序框图补充完整.【例27】写出下边程序框图的运行结果:【例28】如图给出的是计算13599++++的一个程序框图,其中判断框内应填入的条件是()A.99i>i<D.100i>C.100i<B.99【例29】写出右边框图中的运算结果,____S=.【例30】写出右面的程序框图所表示的函数.【例31】如右图给出的是计算1112420+++的值的一个程序框图,其中判断框内应填入的条件是()C.20i>D.20i<【例32】如图是一个算法的程序框图,若该程序输出的结果为45,则判断框中应填入的条件是()A.4?T>B.4?T<C.3?T>D.3?T<【例33】按如图所示的程序框图运算,若输入6x=,则输出k的值是()A.3B.4C.5D.6【例34】 已知程序框图如图所示,则该程序框图的功能是( )A .求数列1n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈NB .求数列12n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈NC .求数列1n ⎧⎫⎨⎬的前11项和()n *∈N D .求数列12n ⎧⎫⎨⎬⎩⎭的前11项和()n *∈N【例35】 阅读右面的程序框图,运行相应的程序,输出的结果为( )A .1321B .2113 C.813 D .138【例36】 已知某程序框图如图所示,则执行该程序后输出的结果是( )第 7 题A .1-B .1C .2D .12【例37】 已知程序框图如图所示,则执行该程序后输出的结果是_______________.【例38】 如图,下程序框图的程序执行后输出的结果是 .【例39】右边程序框图的程序执行后输出的结果是 .n=n+2S=0n=1S=S+nn 50否是输出S结束开始【例40】 执行如图程序框图,输出S 的值等于 .12题图否是输出Si <=4i=i + 1S =S + AA=A + iA=0,S=0,i=1结束开始【例41】 某程序框图如图所示,该程序运行后输出,M N 的值分别为 .【例42】在右边的程序框图中,若输出i的值是4,则输入x的取值范围是.【例43】在右面的程序框图中,若5x ,则输出i的值是()A.2 B.3 C.4 D.5【例44】执行如图所示的程序框图,输出的T等于()A.10B.15C.20D.30【例45】在数列{}na中,11a=,1n na a n-=+,2n≥.为计算这个数列前10项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是()A.8i≥B.9i≥C.10i≥D.11i≥【例46】执行右图所示的程序框图,输出结果y的值是_________.否是结束输出yy = e x - 2x > 2x = xx = 16开始【例47】按照如图的程序框图执行,若输出结果为15,则M处条件为()C.16k<D.8k≥开始S=0MS=S+k2k k=⨯结束输出S是否k=1【例48】若某程序的框图如图,若输入的x的值为12,则执行该程序后,输出的y值为.【例49】某程序框图如图所示,该程序运行后,输出的x值为31,则a等于()A.1-B.0C.1D.2【例50】右面的程序框图,如果输入三个实数a.b.c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()x c>C.c b>D.b c>【例51】 某地区为了了解70~80岁老人的日平均睡眠时间(单位:h ).随机选择了50位老人的进行S 的值是 .【例52】 执行下边的程序框图,若0.8p =,则输出的n = .【例53】 阅读如图的程序框图,若输入4m =,6n =,则输出a = ,i =(注:框图中的赋值符号“=”也可以写成“←”或“:=”)【例54】执行右边的程序框图,输出的T=.【例55】阅读右面的程序框图,则输出的S=()A.26B.35C.40D.57【例56】 随机抽取某产品n 件,测得其长度分别为12n a a a ,,,.则如图所示的程序框图输出的s = ,s 表示的样本的数字特征是 . (注:框图中的赋值符号“=”也可以写成“←”“:=”)【例57】 某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7【例58】 如果执行右边的程序框图,输入2x =-,0.5h =,那么输出的各个数的和等于( )D .4.5【例59】2010年上海世博会园区每天9:00开园,20:00停止入园.在右边的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的执行框内应填入.【例60】阅读右边的程序框图,若输出s的值为7-,则判断框内可填写( )A.3?i<B.4?i<C.5?i<D.6?i<【例61】某程序框图如图所示,若输出的57S=,则判断框内为( )B.5?k>C.6?k>D.7?k>【例62】 如图所示,程序框图(算法流程图)的输出x __ __.【例63】 阅读右图所示的程序框图,运行相应的程序,输出的i 值等于( )A .2B .3C .4D .5【例64】 某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,分别为1,2,则输出的结果s 为 .【例65】 如果执行右面的程序框图,输入正整数,n m ,满足n m ≥,那么输出的p 等于( )A .1C m n -B .1A m n -C .C m nD .A mn【例66】 如果执行下面的框图,输入5N =,则输出的数等于( )A .4B .45C .65D .56【例67】下面程序框图所表示的算法的功能是()A.计算11112349++++的值B.计算11113549++++的值C.计算11113599++++的值D.计算11112399++++的值第9题图【例68】右图是一个程序框图,其中判断框①处缺少一个判断条件,②为一输出框.⑴若在①处填空“2009n=”,请求出在输出框②处输出的y的值;⑵若在①处填空“2008②处输出的n的值.【例69】 程序program-3的任务为输入100个产品的内径尺寸数据,并找出其中的最值.;(2)________.程序program-3执行完毕,M1,M2的输出值中是最大值的是______.【例70】 任意给定一个正数,设计一个算法求以这个数为半径的圆的周长,并画出程序框图.【例71】 半径为r 的圆面积计算公式为2πS r =,写出计算圆面积的算法,并画出框图.【例72】 画出计算123⨯⨯的程序框图.【例73】 分别用数学语言和程序框图写出计算13579++++的算法.【例74】 三角形的面积公式12S ah =,用算法描述求7.18.5a h ==,时的三角形面积,并画出算法的程序框图.【例75】 设计一个算法计算ABC ∆的面积,并画出算法的程序框图.【例76】 画出求1220⨯⨯⨯的程序框图.【例77】 画出求123100++++的程序框图.【例78】 写出计算3333123100++++的值的一个程序框图.【例79】 写出求解一般的二元一次方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩的程序框图。
1.1.2_程序框图与算法的基本逻辑结构

流程线
连接程序框,表示算法步骤的 执行顺序
开始
顺序结构
输入n i=2
n除以i的余数r
循环结构
i=i+1 否
i>n-1或r=0?
是 否
条件结构
r=0?
是 n不是质数 n是质数
结束
顺序结构及框图表示 1.顺序结构:按照步骤依次执行的一个算法 2.顺序结构的流程图
作用
表示算法的输入 和输出的信息
名称
处理框或执行框
作用
赋值、计算
名称
判断框
作用
判断某一条件是否成立, 成立在出口处标明“是”或“Y” 不成立标明“否”或“N”
图形符号
名 称
功 能
终端框 (起止框) 输入、输出 框 处理框 (执行框) 判断框
表示一个算法的起始和结束 表示一个算法输入和输出的 信息 赋值、计算
开始
第一步:输入圆的半径 第二步:利用公式“圆的面 积=圆周率×(半径的平方)” 计算圆的面积; 第三步:输出圆的面积。
输入半径R
计算S=π*R*R
(1)在程序框图中, 开始框和结束框不可少; (2)在算法过程中, 输出语句是必不可少的;
输出面积S
结束
例3:若一个三角形的三条边长分别为a,b, c,令 ,则三角形的面积 .你能利用这个公式 设计一个计算三角形面积的算法步骤吗? 第一步,输入三角形三条边的边长 a,b,c. 第二步,计算 第三步,计算 第四步,输出S.
.
.
上述算法的程序框图如何表示?
开始
输入a,b,c
p=
a + b+ c 2
算法与程序框图

算法与程序框图1.算法与程序框图(1)算法①算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.②应用:算法通常可以编成计算机程序,让计算机执行并解决问题.(2)程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构3.算法语句(1)输入语句、输出语句、赋值语句的格式与功能(2)条件语句①程序框图中的条件结构与条件语句相对应.②条件语句的格式a.IF—THEN格式b.IF—THEN—ELSE格式(3)循环语句①程序框图中的循环结构与循环语句相对应.②循环语句的格式a.UNTIL语句b.WHILE语句题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.(×)(2)程序框图中的图形符号可以由个人来确定.(×)(3)输入框只能紧接开始框,输出框只能紧接结束框.(×)(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的.(√)(5)5=x是赋值语句.(×)(6)输入语句可以同时给多个变量赋值.(√)题组二教材改编2.[P30例8]执行如图所示的程序框图,则输出S的值为()A .-32 B.32 C .-12 D.12 答案 D解析 按照程序框图依次循环运算,当k =5时,停止循环,当k =5时,S =sin 5π6=12.3.[P25例5]如图为计算y =|x |函数值的程序框图,则此程序框图中的判断框内应填.答案 x <0?解析 输入x 应判断x 是否大于等于零,由图知判断框应填x <0?. 题组三 易错自纠4.(优质试题·全国Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s 等于( )A.7 B.12 C.17 D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件,输出s =17,故选C.5.执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()A.s≤34?B.s≤56?C.s≤1112?D.s≤2524?答案 C解析由s=0,k=0满足条件,则k=2,s=12,满足条件;k=4,s=12+14=34,满足条件;k=6,s=34+16=1112,满足条件;k=8,s=1112+18=2524,不满足条件,输出k=8,所以应填“s≤1112?”.6.运行如图所示的程序框图,若输出的y值的范围是[0,10],则输入的x值的范围是.答案 [-7,9]解析 该程序的功能是计算分段函数的值,y =⎩⎨⎧3-x ,x <-1,x 2,-1≤x ≤1,x +1,x >1.当x <-1时,由0≤3-x ≤10可得-7≤x <-1; 当-1≤x ≤1时,0≤x 2≤10恒成立; 当x >1时,由0≤x +1≤10可得1<x ≤9. 综上,输入的x 值的范围是[-7,9].题型一 算法的基本结构1.(优质试题·厦门质检)阅读如图所示的程序框图,运行相应的程序.若输入x 的值为1,则输出y 的值为( )A .2B .7C .8D .128 答案 C解析 由程序框图知,y =⎩⎨⎧2x,x ≥2,9-x ,x <2.∵输入x 的值为1,比2小,∴执行的程序要实现的功能为9-1=8,故输出y 的值为8.2.(优质试题·全国Ⅲ)执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2 答案 D解析 假设N =2,程序执行过程如下: t =1,M =100,S =0,1≤2,S =0+100=100,M =-10010=-10,t =2, 2≤2,S =100-10=90,M =--1010=1,t =3, 3>2,输出S =90<91.符合题意. ∴N =2成立.显然2是N 的最小值. 故选D.3.(优质试题·全国Ⅰ)执行下面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A.y=2x B.y=3x C.y=4x D.y=5x 答案 C解析执行题中的程序框图,知第一次进入循环体:x=0+1-12=0,y=1×1=1,x2+y2<36;第二次执行循环体:n=1+1=2,x=0+2-12=12,y=2×1=2,x2+y2<36;第三次执行循环体:n=2+1=3,x=12+3-12=32,y=3×2=6,满足x2+y2≥36,故退出循环,输出x=32,y=6,满足y=4x,故选C.思维升华(1)高考对算法初步的考查主要是对程序框图含义的理解与运用,重点应放在读懂框图上,尤其是条件结构、循环结构.特别要注意条件结构的条件,对于循环结构要搞清进入或退出循环的条件、循环的次数,是解题的关键.(2)解决程序框图问题要注意几个常用变量:①计数变量:用来记录某个事件发生的次数,如i=i+1.②累加变量:用来计算数据之和,如S=S+i.③累乘变量:用来计算数据之积,如p=p×i.题型二程序框图的识别与完善命题点1由程序框图求输出结果典例(1)(优质试题·全国Ⅱ)执行如图所示的程序框图,如果输入的a=-1,则输出的S等于()A.2 B.3 C.4 D.5答案 B解析当K=1时,S=0+(-1)×1=-1,a=1,执行K=K+1后,K=2;当K=2时,S=-1+1×2=1,a=-1,执行K=K+1后,K=3;当K=3时,S=1+(-1)×3=-2,a=1,执行K=K+1后,K=4;当K=4时,S=-2+1×4=2,a=-1,执行K=K+1后,K=5;当K=5时,S=2+(-1)×5=-3,a=1,执行K=K+1后,K=6;当K=6时,S=-3+1×6=3,执行K=K+1后,K=7>6,输出S=3.结束循环.故选B.(2)(优质试题·山东)执行两次如图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为()。
算法与程序框图

算法与程序框图1.算法与程序框图(1)算法①算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.②应用:算法通常可以编成计算机程序,让计算机执行并解决问题.(2)程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构及相应语句判断正误(正确的打“√”,错误的打“×”)(1)一个程序框图一定包含顺序结构,但不一定包含条件结构和循环结构.() (2)条件结构的出口有两个,但在执行时,只有一个出口是有效的.( ) (3)输入框只能紧接开始框,输出框只能紧接结束框.( ) (4)输入语句可以同时给多个变量赋值.( ) (5)在算法语句中,x =x +1是错误的.( ) 答案:(1)√ (2)√ (3)× (4)√ (5)×(优质试题·高考北京卷)执行如图所示的程序框图,输出的s 值为( )A .2 B.32 C.53D.85解析:选C.运行该程序,k =0,s =1,k <3; k =0+1=1,s =1+11=2,k <3;k =1+1=2,s =2+12=32,k <3;k =1+2=3,s =32+132=53,k =3.输出的s 值为53.故选C.要计算1+12+13+…+12 017的结果,下面程序框图中的判断框内可以填( )A .n <2 017?B .n ≤2 017?C .n >2 017?D .n ≥2 017?解析:选B.题中所给的程序框图中的循环结构为当型循环,累加变量初始值为0,计数变量初始值为1,要求S =0+1+12+13+…+12 017的值,共需要计算2 017次,故选B.(优质试题·高考江苏卷改编)如图是一个算法流程图,若输入x 的值为116,则输出y 的值是________________.解析:由流程图可得y =⎩⎪⎨⎪⎧2x ,x ≥1,2+log 2x ,0<x <1,所以当输入的x 的值为116时,y =2+log 2116=2-4=-2. 答案:-2如图所示的框图,已知集合A ={x |框图中输出的x 值},集合B ={y |框图中输出的y 值},全集U =Z ,Z 为整数集,则当x =-1时,(∁U A )∩B =________.解析:依题意得,当x =-1时,A ={0,1,2,3,4,5,6},B ={-3,-1,1,3,5,7,9},(∁U A )∩B ={-3,-1,7,9}. 答案:{-3,-1,7,9}顺序结构与条件结构[典例引领]执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【解析】 由程序框图得分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上函数的值域为[-3,4],即输出的s 属于[-3,4]. 【答案】 A1.若本例的判断框中的条件改为“t ≥1?”,则输出的s 的范围是________.解析:由程序框图得分段函数s =⎩⎪⎨⎪⎧3t ,t ≥1,4t -t 2,t <1.所以当1≤t ≤3时,s =3t ∈[3,9],当-1≤t <1时,s =4t -t 2=-(t -2)2+4,所以此时-5≤s <3.综上函数的值域为[-5,9],即输出的s 属于[-5,9]. 答案:[-5,9]2.本例框图不变,若输出s 的值为3,求输入的t 的值.解:由本例解析知s =⎩⎪⎨⎪⎧3t ,t <14t -t 2,t ≥1, 则3t =3,所以t =1(舍), 4t -t 2=3,所以t =1或3.应用顺序结构和条件结构的注意点(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)条件结构利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一图框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.[提醒] 条件结构的运用与数学的分类讨论有关.设计算法时,哪一步要分类讨论,哪一步就需要用条件结构.[通关练习]1.阅读如图所示的程序框图,若输入x 为3,则输出的y 的值为( )A .24B .25C .30D .40解析:选D.a =32-1=8,b =8-3=5,y =8×5=40.2.给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是( )A .1B .2C .3D .4解析:选C.由程序框图知y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5,由已知得⎩⎪⎨⎪⎧x ≤2,x 2=x 或⎩⎪⎨⎪⎧2<x ≤5,2x -3=x 或⎩⎪⎨⎪⎧x >5,1x=x .解得x =0或x =1或x =3, 这样的x 值的个数是3.循环结构(高频考点)循环结构是高考命题的一个热点问题,多以选择题、填空题的形式呈现,试题难度不大,多为容易题或中档题.高考对循环结构的考查主要有以下三个命题角度: (1)由程序框图求输出的结果或输入的值; (2)完善程序框图; (3)辨析程序框图的功能.[典例引领]角度一 由程序框图求输出的结果或输入的值(1)(优质试题·高考全国卷Ⅱ)执行如图的程序框图,如果输入的a =-1,则输出的S=( )A .2B .3C .4D .5(2)(优质试题·高考全国卷Ⅲ)执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5 B.4C.3 D.2【解析】(1)运行程序框图,a=-1,S=0,K=1,K≤6成立;S=0+(-1)×1=-1,a =1,K=2,K≤6成立;S=-1+1×2=1,a=-1,K=3,K≤6成立;S=1+(-1)×3=-2,a=1,K=4,K≤6成立;S=-2+1×4=2,a=-1,K=5,K≤6成立;S=2+(-1)×5=-3,a=1,K=6,K≤6成立;S=-3+1×6=3,a=-1,K=7,K≤6不成立,输出S=3.选择B.(2)S=0+100=100,M=-10,t=2,100>91;S=100-10=90,M=1,t=3,90<91,输出S,此时,t=3不满足t≤N,所以输入的正整数N的最小值为2,故选D.【答案】(1)B(2)D角度二完善程序框图(优质试题·高考全国卷Ⅰ)如图程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【解析】程序框图中A=3n-2n,故判断框中应填入A≤1 000,由于初始值n=0,要求满足A=3n-2n>1 000的最小偶数,故执行框中应填入n=n+2,选D.【答案】 D角度三辨析程序框图的功能如图所示的程序框图,该算法的功能是()A.计算(1+20)+(2+21)+(3+22)+…+(n+1+2n)的值B.计算(1+21)+(2+22)+(3+23)+…+(n+2n)的值C.计算(1+2+3+…+n)+(20+21+22+…+2n-1)的值D.计算[1+2+3+…+(n-1)]+(20+21+22+…+2n)的值【解析】初始值k=1,S=0,第1次进入循环体时,S=1+20,k=2;当第2次进入循环体时,S=1+20+2+21,k=3,…;给定正整数n,当k=n时,最后一次进入循环体,则有S=1+20+2+21+…+n+2n-1,k=n+1,终止循环体,输出S=(1+2+3+…+n)+(20+21+22+…+2n-1),故选C.【答案】 C与循环结构有关问题的常见类型及解题策略(1)已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.(2)完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.[提醒](1)注意区分当型循环和直到型循环.(2)循环结构中要正确控制循环次数.(3)要注意各个框的顺序.[通关练习]1.(优质试题·高考天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A .0B .1C .2D .3解析:选C.第一次循环,24能被3整除,N =243=8>3;第二次循环,8不能被3整除,N=8-1=7>3;第三次循环,7不能被3整除,N =7-1=6>3;第四次循环,6能被3整除,N =63=2<3,结束循环,故输出N 的值为2.选择C.2.(优质试题·宝鸡市质量检测(一)) 阅读如图所示的程序框图,运行相应的程序.若输入x 的值为1,则输出S 的值为( ) A .64 B .73 C .512D .585解析:选B.程序框图执行过程如下:x =1,S =0,S =1,S <50⇒x =2,S =9,S <50⇒x =4,S =73>50,跳出循环,输出S =73.3.(优质试题·广东省五校协作体联考)已知函数f (x )=ax 3+12x 2在x =-1处取得极大值,记g (x )=1f ′(x ).执行如图所示的程序框图,若输出的结果S >2 0162 017,则判断框中可以填入的关于n 的判断条件是( )A .n ≤2 016?B .n ≤2 017?C .n >2 016?D .n >2 017?解析:选 B.f ′(x )=3ax 2+x ,则f ′(-1)=3a -1=0,解得a =13,g (x )=1f ′(x )=1x 2+x =1x (x +1)=1x -1x +1,g (n )=1n -1n +1,则S =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,因为输出的结果S >2 0162 017,分析可知判断框中可以填入的判断条件是“n ≤2 017?”,选B.基本算法语句[典例引领](1)设计一个计算1×3×5×7×9×11×13的算法,下面给出了程序的一部分,则在①处不能填入的数是( )A .13B .13.5C .14D .14.5(2)表示函数y =f (x )的程序如图所示则关于函数y =f (x )有下列结论:。
知识讲解_高考总复习:算法与程序框图

高考总复习:算法与程序框图【考纲要求】1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想;(2)理解程序框图的三种基本逻辑结构:顺序、条件、循环。
2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。
【知识网络】【考点梳理】考点一、算法1.算法的概念(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。
(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。
2.算法的特征:①指向性:能解决某一个或某一类问题;②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.④构造性:一个问题可以构造多个算法,算法有优劣之分。
3.算法的表示方法:(1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义;(2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。
要点诠释:泛泛地谈算法是没有意义的,算法一定以问题为载体。
考点二:程序框图1. 程序框图的概念:程序框图又称流程图,是最常用的一种表示法,它是描述计算机一步一步完成任务的图表,直观地描述程序执行的控制流程,最便于初学者掌握。
2.程序框图常用符号:连接点用于连接另一页或另一部分的框图注释框框中内容是对某部分流程图做的解释说明3.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框图外,大多数框图符号只有一个进入点和一个退出点。
1.1 算法与程序框图

必修(3) 第一章 算法初步1.1 算法与程序框图第一课时 算法的概念一、知识点回顾与讲解1、算法的概念现代意义上的算法,是指可以用计算机来解决某一类问题的程序或步骤,这些程序必须是明确的和有效的,并且能够在有限步之内完成。
此概念明确指出解决某一类问题的程序或步骤往往是相同的,亦即它们的算法可以是相同的,但是我们要知道每一个问题的算法并不是唯一的,可能有很多个,并且这些算法有优劣之分。
2、算法的特征对于某一个问题,找到了它的某种算法是指使用一系列运算规则能在有限步骤内求解某类问题,其中的每条规则必须是明确定义的、可行的,不能含糊其辞,模棱两可,同时应对所有的初始数据(而不仅是某些特殊数值)有效。
正确理解算法的含义,可将算法的特征归纳如下:(1)确定性 算法中的每一个步骤都应是明确的,而不应当模棱两可。
例如,进行四则运算时,“先乘除后加减,有括号的先算括号里面的”,这里的规则就是反常明确的。
(2)有效性 算法中的每一步骤都应当能有效地执行,并得到确定的结果。
例如,若0b =,则执行ab就是无效的。
(3)有限性 一个算法的运算步骤应当是有限的,也就是说,一个算法在执行有限个步骤后,必须结束,即算法应在合理的范围之内。
例如,让计算机执行一个算法需耗时500年,这个算法虽是有限的,但超过了合理的限度,因而它不是一个有效的算法,这里的度,一般由计算机的性能和人们的需要而定。
(4)顺序性 每一个算法从初始步骤开始,都可以分为若干个明确的小步骤,但前一步总是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只能有一个确定的后续。
(5)不唯一性 求解某一个或某一类问题的算法不一定是唯一的,对于同一个或一类问题可以有不同的算法。
例如,求一元二次方程的根就有公式法、消元法等算法。
二、典型例题讲解问题一:正确理解算法的概念和特征 例1、(1)看下面的四段话,其中不是解决问题的算法的是( ) A 、从济南到北京旅游,先坐火车,再坐飞机抵达B 、解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C 、方程210x -=有两个实根D 、求12345++++的值,先计算123+=,再由于336,6410,10515+=+=+=,最终结果为15(2)下面结论中正确的是( ) A 、一个程序的算法步骤是可逆的B 、一个算法可以无止境地进行下去C 、完成一件事的算法有且只有一种D 、设计算法要本着简单方便的原则(3)下列关于算法的描述中正确的是( ) A 、只有数学问题才会有算法B 、算法过程要一步一步执行,每一步都是明确的C 、有的算法可能无结果D 、一个算法执行了一年后才有结果问题二:算法设计(1)解方程或解方程组问题的算法设计例2、(1)写出解方程2560x x -+=的一个算法。
学而思高中题库完整版程序框图与算法.板块一.算法的含义与描述.学生版

题型一:算法的含义 【例1】 下面对算法描述正确的一项是( )A .算法只能用自然语言来描述B .算法只能用图形方式来表示C .同一问题可以有不同的算法D .同一问题的算法不同,结果必然不同【例2】 关于算法的说法中,正确的是( )A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止【例3】 下面四种叙述能称为算法的是( )A .在家里一般是妈妈做饭B .做米饭要需要刷锅.添水.加热这些步骤C .在野外做饭叫野炊D .做饭必需要有米【例4】 下面的结论正确的是( )A .一个程序算法步骤是可逆的B .一个算法可以无止境的运算下去C .完成一件事的算法有且只有一种D .设计算法要本着简单方便的原则【例5】 算法的有穷性是指( )A .算法最后包含输出B .算法的每个操作步骤都是可执行的C .算法的步骤必须有限D .以上都不正确【例6】 指出下列哪一个不是算法 ( )A .解方程260x -=的过程是移项和系数化为1B .从济南到温哥华需要先乘火车到北京,再从北京乘飞机到温哥华C .解方程2210x x +-=D .利用公式2πS r =,计算半径为3的圆的面积为2π3⨯【例7】 看下面的四段话,其中不是解决问题的算法的是( )A .从济南到北京旅游,先坐火车,再坐飞机抵达B .解一元一次方程的步骤是去分母.去括号.移项.合并同类项.系数化为1C .方程210x -=有两个实根D .求12345++++的值,先计算123+=,再由于336+=,6410+=,10515+=,最终结典例分析板块一.算法的含义与描述果为15【例8】不能描述算法的是()A.流程图B.伪代码C.数据库D.自然语言【例9】早上从起床到出门需要洗脸刷牙(5min).刷水壶(2min).烧水(8min).泡面(3min).吃饭(10min).听广播(8min)几个步骤,下列选项中最好的一种算法为()A.s1洗脸刷牙s2刷水壶s3烧水s4泡面s5吃饭s6听广播B.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭s5听广播C.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭的同时听广播D.s1吃饭的同时听广播s2泡面s3烧水的同时洗脸刷牙s4刷水壶【例10】已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算22=+;②输入直角三角形两直角边长a,b的值;c a b③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③题型二:算法分析(自然语言与数学语言)【例11】算法:S1 输入nS2 判断n是否是2,若2n>,则执行S3n=,则n满足条件,若2S3 依次从2到1n-检验能不能整除n,若不能整除n,满足上述条件的是()A.质数B.奇数C.偶数D.约数【例12】“鸡兔同笼“是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何.用方程组的思想不难解决这一问题,请你设计一个这类问题的通用算法.【例13】某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼.羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜,设计安全过河的算法.【例14】人鬼过河现在河的岸边有三个人和三个鬼,河上只有一条小船,船上最多能坐两个“人”,在河的任何一边,当鬼的个数比人多时,鬼就会吃掉人.请问如何才能使人和鬼都平安的到达对岸.【例15】现在有三个油瓶,分别能装8kg.5kg.3kg的油,当8kg的瓶子装满油时,设计一个用这三个瓶子倒油的算法,怎样倒能使这些油被平分到两个瓶子里.(注:没有其它瓶子)【例16】设计一个算法求解方程组37 4513 x yx y+=⎧⎨+=⎩【例17】用二分法设计一个求方程220x-=的近似根的算法.【例18】分别用自然语言.数学语言写出对任意四个整数a.b.c.d,求出最小值的算法.【例19】某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下:S1 输入订单数额x(单位:件);输入单价A(单位:元);S2 若250x<,则折扣率0d=;若250500x<≤,则折扣率0.05d=;若5001000x<≤,则折扣率0.10d=;若1000x≥,则折扣率0.15d=;S3 计算应付货款()1T Ax d=-(单位:元);S4 输出应付货款T.已知一客户买400件时付款38000元,则应付货款为88200元时订单数额是.题型三:算法的三种基本逻辑结构与程序框图【例20】流程图中表示判断框的是()A.矩形框B.菱形框C.圆形框D.椭圆形框【例21】框图与算法相比,下列判断正确的是()A.程序框图将算法的基本逻辑展现得很清楚B.算法使用自然语言描述解决问题的步骤,程序框图使得这些步骤更为直观C.实质不变,形势变复杂了D.程序框图更接近于计算机理解【例22】尽管算法千差万别,程序框图按逻辑结构分类有()类A.2 B.3 C.4 D.5【例23】算法的三种基本结构是()A.顺序结构、选择结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构.D.流程结构、循环结构、分支结构【例24】下列关于框图的逻辑结构正确的是()A.用顺序结构画出电水壶烧开水的框图是唯一的B.条件结构中不含顺序结构C .条件结构中一定含有循环结构D .循环结构中一定含有条件结构【例25】 下面的问题中必须用条件结构才能实现的个数是( )(1)已知三角形三边长,求三角形的面积;(2)求方程0ax b +=(,a b 为常数)的根;(3)求三个实数,,a b c 中的最大者;(4)求123100++++L 的值.A .4个B .3个C .2个D .1个【例26】 已知函数()|3|f x x =-,以下程序框图表示的是给定x 值,求相应的函数值的算法,请将该程序框图补充完整.【例27】 写出下边程序框图的运行结果:否是输出ss=s+i i =i +2i <20s =0i =2结束开始【例28】 如图给出的是计算13599++++L 的一个程序框图,其中判断框内应填入的条件是( )i=i+2T = T + i否i = 1T= 0是输出T结束开始99i <.99i > C .100i < D .100i >【例29】 写出右边框图中的运算结果,____S =. a = 2b = 4S=ab +ba输出S结束开始【例30】 写出右面的程序框图所表示的函数.y =1+ x *xy = 2*x +4输出y结束否是x > 0输入x开始【例31】 如右图给出的是计算1112420+++L 的值的一个程序框图,其中判断框内应填入的条件是( ) i=i + 1结束输出S否是n=n +2S=S+1nS =0,i =1,n =2开始C .20i >D .20i <【例32】 如图是一个算法的程序框图,若该程序输出的结果为45,则判断框中应填入的条件是( ) A .4?T > B .4?T < C .3?T > D .3?T <S = S +1T ⋅ i T =T +1i =i+1S =0T =0i =1输出S 否是结束开始【例33】 按如图所示的程序框图运算,若输入6x =,则输出k 的值是( )A .3B .4C .5D .6结束输出k否是x >100?k =k +1x =2x +1k =0输入x开始【例34】 已知程序框图如图所示,则该程序框图的功能是( )A .求数列1n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈NB .求数列12n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈N C .求数列1n ⎧⎫⎨⎬的前11项和()n *∈N D .求数列12n ⎧⎫⎨⎬⎩⎭的前11项和()n *∈N 开始0S =2n =1k = 10k ≤ 输出S结束1S S n=+ 2n n =+1k k =+ 是否【例35】 阅读右面的程序框图,运行相应的程序,输出的结果为( )A .1321B .2113C .813D .138输出y x y = z x = yz<20z = x +yx =1, y =1否是结束开始【例36】 已知某程序框图如图所示,则执行该程序后输出的结果是( )第 7 题结束输出 ai = i +1否是a = 1- 1a i ≥ 2010a = 2 , j = 1开始A .1-B .1C .2D .12【例37】 已知程序框图如图所示,则执行该程序后输出的结果是_______________. 结束输出 ai = i +1否是a = 1- 1a i ≥ 20a = 2 , j = 1开始【例38】 如图,下程序框图的程序执行后输出的结果是 .S=S+nn=n+1n=1S=0n 10否是输出S 结束开始【例39】 右边程序框图的程序执行后输出的结果是 .n=n+2S=0n=1S=S+nn 50否是输出S 结束【例40】 执行如图程序框图,输出S 的值等于 .12题图否是输出Si <=4i=i + 1S =S + AA=A + iA=0,S=0,i=1结束开始【例41】 某程序框图如图所示,该程序运行后输出,M N 的值分别为 . 【例42】 在右边的程序框图中,若输出i 的值是4,则输入x 的取值范围是 .N Y 结束输出 ix > 82i = i +1x = 3x -2i = 0输入 x【例43】 在右面的程序框图中,若5x =,则输出i 的值是( )x > 109i = i + 1N Y输出i结束x = 3x -2i = 0输入x开始 A .2 B .3 C .4 D .5【例44】 执行如图所示的程序框图,输出的T 等于( )A .10B .15C .20D .30【例45】 在数列{}n a 中,11a =,1n n a a n -=+,2n ≥.为计算这个数列前10项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是( )A .8i ≥B .9i ≥C .10i ≥D .11i ≥【例46】 执行右图所示的程序框图,输出结果y 的值是_________. 否是结束输出yy = e x - 2x > 2x = xx = 16开始【例47】 按照如图的程序框图执行,若输出结果为15,则M 处条件为( ) C .16k < D .8k ≥【例48】 若某程序的框图如图,若输入的x 的值为12,则执行该程序后,输出的y 值为 . 开始S =0MS =S +k 2k k =⨯结束 输出S是 否k =1y=4xy=1y=x 2x < 1x > 1Y YNN 结束输出y输入x开始【例49】 某程序框图如图所示,该程序运行后,输出的x 值为31,则a 等于( )A .B .0C .1D .2x=1,x =an ≤4否是n=n+1x=2x+1输出x 结束开始【例50】 右面的程序框图,如果输入三个实数a .b .c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ) x c > C .c b > D .b c >x =cx =b输出xb >xx =a输入a , b , c否否是是结束开始【例51】 某地区为了了解70~80岁老人的日平均睡眠时间(单位:h ).随机选择了50位老人的进行调查.下表是这50位老人日睡眠时间的频率分布表.序号 (i ) 分组 (睡眠时间) 组中值 (i G ) 频数 (人数) 频率(i F )1 [4,5)4.5 6 0.12 2 [5,6)5.5 10 0.20 3 [6,7)6.5 20 0.40 4 [7,8)7.5 10 0.20 5 [8,9]8.5 4 0.08 S 的值是 .i i ≥ 5?S+G i ×F i S ,F iG i i i +110S N Y输出S输入结束开始【例52】 执行下边的程序框图,若0.8p =,则输出的n = .n =n +1S =S +12n S < p ?n =1, S =0输入 p输出m 否是结束开始【例53】 阅读如图的程序框图,若输入4m =,6n =,则输出a = ,i =(注:框图中的赋值符号“=”也可以写成“←”或“:=”)否i =i + 1输出a ,in 整除a ?a =m x ii = 1输入m ,n结束开始【例54】 执行右边的程序框图,输出的T = .输出TT = T+nn = n+2S =S+5S=0 ,T=0, n=0T > S 否是结束开始【例55】 阅读右面的程序框图,则输出的S =( )A .26B .35C .40D .57输出Si >5?i = i+1S=S+TT = 3i -1S =0 , i =1否是结束开始【例56】 随机抽取某产品n 件,测得其长度分别为12n a a a L ,,,.则如图所示的程序框图输出的s = ,s 表示的样本的数字特征是 . (注:框图中的赋值符号“=”也可以写成“←”“:=”)i =i +1S =(i -1)×S+a ii 否是开始结束输 出 Si ≤ n ? S=0, i=1输入 n ,a 1,a 2,...,a n【例57】 某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7k=k+1S=S+2SS <100?S=0k=0输出k否是结束开始【例58】 如果执行右边的程序框图,输入2x =-,0.5h =,那么输出的各个数的和等于( )D .4.5x ≥ 2输出 yx = x + hy = 1y = x y = 0x<1x < 0输入x, h否否否是是是结束开始【例59】 2010年上海世博会园区每天9:00开园,20:00停止入园.在右边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入 .开始T ←9,S ←0输出T ,S否是T ≤19T ←T +1输出a结束【例60】 阅读右边的程序框图,若输出s 的值为7-,则判断框内可填写( )A .3?i <B .4?i <C .5?i <D .6?i <否是结束输出 ss =s -ii =i +2s =2i =1开始【例61】 某程序框图如图所示,若输出的57S =,则判断框内为( ) B .5?k > C .6?k > D .7?k >否是结束输出SS =2S +kk =k +1S =1,k =1开始【例62】 如图所示,程序框图(算法流程图)的输出x =__ __.开始x =1x=x +1x 是奇数x=x +2x >8?输出x结束是否否【例63】 阅读右图所示的程序框图,运行相应的程序,输出的i 值等于( )A .2B .3C .4D .5结束输出i否是s>11?i=i+1s=s+aa =i ∙2at =1s =0开始【例64】 某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,分别为1,2,则输出的结果s 为 .开始输入 n,x 1,x 2,…x ns 1=0,s 2=0,i =1i ≤ n输出s结束i=i +1s =1i s 2-1i s 12()s 1=s 1+x i s 2=s 2+x i 2是否【例65】 如果执行右面的程序框图,输入正整数,n m ,满足n m ≥,那么输出的p 等于( )A .1C mn - B .1A m n - C .C m n D .A m n 开始输入 n,mk =1,p =1p=p (n-m+k )k<m 输出pk=k+1结束是否【例66】 如果执行下面的框图,输入5N =,则输出的数等于( )否是k =k +1结束输入Sk <NS =S +1k (k +1)k =1,S =0输入N开始 A .4 B .45 C .65 D .56【例67】 下面程序框图所表示的算法的功能是( )A .计算11112349++++L 的值B .计算11113549++++L 的值 C .计算11113599++++L 的值 D .计算11112399++++L 的值 第9题图否是结束输出Si=i+1n=n+2S=S+1n i>50S=0,n=1,i=1开始【例68】 右图是一个程序框图,其中判断框①处缺少一个判断条件,②为一输出框.⑴若在①处填空“2009n =”,请求出在输出框②处输出的y 的值; ⑵若在①处填空“2008②处输出的n 的值.是否否是结束②输入x=4,y=2,n=1x=x+3n=n+1①y=y+2x=4xn=n+1n 为偶数开始【例69】 程序program-3的任务为输入100个产品的内径尺寸数据,并找出其中的最值.该程序流程图如下,否是否否是是结束输出M1 , M2值i = i +1(2)(1)M2 < aM1 < a输入a 值i < 100M1= a , M2 = a , i = 1输入 a 值开始;(2)________.程序program-3执行完毕,M1,M2的输出值中是最大值的是______.【例70】 任意给定一个正数,设计一个算法求以这个数为半径的圆的周长,并画出程序框图.【例71】 半径为r 的圆面积计算公式为2πS r =,写出计算圆面积的算法,并画出框图.【例72】 画出计算123⨯⨯的程序框图.【例73】 分别用数学语言和程序框图写出计算13579++++的算法.【例74】 三角形的面积公式12S ah =,用算法描述求7.18.5a h ==,时的三角形面积, 并画出算法的程序框图.【例75】 设计一个算法计算ABC ∆的面积,并画出算法的程序框图.【例76】 画出求1220⨯⨯⨯L 的程序框图.【例77】 画出求123100++++L 的程序框图.【例78】 写出计算3333123100++++L 的值的一个程序框图.【例79】 写出求解一般的二元一次方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩的程序框图。
高中数学必修三第一章1.1算法与程序边框图

第一章1.1算法与程序边框图1.算法的概念(1)算法概念的理解①算法是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.②算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.③算法一方面具有具体化、程序化、机械化的特点,同时又有高度的抽象性、概括性、精确性,所以算法在解决问题中更具有条理性、逻辑性的特点.(2)算法的四个特征:概括性、逻辑性、有穷性、不唯一性①概括性:写出的算法必须能解决某一类问题,并且能够重复使用.②逻辑性:算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,而且每一步都是正确无误的,从而组成了一个有着很强逻辑性的步骤序列.③有穷性:算法有一个清晰的起始步,终止步是表示问题得到解答或指出问题没有解答,所有序列必须在有限个步骤之内完成,不能无停止地执行下去.④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法,当然这些算法有简繁之分、优劣之别.(3)常见的算法类型①数值性计算问题.如:解方程(或方程组)、解不等式(或不等式组)、利用公式求值、累加或累乘等问题,可通过相应的数学模型借助一般的数学计算方法,分解成清晰的步骤,使之条理化.②非数值性计算问题.如:判断、排序、变量变换等需先建立过程模型,再通过模型进行算法设计与描述.注意:(ⅰ)注意算法与解法的区别:算法是解决一类问题所需要的程序或步骤的统称;而解法是解决某一个具体问题的过程或步骤,是具体的解题过程.(ⅱ)设计算法时要尽量选取简捷、快速、高效的解决问题的算法.对一个具体的问题,我们要对解决问题的途径进行透彻的研究,找出最优算法,做到“先思考后处理”.2.程序框图(1)程序框图又称为流程图,是一种用程序框、流程线及文字说明来准确、直观地表示算法的图形.(2)用程序框图表示算法,具有直观、形象的特点,能更清楚地展现算法的逻辑结构.(3)程序框图主要由程序框和流程线组成.基本的程序框有终端框、输入框、输出框、处理框、判断框,其中终端框是任何流程图不可缺少的,而输入、输出可以用在算法中任何需要输入、输出的位置.(4)画程序框图的规则①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画;③终端框(起止框)是任何程序框图必不可缺少的,表示程序的开始和结束;④除判断框外,大多数程序框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;⑤程序框图符号框内的文字要简洁精炼.注意:(ⅰ)每一种程序框图的图形符号都有特定的含义,在画程序框图时不能混用,并且所用图形符号一定要标准规范,起始框只有一条流出线(没有流入线),终止框只有一条流入线(没有流出线),输入、输出框只有一条流入线和一条流出线,判断框有一条流入线和两条流出线.(ⅱ)如果一个程序框图由于纸面等原因需要分开画,要在断开处画上连接点,并标出连接的号码.(ⅲ)判断框是“是”与“否”两分支的判断,有且仅有两个结果.(ⅳ)一般地,画程序框图时,先用自然语言编写算法,然后再画程序框图.3.算法的三种基本结构(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的基本结构,其基本结构形式如图所示,其中A、B两框所指定的操作是依次执行的.顺序结构中所表达的逻辑关系是自然串行、上下连贯、线性排列的.(2)条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构.条件结构用于进行逻辑判断,并根据判断的结果进行不同的处理.条件结构必含判断框.条件结构的结构形式如图2所示,此结构中包含一个判断框,算法执行到此判断框给定的条件P时,根据条件P是否成立选择不同的执行框(A框或B框).注意:无论P是否成立,下一步只能执行A框或B框之一,不能A框和B框同时执行,也不能A、B两框都不执行,但A框和B框中可以有一个是空的,如图3.(3)循环结构:根据条件是否成立,以决定是否重复执行某些操作,在算法中要求重复执行同一操作的结构称为循环结构,重复执行的处理步骤称为循环体.根据执行情况及循环结束条件的不同可以分为当型循环(WHILE型)和直到型循环(UNTIL型).当型循环的特点是“先判断,后执行”,即先判断条件,当条件满足时,反复执行循环体,当条件不满足时退出循环(也就是说直到条件不满足时退出循环).如图4.直到型循环的特点是先执行一次循环体,再判断条件,当条件不满足时执行循环体,当条件满足时退出循环(即直到条件满足时退出循环),即“先执行,后判断”.如图5.当型循环可能一次也不执行循环体,而直到型循环至少要执行一次循环体.当型循环与直到型循环可以相互转化,条件互补.循环结构中常用的变量有计数变量、累加变量及累乘变量.计数变量用来记录某个事件发生的次数(即执行循环体的次数),累加变量用来计算数据之和,累乘变量用来计算数据之积.对于这些变量,开始一般要先赋初值,一般地,计数变量初值可设为0或1,累加变量初值设为0,累乘变量初值设为1.注意:(ⅰ)正确理解顺序结构的特点及适用条件是作出顺序结构图的关键.(ⅱ)画条件结构的程序框图要用到判断框,判断框有两个出口,根据不同的条件输出不同的信息,这些不同的信息必须全部写出.(ⅲ)只有有规律的,能重复进行的算法过程才能用循环结构.题型一算法设计写出能找出a 、b 、c 三个数中最小值的一个算法.解 第一步:输入a 、b 、c .并且假定min =a ;第二步:若b <min 成立,则用b 的值替换min ;否则直接执行下一步;第三步:若c <min 成立,则用c 的值替换min ,否则直接执行下一步;第四步:输出min 的值,结束.点评 本题的思路是:将min 定义为最小值,并把a 的值赋给min ,然后依次与b 、c 比较大小,遇到小的就替换min 的值,最后输出min 的值,这种方法可以推广到从多个不同的数中找出最大或最小的一个.题型二 条件结构的程序框图已知函数y =⎩⎪⎨⎪⎧ -1 (x >0),0 (x =0),1 (x <0).写出求该函数值的算法及程序框图.解 算法如下:第一步:输入x ;第二步:如果x >0,那么使y =-1,如果x =0,那么使y =0,如果x <0,那么使y =1; 第三步:输出函数值y .程序框图如图所示.点评 该函数是分段函数,当x 取不同范围内的值时,函数的表达式不同,因此当给出一个自变量x 的值时,也必须先判断x 的范围,然后确定利用哪一段的表达式求函数值,因为函数分了三段,所以判断框需要两个,即进行两次判断.求分段函数的函数值的程序框图,如果是分两段的函数只需引入一个判断框,如果是分三段的函数,至少需要引入两个判断框,分四段的函数要引入三个判断框,以此类推,至于判断框内的内容是没有顺序的,比如:本题中的两个判断框内的内容可以交换,但对应的下一图框中的内容或操作也必须相应地进行变化,比如本题的程序框图也可以画成如图1所示或如图2所示.图1图2题型三循环结构的程序框图看下面的问题:1+2+3+…+()>10 000,这个问题的答案不唯一,我们只要确定出满足条件的最小正整数n0,括号内填写的数只要大于或等于n0即可.试写出满足条件的最小正整数n0的算法并画出相应的程序框图.解算法如下:第一步:p=0;第二步:i=0;第三步:i=i+1;第四步:p=p+i;第五步:如果p>10 000,则输出i,算法结束.否则,执行第六步;第六步:回到第三步,重新执行第三步、第四步和第五步.该算法的程序框图如图所示.点评本题属于累加问题,代表了一类相邻两数的差为常数的求和问题的解法,需引入计数变量和累加变量,应用循环结构解决问题.在设计算法时前后两个加数相差1,则i=i +1,若相差2,则i=i+2,要灵活改变算法中的相应部分.另外需注意判断框内的条件的正确写出,直到型和当型循环条件不同,本题解法用的是直到型循环,用当型循环结构时判断框内条件应为p≤10 000.如图所示.题型四程序框图在生活中的应用72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出程序框图.解用条件分支结构来判断成绩是否高于80分,用循环结构控制输入的次数,同时引进两个累加变量,分别计算高于80分的成绩的总和和人数.程序框图如图所示.构和循环结构相结合的算法.【例1】如图所示是某一算法的程序框图,根据该框图指出这一算法的功能.错解 求S =12+14+16+…+110的值. 错解辨析 本题忽略了计数变量与循环次数,没有明确循环体在循环结构中的作用,以及循环终止条件决定是否继续执行循环体.正解 在该程序框图中,S 与n 为两个累加变量,k 为计数变量,所以该算法的功能是求12+14+16+…+120的值. 【例2】 试设计一个求1×2×3×4×…×n 的值的程序框图.错解 程序框图如图所示.错解辨析 本题程序框图看似当型循环结构,我们应当注意的是,当型循环结构是当条件满足时执行循环体,而本题显然是误解了当型循环结构条件.正解 程序框图如图所示.乘变量t和计数变量i,这里t与i每一次循环,它们的值都在改变.1.(海南、宁夏高考)如果执行下面的程序框图,那么输出的S为()A.2 450 B.2 500 C.2 550 D.2 652答案 C解析当k=1,S=0+2×1;当k=2,S=0+2×1+2×2;当k=3,S=0+2×1+2×2+2×3;…当k=50,S=0+2×1+2×2+2×3+…+2×50=2 550.2.(济宁模拟)在如图的程序框图中,输出结果是()A.5 B.6C.13 D.10答案 D解析a=5时,S=1+5=6;a=4时,S=6+4=10;a=3时,终止循环,输出S=10.3.(广东高考)阅读下图的程序框图.若输入m=4,n=6,则输出a=________,i=________.答案12 3解析输入m=4,n=6,则i=1时,a=m×i=4,n不能整除4;i=2时,a=m×i=8,n不能整除8;i=3时,a=m×i=12,6能整除12.∴a=12,i=3.一、选择题1.一个完整的程序框图至少包含()A.终端框和输入、输出框B.终端框和处理框C.终端框和判断框D.终端框、处理框和输入、输出框答案 A解析一个完整的程序框图至少需包括终端框和输入、输出框.2.下列关于条件结构的说法中正确的是()A.条件结构的程序框图有一个入口和两个出口B.无论条件结构中的条件是否满足,都只能执行两条路径之一C .条件结构中的两条路径可以同时执行D .对于一个算法来说,判断框中的条件是惟一的答案 B解析 由条件结构可知:根据所给条件是否成立,只能执行两条途径之一.3.下列问题的算法适宜用条件结构表示的是( )A .求点P (-1,3)到直线l :3x -2y +1=0的距离B .由直角三角形的两条直角边求斜边C .解不等式ax +b >0 (a ≠0)D .计算100个数的平均数答案 C解析 条件结构是处理逻辑判断并根据判断进行不同处理的结构.只有C 中含有判断a 的符号,其余选项都不含逻辑判断.4.下列程序框图表示的算法是( )A .输出c ,b ,aB .输出最大值C .输出最小值D .比较a ,b ,c 的大小答案 B解析 根据流程图可知,此图应表示求三个数中的最大数.5.用二分法求方程的近似根,精确度为δ,用直到型循环结构的终止条件是( )A .|x 1-x 2|>δB .|x 1-x 2|<δC .x 1<δ<x 2D .x 1=x 2=δ答案 B解析 直到型循环结构是先执行、再判断、再循环,是当条件满足时循环停止,因此用二分法求方程近似根时,用直到型循环结构的终止条件为|x 1-x 2|<δ.二、填空题6.下边的程序框图(如下图所示),能判断任意输入的整数x 是奇数或是偶数.其中判断框内的条件是________.答案 m =0?解析 根据程序框图中的处理框和输出的结果,寻找判断框内的条件.由于当判断框是正确时输出的是“x 是偶数”,而判断框前面的处理框是x 除以2的余数,因此判断框应填“m =0?”.7.下图是计算1+13+15+…+199的程序框图,判断框应填的内容是________,处理框应填的内容是________.答案 i ≤99? i =i +2解析 由题意知,该算法从i =1开始到99结束,循环变量依次加2.8.完成下面求1+2+3+…+10的值的算法:第一步,S =1.第二步,i =2.第三步,S =S +i .第四步,i =i +1.第五步,________________________________________________________________________. 第六步,输出S .答案 如果i =11,执行第六步;否则执行第三步解析 本题是用自然语言来描述的算法,实际上第五步是一个判断条件,根据题意,是循环是否终止的条件,因此应该为如果i =11,执行第六步;否则执行第三步.三、解答题9.画出求11×2+12×3+13×4+…+199×100的值的程序框图. 解 这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:10.写出解方程ax +b =0 (a 、b 为常数)的算法,并画出程序框图.解 算法如下:第一步,判断a 是否等于零,若a ≠0,执行第二步,若a =0,执行第三步;第二步,计算-b a ,输出“方程的解为-b a”; 第三步,判断b 是否等于零,若b =0,输出“有无数个解”的信息,若b ≠0,输出“方程无解”的信息.程序框图如图所示:探 究 驿 站11.画出求12+12+…+12(共6个2)的值的程序框图. 分析 本题看上去非常烦琐,尤其是对于2的位置处理,容易让人产生错觉.本题只要把含有2的式子分离开来,用A 代替12,即令A =12,则不难分析出分母可化为12+A的形式,且此结构重复出现.解 方法一 当型循环结构程序框图如图所示.方法二 直到型循环结构程序框图如图所示.12.给出以下10个数:5,9,80,43,95,73,28,17,60,36,要求把大于40的数找出来并输出.试画出该问题的程序框图.解程序框图如下图:趣味一题13.相传,古印度的舍罕王打算重赏国际象棋的发明者——宰相西萨·班·达依尔.于是,这位宰相跪在国王面前说:“陛下,请您在这张棋盘的第一个小格内,赏给我一粒麦子;在第二个小格内给两粒,第三格内给四粒,照这样下去,每一小格都比前一小格加一倍.陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人罢!”国王慷慨地答应了宰相的要求,他下令将一袋麦子拿到宝座前.计数麦粒的工作开始了.第一格内放一粒,第二格两粒,第三格四粒……还没到第二十格,袋子已经空了.一袋又一袋的麦子被扛到国王面前来,但是,麦粒数一格接一格地增长得那么迅速,很快就可以看出,即使拿来全印度的小麦,国王也无法兑现他对宰相许下的诺言!请你画出一个程序框图来求需要的麦粒数.分析由题意,我们可以看出第一格内放一粒,第二格两粒,第三格四粒,就是往后每一格是前一格的2倍,这样一共需要的麦粒数就是1+2+22+…+262+263.从而可以得出这是一个累加求和问题,可以利用循环结构来设计算法,计数变量i从1到64循环64次,每个求和的数可用一个累乘变量表示.解程序框图:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程序框图与算法.算法的含义与描述题型一:算法的含义【例1】下面对算法描述正确的一项是()A.算法只能用自然语言来描述 B.算法只能用图形方式来表示C.同一问题可以有不同的算法 D.同一问题的算法不同,结果必然不同【例2】关于算法的说法中,正确的是()A.算法就是某个问题的解题过程 B.算法执行后可以产生不确定的结果C.解决某类问题的算法不是唯一的 D.算法可以无限地操作下去不停止【例3】下面四种叙述能称为算法的是()A.在家里一般是妈妈做饭 B.做米饭要需要刷锅.添水.加热这些步骤C.在野外做饭叫野炊 D.做饭必需要有米【例4】下面的结论正确的是()A.一个程序算法步骤是可逆的 B.一个算法可以无止境的运算下去C.完成一件事的算法有且只有一种 D.设计算法要本着简单方便的原则【例5】算法的有穷性是指()A.算法最后包含输出 B.算法的每个操作步骤都是可执行的C.算法的步骤必须有限 D.以上都不正确【例6】指出下列哪一个不是算法()A.解方程260x-=的过程是移项和系数化为1B.从济南到温哥华需要先乘火车到北京,再从北京乘飞机到温哥华C.解方程2210+-=x xD.利用公式2⨯π3π=,计算半径为3的圆的面积为2S r【例7】看下面的四段话,其中不是解决问题的算法的是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母.去括号.移项.合并同类项.系数化为1C.方程210x-=有两个实根D.求12345+=,10515+=,最+=,再由于336+=,6410++++的值,先计算123终结果为15【例8】不能描述算法的是()A.流程图 B.伪代码 C.数据库 D.自然语言【例9】早上从起床到出门需要洗脸刷牙(5min).刷水壶(2min).烧水(8min).泡面(3min).吃饭(10min).听广播(8min)几个步骤,下列选项中最好的一种算法为()A.s1洗脸刷牙s2刷水壶s3烧水s4泡面s5吃饭s6听广播B.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭s5听广播C.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭的同时听广播D.s1吃饭的同时听广播s2泡面s3烧水的同时洗脸刷牙s4刷水壶【例10】已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c=a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③ B.②③① C.①③② D.②①③题型二:算法分析(自然语言与数学语言)【例11】算法:S1 输入nS2 判断n是否是2,若2n=,则n满足条件,若2n>,则执行S3S3 依次从2到1n-检验能不能整除n,若不能整除n,满足上述条件的是()A.质数 B.奇数 C.偶数 D.约数【例12】“鸡兔同笼“是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何.用方程组的思想不难解决这一问题,请你设计一个这类问题的通用算法.【例13】某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼.羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜,设计安全过河的算法.【例14】人鬼过河现在河的岸边有三个人和三个鬼,河上只有一条小船,船上最多能坐两个“人”,在河的任何一边,当鬼的个数比人多时,鬼就会吃掉人.请问如何才能使人和鬼都平安的到达对岸.【例15】现在有三个油瓶,分别能装8kg.5kg.3kg的油,当8kg的瓶子装满油时,设计一个用这三个瓶子倒油的算法,怎样倒能使这些油被平分到两个瓶子里.(注:没有其它瓶子)【例16】设计一个算法求解方程组37 4513 x yx y+=⎧⎨+=⎩【例17】用二分法设计一个求方程220x-=的近似根的算法.【例18】分别用自然语言.数学语言写出对任意四个整数a.b.c.d,求出最小值的算法.【例19】某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下:S1 输入订单数额x(单位:件);输入单价A(单位:元);S2 若250x<,则折扣率0d=;若250500x<≤,则折扣率0.05d=;若5001000x<≤,则折扣率0.10d=;若1000x≥,则折扣率0.15d=;S3 计算应付货款()1T Ax d=-(单位:元);S4 输出应付货款T.已知一客户买400件时付款38000元,则应付货款为88200元时订单数额是.题型三:算法的三种基本逻辑结构与程序框图【例20】流程图中表示判断框的是()A.矩形框 B.菱形框 C.圆形框 D.椭圆形框【例21】框图与算法相比,下列判断正确的是()A.程序框图将算法的基本逻辑展现得很清楚B.算法使用自然语言描述解决问题的步骤,程序框图使得这些步骤更为直观C.实质不变,形势变复杂了D.程序框图更接近于计算机理解【例22】尽管算法千差万别,程序框图按逻辑结构分类有()类A.2 B.3 C.4 D.5【例23】算法的三种基本结构是()A.顺序结构、选择结构、循环结构 B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构. D.流程结构、循环结构、分支结构【例24】下列关于框图的逻辑结构正确的是()A.用顺序结构画出电水壶烧开水的框图是唯一的 B.条件结构中不含顺序结构C.条件结构中一定含有循环结构 D.循环结构中一定含有条件结构【例25】下面的问题中必须用条件结构才能实现的个数是()(1)已知三角形三边长,求三角形的面积;(2)求方程0+=(,a b为常数)的根;ax b(3)求三个实数,,a b c中的最大者;(4)求123100++++的值.A.4个 B.3个 C.2个 D.1个【例26】已知函数()|3|=-,以下程序框图表示的是给定x值,求相应的函数值的算法,请f x x将该程序框图补充完整.【例27】写出下边程序框图的运行结果:【例28】如图给出的是计算13599++++的一个程序框图,其中判断框内应填入的条件是()A.99i>i< B.99i< D.100i> C.100【例29】写出右边框图中的运算结果,____S=.【例30】写出右面的程序框图所表示的函数.【例31】如右图给出的是计算1112420+++的值的一个程序框图,其中判断框内应填入的条件是()A10i>10i<C.20i>D.20i<【例32】如图是一个算法的程序框图,若该程序输出的结果为45,则判断框中应填入的条件是A .4?T >B .4?T <C .3?T >D .3?T <【例33】 按如图所示的程序框图运算,若输入6x =,则输出k 的值是( )A .3B .4C .5D .6【例34】 已知程序框图如图所示,则该程序框图的功能是( )A .求数列1n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈N B .求数列12n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈NC .求数列1n ⎧⎫⎨⎬⎩⎭的前11项和()n *∈N D .求数列12n ⎧⎫⎨⎬⎩⎭的前11项和()n *∈N【例35】阅读右面的程序框图,运行相应的程序,输出的结果为()A.1321 B.2113C.813D.138【例36】已知某程序框图如图所示,则执行该程序后输出的结果是()第 7 题A.1- B.1 C.2 D.12【例37】已知程序框图如图所示,则执行该程序后输出的结果是_______________.【例38】如图,下程序框图的程序执行后输出的结果是.【例39】右边程序框图的程序执行后输出的结果是.n=n+2S=0n=1S=S+nn 50否是输出S 结束开始【例40】 执行如图程序框图,输出S 的值等于 .12题图否是输出Si <=4i=i + 1S =S + AA=A + iA=0,S=0,i=1结束开始【例41】 某程序框图如图所示,该程序运行后输出,M N 的值分别为 .【例42】 在右边的程序框图中,若输出i 的值是4,则输入x 的取值范围是 .【例43】 在右面的程序框图中,若5x =,则输出i 的值是( )A .2B .3C .4D .5【例44】 执行如图所示的程序框图,输出的T 等于( )A .10B .15C .20D .30【例45】 在数列{}n a 中,11a =,1n n a a n -=+,2n ≥.为计算这个数列前10项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是()A.8i≥i≥ D.11i≥ B.9i≥ C.10【例46】执行右图所示的程序框图,输出结果y的值是_________.【例47】按照如图的程序框图执行,若输出结果为15,则M处条件为()A.16k≥k< D.8k≥ B.8k< C.16【例48】 若某程序的框图如图,若输入的x 的值为12,则执行该程序后,输出的y 值【例49】 某程序框图如图所示,该程序运行后,输出的x 值为31,则a 等于( )A .1-B .0C .1D .2【例50】 右面的程序框图,如果输入三个实数a .b .c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( )A .c x >B .x c >C .c b >D .b c >【例51】某地区为了了解70~80岁老人的日平均睡眠时间(单位:h).随机选择了50位老人S的值是.【例52】执行下边的程序框图,若0.8p=,则输出的n=.【例53】阅读如图的程序框图,若输入4n=,则输出a=,i=m=,6(注:框图中的赋值符号“=”也可以写成“←”或“:=”)【例54】执行右边的程序框图,输出的T=.【例55】 阅读右面的程序框图,则输出的S =( ) A .26 B .35 C .40 D .57【例56】 随机抽取某产品n 件,测得其长度分别为12n a a a ,,,.则如图所示的程序框图输出的s = ,s 表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”)【例57】 某程序框图如图所示,该程序运行后输出的k 的值是( ) A .4 B .5 C .6 D .7【例58】如果执行右边的程序框图,输入2h=,那么输出的各个数的和等于()x=-,0.5A.3 B.3.5 C. 4 D.4.5【例59】2010年上海世博会园区每天9:00开园,20:00停止入园.在右边的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园框内应填入.【例60】阅读右边的程序框图,若输出s的值为7-,则判断框内可填写( )A.3?i<i< D.6?i< B.4?i< C.5?【例61】某程序框图如图所示,若输出的57S=,则判断框内为( ) A.4?k>k>D.7?k>C.6?k>B.5?【例62】如图所示,程序框图(算法流程图)的输出x=__ __.【例63】阅读右图所示的程序框图,运行相应的程序,输出的i值等于()A.2B.3C.4D.5【例64】 某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若x ,x ,分别为1,2,则输出的结果s 为 .【例65】 如果执行右面的程序框图,输入正整数,n m ,满足n m ≥,那么输出的p 等于( )A .1C m n -B .1A m n -C .C m nD .A mn【例66】 如果执行下面的框图,输入5N =,则输出的数等于( )A .4B .45C .65D .56【例67】 下面程序框图所表示的算法的功能是( )A .计算11112349++++的值B .计算11113549++++的值 C .计算11113599++++的值 D .计算11112399++++的值第9题图【例68】右图是一个程序框图,其中判断框①处缺少一个判断条件,②为一输出框.⑴若在①处填空“2009n=”,请求出在输出框②处输出的y的值;⑵若在①处填空“2008x>-”,请求出在输出框②处输出的n的值.24【例69】程序program-3的任务为输入100个产品的内径尺寸数据,并找出其中的最值.该程序流程图如下,________;(2)________.程序program-3执行完毕,M1,M2的输出值中是最大值的是______.【例70】 任意给定一个正数,设计一个算法求以这个数为半径的圆的周长,并画出程序框图.【例71】 半径为r 的圆面积计算公式为2πS r =,写出计算圆面积的算法,并画出框图.【例72】 画出计算123⨯⨯的程序框图.【例73】 分别用数学语言和程序框图写出计算13579++++的算法.【例74】 三角形的面积公式12S ah =,用算法描述求7.18.5a h ==,时的三角形面积, 并画出算法的程序框图.【例75】 设计一个算法计算ABC ∆的面积,并画出算法的程序框图.【例76】 画出求1220⨯⨯⨯的程序框图.【例77】 画出求123100++++的程序框图.【例78】 写出计算3333123100++++的值的一个程序框图.【例79】 写出求解一般的二元一次方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩的程序框图。