nanoPhotonics 3
Surface Plasmon Polaritons在Coaxial Apertures中的调节说明

2nd International Workshop on Materials Engineering and Computer Sciences (IWMECS 2015)Tuning surface plasmon polaritons in coaxial aperturesLinjuan Yang1, Tao Liu2, Jiangtao Lv1, Guangyuan Si1, a, 1College of Information Science and Engineering, Northeastern University, 110819, China 2PetroChina Pipeline QHD Oil & Gas Transportation Sub-Company, 066000, Chinaa email:***********************Keywords: surface plasmon polaritons; tuning; nanophotonic devicesAbstract. Tuning of surface plasmons is important for developing nanophotonic devices. Coaxial apertures are emerging candidates for manipulating surface plasmon polaritons in the visible range. In this work, we show fine tuning of plasmons in coaxial nanoapertures. Since high transmittance can be achieved through coaxial apertures, it is useful to combine the optical response with other novel optical materials, leading to great potential for display techniques and filtering devices. IntroductionMetamaterial (also known as the left handed material) was first proposed by Veselago[1] in 1968 and after that various useful applications triggered by metamaterials and surface plasmon polaritons (SPPs) such as superlensing[2], cloaking[3], perfect absorbing[4] have been thoroughly investigated and many devices with fascinating optical properties have been experimentally demonstrated. In addition, many other plasmonic nanocomponents have also been shown ranging from waveguiding to sensing thanks to the unique capability of SPPs. The main limitation of SPPs based on noble metals refers to the high energy loss. However[5], SPPs can be manipulated in different ways since the SPP modes of a nanostructure rest with its composition, scale and shape. Recently, coaxial aperture based nanorings have drawn increasing attention and interest due to their great potential in color filtering and generating negative refractive index in a wide frequency range[6]. Varying geometries have also been reported[7]. Further tuning of SPPs can be simply realized by finely controlling the structural parameters. Dynamic manipulation can also be achieved by employing materials with electro-optic effects such as lithium niobate and liquid crystals.In this work, we investigate the gap plasmons in coaxial apertures in an optically thick metal film. Using finite-difference time-domain (FDTD) calculations, we found that it is feasible to manipulate the gap plasmons in coaxial apertures by precisely controlling the geometric parameters such as the gap width, periodicity and depth of the nano-apertures.FabricationFigure 1 is the schematic illustration of the coaxial apertures under investigation in this work with all critical parameters labeled. Here, ra and rb are the inner and outer radius of the coaxial nanorings and g and p denote the gap width and the periodicity, respectively. One should note that during the discussion of the hybrid plasmon effects in these coaxial apertures, it is simplified to consider the gap plasmon effect only by fixing the periodicity at a constant value because the periodical plasmon effect can be suppressed to some extent. Typically, a 2D coaxial aperture array has two main resonances in the transmittance spectrum. One is caused by cylindrical surface plasmons and the other one is referred to planar surface plasmons. The former is mainly influenced by the structural parameters of the aperture, while the latter is highly dependent on the periodicity of the array.Fig.1. Schematic illustration of the coaxial apertures under investigation in this work.Results and discussionIt is well-known that the transmittance through such coaxial apertures is due to the excitation of a guided mode inside them. This mode is the TE11-like mode that can be compared to the TE11 mode of a coaxial waveguide made in a perfect conductor. For 1D nanoslit configurations, transmittance resonance only happens for TM polarized light because no resonant effects can be observed under TE polarization. However, plasmonic coaxial nanostructures can support propagating modes due to the excitation of plasmons.Fig.2. Near field distribution for coaxial apertures with 80 nm depth. Top panel, top view. Bottompanel, cross-section view.Our initial thoughts about using nanoantennae to construct optical filters were triggered by our previous work about wavelength-selective color devices. Such optical components take advantage of the novel properties of plasmonics which are barely available by using any other traditional methods or dielectric structures. One typical relevant work of other researchers is using helium ions to create bow-tie antennae with ultrasmall gaps. We have tried to import the real images of the nanoantennae and compare the new simulation results with the old ones which were obtained by drawing the structures in the simulator. However, the new calculated field distribution is not as goodas expected. We believe this is because: 1. the antennae surface is assumed to be smooth, which is different from the real case (fabricated sample has a rough topography due to redeposition during milling); 2. the profile (sidewalls, for instance) of the antennae is assumed to be vertical during simulations, which is also different from the real structures (oblique sidewalls).Figure 3 demonstrates the calculated near field distributions of coaxial apertures with 160 nm depth. Selected transmission can be obtained through TE11 modes by engineering annular apertures with various geometrical designs. When the thickness of a metal film is fixed, different combinations of diameter values and gap sizes will generate different reflection phases through the annular aperture cavities, affecting the propagation mode inside the cavities and leading to selected transmission of certain modes. The gaps are not uniform in the simulations by importing the real structures because fabrication imperfections are almost inevitable in experiments. Therefore, the near-field distribution may be not as good as expected although the dimension parameters are the same with the real case.The position of the plasmonic resonance can be well controlled by varying the dielectric function of the surrounding medium. The angle dependency can be measured by using a protractor placed between the plane of the substrate and the normal direction (vertical to the substrate). Although it was not a very accurate measurement compared with any other commercial measurement equipment, it was sufficient to evaluate the incident angle and observe the filtering effect with different orientations. Further reshaping process can be carried out using milling due to its versatile functionality. One can tilt the sample and treat the nanostructures from different angles, enabling efficient processing methods which can further lead to varying useful devices. More detailed results will be reported elsewhere after a thorough study.(c)Fig.3.Near field distribution for coaxial apertures with 160 nm depth. Top panel, top view. Bottompanel, cross-section view.Theoretical results have confirmed that selected transmittance is the direct result of the TE11 mode inside the coaxial apertures. However, the second plasmonic mode is also observed in our design but it is not interesting for us because we are trying to avoid multi-transmission peaks which would disturb the purity of the output plasmon resonances obtained. One should also note that the good confinement of the intensity inside the cavities (between the inner and outer radii) is very important to guide different SPP modes and further adjust their properties, enabling new applications in photonics and optics.ConclusionIn summary, we have shown the near field distribution of coaxial apertures with different depths. Fine tuning of gap plasmons can be realized by controlling the geometric parameters of the coaxial apertures. Such nanoapertures are potentially useful for developing various devices in optics and nanophotonics since strong confinement of light in the gaps can be obtained.AcknowledgementThis work was supported by the Natural Science Foundation of Hebei Province (Grant Nos. H2015501133 and F2014501127), Science and Technology Research Funds for Higher Education of Hebei Province (Grant No. ZD20132011), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130042120048), Science and Technology Foundation of Liaoning Province (Grant No. 20131031), Science and Technology Research & Development Project Funds of Shenzhen (Grant No. JCYJ20120618142137681), and the National Natural Science Foundation of China (Grant Nos. 61405031and 31170956), the science and technology planning project of Hebei province (13273303D).References[1] X. X. Jiang, Q. C. Gu, F. W. Wang, J. T. Lv, Z. H. Ma, G. Y. Si, Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography, Mater. Lett., 100 (2013) 192-194.[2] W. L. Barnes, A. Dereux, T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (2003) 824-830.[3] Z. H. Huang, X. P. Wang, S. Y. Zhan, X. Liu, Contrast-enhancing polarization control method for surface plasmon imaging sensor, Opt. Eng., 51 (2012) 094402.[4] G. Y. Si,, Y. H. Zhao, H. Liu, S. Teo, M. S. Zhang, T. Huang, A. J. Danner, J. H. Teng, Annular aperture array based color filter, Appl. Phys. Lett., 99 (2011) 033105.[5]J. Francés, S. Bleda, M. Lázara Álvarez, F. Javier Martínez, A. Márquez, C. Neipp, A. Beléndez, Acceleration of split-field finite difference time-domain method for anisotropic media by means of graphics processing unit computing , Opt. Eng., 53 (2013) 011005.[6] G. Y. Si,, Y. H. Zhao, J. T. Lv, M. Q. Lu, F. W. Wang, H. L. Liu, N. Xiang, T. Huang, T. J. Danner, J. H. Teng, Y. J. Liu, Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays, Nanoscale, 5 (2013) 6243-6348.[7] G. Y. Si, A. J. Danner, S. Teo, E. Teo, J. H. Teng, A. A. Bettiol, Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling, J. Vac. Sci.Technol.B, 29 (2011) 021205-02109.。
NANOSCOPE IIID扫描探针显微镜使用说明

NANOSCOPE IIID扫描探针显微镜使用说明1.组装仪器按照各仪器部件从下到上的顺序组装,BASE→SCANNER→HEAD(注:BASE 上的数据线禁止热拔插,即开控制器前必须先将数据与BASE连接好,亦应先关控制器再拔掉BASE上的数据线。
)2.开机:先打开计算机、显示器、光源,然后打开控制器(注:必须先打开计算机再开控制器。
)3.装样&装探针4.调激光和四象限探测器(注:激光一定要调到悬臂梁尖端,否则探测器不能准确探测到针尖的位置,当针尖逼近样品表面时,很可能损坏针尖。
TAPPING MODE中VERT和HORZ 应调到0左右,而CONTACT MODE中VERT应调到-2左右,HORZ则调到0左右。
)5.启动软件,并选择相应模式(注:软件工作模式(TAPPING MODE OR CONTACT MODE)和扫描器(J OR E)要选择正确。
)6.找悬臂梁的共振峰(TUNE)7.初始化参数扫描TAPPING MODE应将INTEGRAL GAIN和PROPORTIONAL GAIN初始值分别设为0.5和0.7;SCAN RATE小于2HZ;扫描范围设为100nm;SCAN ANGLE设为0;Z LIMIT设为最大(6.138nm), CHANNEL 1中的DATA TYPE设置成HEIGHT。
8.进针9.优化扫描参数10.存图11.退针12.拆解仪器按照各仪器部件从上到下的顺序拆解仪器;HEAD→SCANNER→BASE,并装入想要干燥器中。
13.关机关闭控制器和光源,拔掉BASE上的数据线,然后再关计算器和显示器。
(注:BASE上的数据线禁止热拔插,即开控制器前必须先将数据线与BASE连接好,同理亦应先关控制器再拔掉BASE上的数据线。
)14.整理实验台并登记(注:登记使用机时,工作模式,针尖,异常情况等)。
3-疏丙基三甲氧基硅烷

3-疏丙基三甲氧基硅烷
3-疏丙基三甲氧基硅烷是一种有机硅化合物,化学式为
C10H24O3Si。
它是一种含有疏水性烷基和亲水性甲氧基的有
机硅化合物。
疏丙基(propyl)是指分子中含有三个碳原子的烷基基团,它
具有较长的碳链,可以提供分子的疏水性。
甲氧基(methoxy)是指分子中含有一个甲氧基(CH3O-)基团,它具有较短的碳链和氧原子,可以提供分子的亲水性。
通过将疏丙基基团和甲氧基基团连接到硅原子上,可以使3-
疏丙基三甲氧基硅烷同时具有疏水性和亲水性。
这种化合物在一些应用中可以用作表面活性剂、乳化剂、分散剂等。
它可以改善涂料、润滑剂和油墨的性能,同时也可以用于水处理、纸张和纺织品等领域。
三氧化氮的结构式

三氧化氮的结构式1. 介绍三氧化氮(Nitrogen Trioxide)是一种无机化合物,化学式为N2O3。
它是由两个氮原子和三个氧原子组成的分子,具有特殊的结构和性质。
三氧化氮在化学工业中具有重要的应用价值,同时也是大气污染物之一。
本文将从结构、性质、制备方法以及应用等方面对三氧化氮进行详细介绍。
2. 结构三氧化氮的结构式为N2O3,分子中包含两个氮原子和三个氧原子。
氮原子和氧原子通过共价键连接在一起,形成一个稳定的分子结构。
每个氮原子周围有一个孤对电子,而每个氧原子周围则有两个孤对电子。
这种结构使得三氧化氮具有一定的极性。
3. 性质3.1 物理性质三氧化氮是一种无色气体,具有刺激性的刺鼻味道。
它的密度较大,为1.447g/cm³。
三氧化氮在常温下为液体,沸点为3.5℃,熔点为-101.6℃。
它可以溶解在水中,生成亚硝酸。
三氧化氮是一种不稳定的化合物,容易分解为二氧化氮和一氧化氮。
3.2 化学性质三氧化氮在空气中容易分解,生成二氧化氮和一氧化氮。
它可以与水反应,生成亚硝酸和硝酸。
此外,三氧化氮还可以与一些有机化合物发生反应,产生亚硝基化合物。
4. 制备方法三氧化氮可以通过多种方法制备,以下是其中的两种常见方法:4.1 通过硝酸和亚硝酸反应制备将硝酸和亚硝酸混合,加热反应,生成三氧化氮和水。
反应方程式如下:2HNO3 + HNO2 → N2O3 + H2O4.2 通过氨和二氧化氮反应制备将氨气和二氧化氮混合,加热反应,生成三氧化氮和水。
反应方程式如下:4NH3 + 4NO2 → 2N2O3 + 6H2O5. 应用5.1 化学工业中的应用三氧化氮在化学工业中具有广泛的应用。
它可以用作氧化剂,用于氧化有机化合物。
此外,三氧化氮还可以用于制备硝酸和亚硝酸等化学品。
5.2 大气污染物三氧化氮是大气中的一种污染物,主要来源于汽车尾气和工业废气的排放。
它是一种强氧化剂,容易与大气中的氧气和水反应,生成有害的亚硝酸和硝酸。
对《Nanophotonics》第1版的介绍与评价

对《Nanophotonics》第1版的介绍与评价陆文强(南开大学物理科学学院博士、副教授)张立彬(南开大学外国教材中心副教授)由美国巴法罗大学化学系(Department of Chemistry,University at Buffalo)Paras N.Pradsd教授主编的《Nanophotonics》(纳米光子学)于2004年由John Wiley&Sons,Inc公司(Hoboken,New Jersey)出版,并在加拿大同时出版,全书共415页。
该书包含纳米光子学的基本原理和涉及纳米技术、光子学和生物学等集成的各种应用,是一本有宽范围概念的涉及多学科的基础参考资料。
书中每个章节从介绍本章要介绍给读者的内容简介开始,同时作为本书的特色,作者在每个章最有一节,概述了本章内容的重点。
本书涉及纳米光子学原理、近场相互作用及近场显微镜、光学特性尺寸相关的量子束缚材料、金属纳米结构、纳米材料和纳米粒子、纳米材料的各种制备和表征方法、纳米材料分子构建、光子晶体、纳米化合物、纳米印刷、纳米光子生物材料和对纳米光子学的市场前景展望等。
内容广泛、文字简洁、插图细致精美、深入浅出、通俗易懂。
涉及数学基础内容较少,需要很少的背景知识,对于这个领域的入门者,是快速学习和掌握纳米光子学基本原理及其应用的涉及多学科内容的优秀教材和参考书。
一、主编简介Paras N.Pradsd博士是美国巴法罗大学(University at Buffalo)的教授,美国纽约州立大学资深教授,是巴法罗大学激光、光子学、生物光子学研究所主任(该研究所是由来自巴法罗大学的文理学院,医学和生物医学科学学院,工程学院的医学教授、生物医学教授、物理学教授、化学教授、工程师等组成的多学科研究所),还担任巴法罗大学的Samuel P. Capen 主席。
Pradsd博士于1964年和1966年在印度比哈尔大学(Bihar University, India)分别获得学士和硕士学位,并于1971年在宾夕法尼亚大学获得博士学位,1971年至1974年在美国密歇根大学(University of Michigan)从事博士后研究工作。
纳米等离子体激光器研究进展

纳米等离子体激光器研究进展赵青;黄小平;林恩;焦蛟;梁高峰;陈涛【摘要】半导体激光器在生物技术、信息存储、光子医学诊疗等方面得到了广泛应用.随着纳米技术和纳米光子学的发展,紧凑微型化激光器应用前景引人关注.当激光器谐振腔尺寸减小到发射波长时,电磁谐振腔中将产生更为有趣的物理效应.因此,在发展低维、低泵浦阈值的超快相干光源,以及纳米光电集成和等离激元光路时,减小半导体激光器的三维尺寸至关重要.在本综述中,首先介绍了纳米等离子体激光器中的谐振腔模式增益和限制因子的总体理论,并综述了金属-绝缘材料-半导体纳米(MIS)结构或其它相关金属覆盖半导体结构的纳米等离子体激光器各方面的总体研究进展.特别地,对基于MIS结构的等离子体谐振腔实现纳米等离子体激光器三维衍射极限的突破,进行了详细的介绍.本文也介绍并展望了纳米等离子体激光器的技术挑战和发展趋势,为纳米激光器进一步研究提供参考.%Semiconductor lasers are widely used for applications in biology, information storage, photonics and medical therapeutics. With the development of the emerging area of nano-optics and nanophotonics, more compact lasers attract significant interest. As the cavity size is reduced with respect to the emission wavelength, interesting physical effects in electromagnetic cavities arise. To scale down the semiconductor lasers in all three dimensions plays an important role in the development of low-dimension, low-threshold, and ultrafast coherent light sources, aswell as integrated nano-opto electronic and plasmonic circuits. In this review, the overall formalism of mode gain and confinement factor in the metal–semiconductor plasmonic lasers was introduced firstly. In addition, an update doverview of the latestdevelopments, particularly in plasmonic nanolasers using the metal-insulator-semiconductor(MIS) configuration and another related metal-cladded semiconductor microlasers was presented. In particular, it hasbeen experimentally demonstrated that the use of plasmonic cavities based on MIS nanostructures can indeed breakthe diffraction limit in three dimensions. We also present some perspectives on the challenges and developmenttrend for the plasmonic nanolasers. This review can provide useful guide for the research of plasmonic nanolasers.【期刊名称】《光电工程》【年(卷),期】2017(044)002【总页数】12页(P140-151)【关键词】等离子体激光器;表面等离子体激元;微纳加工【作者】赵青;黄小平;林恩;焦蛟;梁高峰;陈涛【作者单位】电子科技大学物理电子学院,成都 610054;电子科技大学物理电子学院,成都 610054;电子科技大学物理电子学院,成都 610054;电子科技大学物理电子学院,成都 610054;电子科技大学物理电子学院,成都 610054;电子科技大学物理电子学院,成都 610054【正文语种】中文【中图分类】TN248自从上世纪60年代激光器发明以来,激光器和人类的其它发明一样,对人类的各个方面都产生了巨大影响。
纳米光子学.

27
纳米光子器件的全球市场
• 2004 年已达到4 .2亿 美元,每年以
85.8% 的速度增长,预料在 2009 年将 达到 93.3 亿 美元的市场规模。
From: BCC, Inc. "Nanotechnology for Photonics"
28
非常广阔的应用前景
• 超小型的纳米激光器在一系列领域中有着非常广 • •
固体电子学
(晶体管)
微电子学
(集成电路)
光 子 学
各种类型的激光器、 探测器
半导体激光器 微光子学
(光子集成器件)
10/11/2018
8
光子学的发展
•
• 1960年激光的发明 • 激光器(LASER)是电子学中微波量子放大器(MASER)
在波长上的延伸。 激光器的发明不仅提供了光频波段的相干电磁波振荡 源,而且对时至今日的无线电频率下的许多电子学的 概念、理论和技术原则上均可延伸到光频波段,如振 荡、放大、倍频、混频、参量、调制、信息处理、通 信、雷达以至计算机等 。
•
34
4.纳米纤维
5.纳米膜
Thank You!
谢谢 !
37
光子学(Photonics)
• 包含传统光学、现代光学、光电子学和微
光学在内的宽广领域统称为光子学。 • 特点:光子学是一门与电子学平行的科学。
光子学的发展
激光
半导体微加工技术
芯径几微米的石英光纤
集 成 光 , 微 米 尺 寸 器 件
光纤通信 光传感器 光显 光存 光照
21世纪被誉为光子世纪
计算机科学技术 光通讯 电子学和 微电子技术
32
3.纳米存储器和DNA开关
纳米光子学

29
21世纪初科技发展的总趋势
• 一个兴起:光子学与纳米科学与技术; • 二个焦点:
环境,பைடு நூலகம்源;
• 三个关注:
地球科学,海洋科学,空间科学;
• 四个支撑:
信息技术,材料技术,制造技术,生命科学技术
30
纳米光子学的未来应用:
磁存储
12
• 回顾电学和光学的发展历史,我们可以发现:
物理学的两个孪生分支——电学和光学,它们 的发展历程是相似的且又是相辅相成的。
• 光子学是研究光子与物质相互作用及其应用的
一门新兴学科
13
基础学科 电学
(18世纪开始) 电磁场理论
电子物理学
(20世纪开始) 电子管与电子线路理
论
光学
(18世纪开始) 基于自发辐射光源
静态随机存取存储器(SRAM)芯片。
Dr.Gordon E. Moore CMOS芯片制造工艺极限5nm---预计2017年制程达3nm
20
摩尔定律何时了
芯 片 集 成
• “任何指数函数一 度 旦外推到一定程度 10亿 都会遇到阻碍。
• ……我们不可能做得 更小了。”
• -----戈登·摩尔
2017年
-------
1
纳米光子学简介
• 学科的形成:
1.科学技术的进步,一种新的集成工艺;
• 学科的定义:
2.纳米光子学是研究在纳米尺度上光与物
质相互作用的一门学科。利用近场光学对纳米 器件进行设计制造和运用的技术 ,属于光子学 的分支。
内容分类:
1. 在纳米尺度上限制物质 2. 在纳米尺度上限制波的辐射 3. 在纳米尺度上的光学加工
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Strong Local Field
ed
em - - -+ + + - - - + + + - - -
SPR: Surface plasmons confined to
.H
metal/dielectric interface.
q
E(t)
局域表面等离子共振
+++
--+++
LSPR: Resonant scattering modes in sub-wavelength metallic nanoparticles
---
The surface plasmon results in (1) wavelength-selective extinction and (2) enhanced EM fields at the surface. Spectral location of the SPP is dependent upon particle size, shape, composition, and dielectric environment.
6
What is a Plasmon ?
the quantum of energy of some vibration or wave
声子
等离子体激元
激子
Surface Plasmon Polariton: plasmons confined to surface (interface) and interact with light resulting in polaritons. Figure: Schematic of plasmon oscillation for a sphere, showing the displacement of the conduction electron charge cloud relative to the nuclei. 7
Ez E
Hz H Ey
q1 e1 e2 q2 z z=0 y x
Hy
z=0 y x
Ex
Hx
q1 e1 e2 q2
z
9
p-polarized incident radiation will create polarization charges at the interface. We will show that these charges give rise to a surface plasmon modes
8
平面波的2种偏振态
p-polarization: E-field is parallel to the plane of incidence
s-polarization: E-field is perpendicular to the plane of incidence (German senkrecht = perpedicular)
kx
The surface plasmon mode always lie beyond the light line, that is it has greater momentum than a free photon of the same frequency .
kx
c
e1 e 2 e1 e 2
the propagation). They don’t match.
Surface plasmons are transverse, but they are mismatched to photons in their momentum. The two E(k) curves never cross. It is possible to provide the necessary momentum by a grating, which transmits the wavevector k = 2/d (d = line spacing) .
32
Single Nanoparticle Sensing – Proof of Concept
Wide-field Image
33
Surface-Enhanced Raman Scattering
1928 C.V. Raman discovers “Raman Effect” of inelastic scattering
solution for a surface plasmon mode: dielectric e1
E1z
E1 H1y E1x
ek z 1 z
z=0
y
x
e kz 2 z
z
metall e2
the solution satisfies Maxwell equation and the boundary conditions: condition imposed on k-vector
1974
Discovery of enhanced Raman signals (105-106) from molecules adsorbed on roughed Ag surfaces. Mechanism is attributed to enhanced surface area for adsorption.
Backward scattering (backscattering)
Forward scattering
22
23
Rayleigh and Mie Scattering
Non-directional Rayleigh scatter
Mie scatter
Directional
24
25
散射截面
Boundary condition: (a) transverse component of E is conserved,
(b) normal component of D is conserved
E1z
E1
z=0 y
H1y
x
E1x E2z H2y
E2 E2x
e1 e2
1
2
creation of the polarization charges
intensity
z=0 y
x
z metal e2 components of E-, H-fields:
wave propagating in x-direction
~e
i ( k x x t )
上下指数衰减 ~ z
e kz z
E = (Ex, 0, Ez); H = (0, Hy, 0)
11
480 1 1.2 1.4 Refractive Index 1.6
Blue = N2 (1.000), Green = Methanol (1.329), Red = 1-Propanol (1.385), Purple = Chloroform (1.446), Orange = Benzene (1.501)
• Interband transition (束缚电子)
4
6.1 金属的介电常数
• Polarization background of the ion cores
5
6.2 Plasmons 表面等离子波
Plasmons of gold nanoparticles in glass reflect green, transmit red.
ap 6 金属纳米粒子 Chap 11 金属介质纳米结构
2013.11.21
1
3.3 Dielectric function of free electron gas
F = ma
2
6.1 金属的介电常数
• 自由电子气 (导电中的电子) -谐振子模型
阻尼
Lorentz
3
6.1 金属的介电常数
if one of the materials is metal, the electrons will respond to this polarization. This will give rise to surface plasmon modes
10
z
详细解
dielectric e1
E1z E1 H1y E1x
20 mm
31
LSPR Dielectric Response
100
A
510.2
640 588.0 574.2 600.8 611.9 600 lmax (nm)
B
lmax = 203.1*RI + 306.5
80 Intensity
60
560
40
20
520
0 450 500 550 600 650 Wavelength (nm) 700
消光=吸收+散射
26
27
break
28
Noble Metal Nanoparticles
29
Localized Surface Plasmon Surface Plasmon Resonance (SPR) and Localized SPR (LSPR) in Metallic Nanostructures Resonance
Kretschmann-Raether geometry
Grating
' kx k x Gx
kx 0
' kx
2 Gx d
2 d
19
20
6.3 等效介电常数
21
6.4 Mie Scattering 散射
• Mie Scattering -- Absorption and Scattering by a sphere/cylinder -- Multipole expansion - electric dipole. - magnetic dipole, electric quadrupole. - magnetic quadrupole, electric octupole. • If d < λ/20 then only the first term (dipole) is needed. In this limiting case, Mie’s theory reduces to Rayleigh’s theory.