统计与概率11 (1)
小学六年级数学教案《统计与概率》

小学六年级数学教案《统计与概率》•相关推荐小学六年级数学教案《统计与概率》(通用11篇)作为一名无私奉献的老师,通常需要准备好一份教案,教案是教学蓝图,可以有效提高教学效率。
教案要怎么写呢?下面是小编为大家整理的小学六年级数学教案《统计与概率》,仅供参考,大家一起来看看吧。
小学六年级数学教案《统计与概率》篇1【教学内容】统计表。
【教学目标】使学生进一步认识统计的意义,进一步认识统计表,掌握整理数据、编制统计表的方法,学会进行简单统计。
【重点难点】让学生系统掌握统计的基础知识和基本技能。
【教学准备】多媒体课件。
【情景导入】1.揭示课题提问:在小学阶段,我们学过哪些统计知识?为什么要做统计工作?2.引入课题在日常生活和生产实践中,经常需要对一些数据进行分析、比较,这样就需要进行统计。
在进行统计时,又经常要用统计表、统计图,并且常常进行平均数的计算。
今天我们开始复习简单的统计,这节课先复习如何设计调查表,并进行调查统计。
【整理归纳】收集数据,制作统计表。
教师:我们班要和希望小学六(2)班建立“手拉手”班级,你想向“手拉手”的同学介绍哪些情况?学生可能回答:(1)身高、体重(2)姓名、性别(3)兴趣爱好【课堂作业】教材第96页例3。
【课堂小结】通过本节课的学习,你有什么收获?小学六年级数学教案《统计与概率》篇2教学内容:人教版六年级上册第109-110页“统计与概率”教学目标:1.会综合应用学过的统计知识,能从统计图中准确提取统计信息,能正确解释统计结果。
2.能根据统计图提供的信息,做出正确的判断或简单预测。
重、难点:重点:让学生系统掌握统计的基础知识和基本技能。
难点:能根据统计图提供的信息,做出正确的判断或简单预测。
一、创设情景,生成问题1、收集数据,制作统计表师:我们班要和希望小学六(2)班建立手拉手班级,你想向手拉手的同学介绍哪些情况?学生可能回答:(1)身高、体重(2)姓名、性别(3)兴趣爱好2、统计图(1)你学过几种统计图?分别叫什么统计图?各有什么特征?a、条形统计图(清楚表示各种数量多少)b、折线统计图(清楚表示数量的变化情况)c、扇形统计图(清楚表示各种数量的占有率)(设计意图:统计图在表述统计结果时具有直观、形象的特点,故统计活动中常用统计图来描述统计信息,展示统计结果。
2022年四川各地(成都德阳南充等)中考数学真题按知识点分类汇编 专题11 统计与概率(原卷版)

专题11 统计与概率1.(2022·成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56B.60C.63D.722.(2022·自贡)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是()A.平均数是14B.中位数是14.5C.方差3D.众数是143.(2022·泸州)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,344.(2022·德阳)在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,55.(2022·广元)如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是()A.平均数是6B.众数是7C.中位数是11D.方差是86.(2022·乐山)一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是()A.14B.13C.23D.347.(2022·乐山)李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为()A.88B.90C.91D.928.(2022·南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差9.(2022·眉山)中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是()A.7.5,7B.7.5,8C.8,7D.8,810.(2022·凉山)一组数据4、5、6、a、b的平均数为5,则a、b的平均数为()A.4B.5C.8D.1011.(2022·自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池;一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是____________鱼池(填甲或乙)12.(2022·德阳)学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制),某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是______分.13.(2022·广元)一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________.14.(2022·遂宁)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是__.15.(2022·南充)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是________.16.(2022·成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中x 的值为_________;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.17.(2022·自贡)为了解学生每周参加课外兴趣小组活动的累计时间t (单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按03t ≤<,34t ≤<,45t ≤<,5t ≥分为四个等级,分别用A、B、C、D表示;下图是受损的调查统计图,请根据图上残存信息解决以下问题:(1)求参与问卷调查的学生人数n,并将条形统计图补充完整;(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;(3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况,请用画树状图或列表法求这2人均属D等级的概率.18.(2022·泸州)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:a________;(1)m=________,=t≤≤范围的学生有多少人?(2)若该校学生有640人,试估计劳动时间在23t≤≤范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感(3)劳动时间在2.53受,求抽取的2名学生恰好是一名男生和一名女生的概率.19.(2022·德阳)据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.20.(2022·广元)为丰富学生课余活动,明德中学组建了A体育类、B美术类、C音乐类和D其它类四类学生活动社团,要求每人必须参加且只参加一类活动.学校随机抽取八年级(1)班全体学生进行调查,以了解学生参团情况.根据调查结果绘制了两幅不完整的统计图(如图所示).请结合统计图中的信息,解决下列问题:(1)八年级(1)班学生总人数是人,补全条形统计图,扇形统计图中区域C所对应的扇形的圆心角的度数为;(2)明德中学共有学生2500人,请估算该校参与体育类和美术类社团的学生总人数;(3)校园艺术节到了,学校将从符合条件的4名社团学生(男女各2名)中随机选择两名学生担任开幕式主持人,请用列表或画树状图的方法,求恰好选中1名男生和1名女生的概率.21.(2022·遂宁)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如下统计图(部分信息未给出).请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了______名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有______人;(2)补全条形统计图;(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.22.(2022·乐山)为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:A.文学鉴赏,B.越味数学,C.川行历史,D.航模科技.为了解该校八年级1000名学生对四门校本课程的选择意向,张老师做了以下工作:①抽取40名学生作为调查对象;①整理数据并绘制统计图;①收集40名学生对四门课程的选择意向的相关数据:①结合统计图分析数据并得出结论.(1)请对张老师的工作步骤正确排序______.(2)以上步骤中抽取40名学生最合适的方式是______.A.随机抽取八年级三班的40名学生B.随机抽取八年级40名男生C.随机抽取八年级40名女生D.随机抽取八年级40名学生(3)如图是张老师绘制的40名学生所选课后服务类型的条形统计图,假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过40人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.23.(2022·南充)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:a_______________,b=_______________.(1)=(2)扇形统计图中“B”项目所对应的扇形圆心角为_______________度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.24.(2022·眉山)北京冬奥组委会对志愿者开展培训活动,为了解某批次培训活动效果,随机抽取了20名志愿者的测试成绩.成绩如下:84 93 91 87 94 86 97 100 88 9492 91 82 89 87 92 98 92 93 88整理上面的数据,得到频数分布表和扇形统计图:请根据以上信息,解答下列问题:(1)C 等级的频数为________,B 所对应的扇形圆心角度数为________;(2)该批志愿者有1500名,若成绩不低于90分为优秀,请估计这批志愿者中成绩达到优秀等级的人数;(3)已知A 等级中有2名男志愿者,现从A 等级中随机抽取2名志愿者,试用列表或画树状图的方法求出恰好抽到一男一女的概率.25.(2022·达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100x ),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C 组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表八年级抽取的学生竞赛成绩扇形统计图根据以上信息,解答下列问题:a__________,b=__________,m=__________;(1)上述图表中=(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);x)的学生人数(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(95是多少?26.(2022·凉山)为丰富校园文化生活,发展学生的兴趣与特长,促进学生全面发展.某中学团委组建了各种兴趣社团,为鼓励每个学生都参与到社团活动中,学生可以根据自己的爱好从美术、演讲、声乐、舞蹈、书法中选择其中1个社团.某班班主任对该班学生参加社团的情况进行调查统计,并绘制成如下两幅不完整的统计图.请根据统计图提供的信息完成下列各题:(1)该班的总人数为人,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人参加美术社团,2人参加演讲社团,1人参加声乐社团如果该班班主任要从他们4人中任选2人作为学生会候选人,请利用树状图或列表法求选出的两人中恰好有1人参加美术社团、1人参加演讲社团的概率.。
统计与概率知识点

统计与概率知识点部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑统计与概率知识点一:统计1:简单随机抽样<1)总体和样本①在统计学中 , 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.b5E2RGbCAP④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.p1EanqFDPw<2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同<概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
DXDiTa9E3d<3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。
RTCrpUDGiT在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
<4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;5PCzVD7HxA③对样本中的每一个个体进行测量或调查<5)随机数表法:2:系统抽样<1)系统抽样<等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K<抽样距离)=N<总体规模)/n<样本规模)jLBHrnAILg前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
xHAQX74J0X<2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
概率论与数理统计第11讲

§3.1 多维随机变量及其分布
3
一, 二维随机变量 定义1 设随机试验的样本空间为S, e∈S为 样本点, 而 X=X(e), Y=Y(e) 是定义在S上的两个随机变量, 称(X,Y)为 定义在S上的二维随机变量或二维随机向 量. 注: 一般地, 称n个随机变量的整体 X=(X1,X2,…,Xn)为n维随机变量或n维随机 向量.
18
于是(X,Leabharlann )的分布律为Y 1 2 3 4 X 1 1/4 0 0 0 2 1/8 1/8 0 0 3 1/12 1/12 1/12 0 4 1/16 1/16 1/16 1/16
19
例2 把一枚均匀硬币抛掷三次, 设X为三 次抛掷中正面出现的次数, 而Y为正面出 现次数与反面出现次数之差的绝对值, 求 (X,Y)的概率分布及(X,Y)关于X,Y的边缘分 布. 解 (X,Y)可取值(0,3),(1,1),(2,1),(3,3) P{X=0,Y=3}=(1/2)3=1/8, P{X=1,Y=1}=3(1/2)3=3/8, P{X=2,Y=1}=3/8, P{X=3,Y=3}=1/8
j
p = P{ = Y y = j j}
j ∑ p ,=
ij i
1, 2, (1.8)
分别称pi•(i=1,2,…)和p•j(j=1,2,…)为(X,Y) 关于X和Y的边缘概率分布. 注: pi•和p•j分别等于联合概率分布表的行 和与列和.
17
例1 设随机变量X在1,2,3,4四个整数中等 可能地取一个值, 另一个随机变量Y在 1~X中等可能地取一整数值, 试求(X,Y)的 分布律. 解 由乘法公式容易求得(X,Y)的分布律, 易知{X=i,Y=j}的取值情况是:i=1,2,3,4, j 取不大于i的正整数, 且 P{ X = i, Y = j= } P{Y = j| X = i}P{ X = i} 11 = = , i 1, 2,3, 4, j ≤ i. i 4
S11《统计与概率》教学分析与实践(吴昌全)

2011版课标下《统计与概率》教学分析与实践武汉外国语学校吴昌全一、“统计与概率”的内容结构二、小学“统计与概率”的内容标准第一学段(1~3年级)1.能根据给定的标准或者自己选定的标准,对事物或数据进行分类,感受分类与分类标准的关系。
2.经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并能用自己的方式(文字、图画、表格等)呈现整理数据的结果。
3.通过对数据的简单分析,体会运用数据进行表达与交流的作用,感受数据蕴涵信息。
第二学段(4~6年级)(一)简单数据统计过程1.经历简单的收集、整理、描述和分析数据的过程(可使用计算器)。
2.会根据实际问题设计简单的调查表,能选择适当的方法(如调查、试验、测量)收集数据。
3.认识条形统计图、扇形统计图、折线统计图;能用条形统计图、折线统计图直观、有效地表示数据。
4.体会平均数的作用,能计算平均数,能用自己的语言解释其实际意义。
5.能从报纸杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表。
6.能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。
(二)随机现象发生的可能性1.结合具体情境,了解简单的随机现象;能列出简单的随机现象中所有可能发生的结果。
2.通过实验、游戏等活动,感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述,并和同学交流。
三、小学“统计与概率”的内容变化《数学课程标准(2011版)》对“统计与概率”这部分内容做了较大的调整:一方面将原来的“统计观念”改为“数据分析观念”,明确统计与概率教学的核心目标是“数据分析观念”,强调义务教育阶段统计与概率教学的关键在于使学生想到运用数据、愿意亲近数据,初步培养通过数据来分析问题的习惯,在活动中逐步提高对随机现象的把握能力;另一方面,重新梳理并整合了“统计与概率”的内容及教学要求,难度有所降低,容量有所减少,使得义务教育阶段各个学段的学习层次更加明确,从而有利于广大教师准确把握教学重点和关键。
统计和概率(全)(知识点习题与答案解析

统计与概率一、统计的基础知识1、统计调查的两种基本形式: 普查:对调查对象的全体进行调查;抽样调查:对调查对象的部分进行调查;总体:所要考察对象的全体;个体:总体中每一个考察的对象;样本:从总体中所抽取的一部分个体;样本容量:样本中个体的数目(不带单位);平均数:对于n 个数12,,,n x x x L ,我们把121()n x x x n+++L 叫做这n 个数的平均数; 中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数; 众数:一组数据中出现次数最多的那个数据; 方差:2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦L ,其中n 为样本容量,x 为样本平均数; 标准差:S ,即方差的算术平方根; 极差:一组数据中最大数据与最小数据的差称为这组数据的极差; 频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率; ★ 频数和频率的基本关系式:频率 = —————— 各小组频数的总和等于样本容量,各小组频率的总和等于1; 扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360°× 该部分占总体的百分比;会填写频数分布表,会补全频数分布直方图、频数折线图;频数 样本容量 各 基 础 统 计量频数的分布与应用 2、 3、二、概率的基础知识 必然事件:一定条件下必然会发生的事件;不可能事件:一定条件下必然不会发生的事件;2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件;3、概率:某件事情A发生的可能性称为这件事情的概率,记为P(A);P(必然事件)=1,P(不可能事件)=0,0<P (不确定事件)<1;★概率计算方法:P(A)= ————————————————例如注:对于两种情况时,需注意第二种情况可能发生的结果总数例:①袋子中有形状、大小相同的红球3个,白球2个,取出一个球后再取出一个球,求两个球都是白球的概率; P =110②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回..,再取出一个球,求两个球都是白球的概率;P =4251、确定事件 事件A 发生的可能结果总数 所有事件可能发生的结果总数运用列举法(常用树状图)计算简单事件发生的概率…………概率初步单元测评一、选择题1.下列事件是必然事件的是( )A.明天天气是多云转晴B.农历十五的晚上一定能看到圆月C.打开电视机,正在播放广告D.在同一月出生的32名学生,至少有两人的生日是同一天2.下列说法中正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列模拟掷硬币的实验不正确的是( )A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )A.B. C.D.5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A. B.C.D.6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )A.B. C.D.7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是( )A.B.C.D.8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是( ) A.B.C.D.9.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A.B.C.D.10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A.B.C.D.11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )A.B.C.D.12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A.B.C.D.二、填空题13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.三、解答题19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.20.一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:⑴列举(用列表或画树状图)所有可能得到的数字之积⑵求出数字之积为奇数的概率.22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:⑴用树状图表示出所有可能的寻宝情况;⑵求在寻宝游戏中胜出的概率.答案与解析一、选择题1.D2.C3.D4.A5.D6.D7.D8.A9.B 10.B 11.D 12.B二、填空题13.确定 14.;15.16.6; 17. 1818.三、解答题19.设口袋中有个白球,,口袋中大约有30个白球20.21.解:⑴用列表法来表示所有得到的数字之积⑵由上表可知,两数之积的情况有24种,所以P(数字之积为奇数)=.22.解:⑴树状图如下:⑵由⑴中的树状图可知:P(胜出)一、选择题1.下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪 2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A.28个 B.30个 C.36个 D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题图1图211.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______. 14.在4张小卡片上分别写有实数0,π,13,从中随机抽取一张卡片,抽到无理数的概率是________. 15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个. 18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么? 20.并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B.二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1 100.23.(1)P(偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16.24.根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图像上,所求概率是336=112,即点A在函数y=2x图像上的概率是112。
第十一章 概率与统计

第十一章 概率与统计两个计数原理1.分类计数原理: 。
分步计数原理: 。
2.王云同学有参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读,若他从这些参考书中带一本去图书馆,有 种不同的方法;若带外语,数学,物理各一本,有 种不同的带法;若从这些参书中选2本不同学科的参考书带到图书馆,有种不同的带法。
3.设*,x y N ∈,且4x y +≤,则点(,)x y 共有 个.、4.设{1,2,3},{4,5}A B ==,从集合A 到集合B 共可建立不同的函数个数为 . 5.一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成 个四位数字号码。
6.11n mi ji j a b==⋅∑∑展开后共有 项.例1.(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生争夺数学、物理、化学竞赛的冠军(无并列),有多少种不同的结果? (3)某人要将4封不同的信投入3个不同信箱中,不同的投寄方法有多少种?(4)将3个不贩小球放入4个不同编号的盒子中(一个盒子只放一个小球),不同的放法有多少种?例2.在一次综艺节目的演出中,热心观众坐成四个方阵(如下图),现有4种不同颜色的T 恤衫,要求相邻方阵着不同颜色的T 恤,有多少种不同的着衣方法?例3.(1)用数字0,1,2,3,4可组成多少个不同的三位数?(2)甲、乙、丙3人互相传1只篮球,开始球在甲手中,经过5次传球后,球在甲手中,问共有多少种不同的传球方式?例4.(备选题)设整数4,(,)n P a b ≥是平面直角坐标系xOy 中的点,其中,{1,2,3,,}a b n ∈L ,a b >.(1)记n A 为满足3a b -=的点P 的个数,求n A ; (2)记n B 为满足1()3a b -是整数的点P 的个数,求n B .排列、组合的概念和运算1.排列的定义: ,叫做从n 个不同元素中取出m 个元素的一个排列.2.排列数的定义: ,叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示.3.排列数公式:mn A = = ;m n A = = ;0!=4.组合的定义: ,叫做从n 个不同元素中取出n 个元素的一个组合.5.组合数的定义: ,叫做从n 个不同元素中取出m 个元素的给合数,用符号 表示.6.组合数公式:mn C = = = ;0n C = 7.组合数的两个性质:(1) (2)例1.(1)若17161554mn A =⨯⨯⨯⨯⨯L ,则n = ,m = .(2)若*n N ∈,则(55)(56)(57)(68)n n n n ----L 用排列数符号表示为(3)若33210n n A A =,则n =(4)若75589n nnA A A -=,则n = 例2.(1)若*x N ∈,求123231x x x x C A ---++的所有可能值.(2)求11224n nn n A A -++的值.例3.(1)化学:1!22!33!!n n +⋅+⋅++⋅L (2)化简:12312!3!4!!n n -++++L (3)化简:122nn n n C C nC +++L例4.(备选题)已知(2)p p ≥是给定的某个正整数,数列{}n a 满足:111,(1)()k k a k a p k p a +=+=-,其中1,2,3,,1k p =-L .(1)设4,p =求234,,a a a ; (2)求123p a a a a ++++L .二项式定理及通项公式的应用1.二项式定理:对于*n N ∈,()na b += ,二项式展开式的通项公式为 ,二项式展开式中第r 项的二项式系数为 ,要分清展开式中第一项的系数与该项的二项式系数.2.6(23)a b +的展开式的第3项是 ;6(32)b a +的展开式的第3项是 . 3.15(12)x -的展开式的第1r +项为 .4.37(2)x x +展开式的第4项的二项式系数是 ,第4项的系数是 .5.*n N ∈,式子01122(1)2(1)n n k k n k n n n n n C C C C ---++-++-L L = .例1.求10的展开式中,求:(1)第3项的二项式系数及系数;(2)含2x 的项及系数;(3)常数项、有理项.例2.(1)已知9a x ⎛- ⎝的展开式中3x 的系数为94,求常数a 的值 (2)求2521(2)x x++的展开式中2x 项 (3)求64(1)(1)x x -+展开式中3x 的系数例3.(1)求100.998的近似值(精确到0.01) (2)当n 为正奇数时,求112215555n n n n n n n C C C ---++++L 被7除所得的余数.(3)当*3,n n N ≥∈,求证:221nn >+例4.(备选题)是否存在等比数列{}n a ,使12121(1)2nn nnn na C a C a C --+++=L 对一切*n N ∈都成立?如存在,求出n a ;如不存在,请说明理由.二项式系数的性质及应用1.二项式系数的性质(1)对称性:在()na b +展开式中, 的两项的二项式系数相等.(2)增减性与最大值;当12n k +<时,二项式系数是逐渐 的,由对称性知它的后半部分是逐渐的,且在中间取得最大值,当n 是偶数时,中间的一项 取得最大值;当n 是奇数时,中间两项 相等,且同时取得最大值.(3)二项式系数的和:012nn n n n C C C C ++++L = ;022135n n n n n n C C C C C C +++=+++L L = .2.在()nx y +的展开式中,若第7项的系数最大,则n 等于 .3.若29323636012,(2),n n n n n C C x a a x a x a x ++=-=++++L 则011n a a a -+++L = ;12323n a a a na ++++L = .4.函数1010()(1cos )(1cos )(0)f x x x x π=++-≤≤的最大值为 .5.若1)nx的展开式中各项系数和为P ,所有二项式系数和为2,272,r n S P S C +=最大,则r .例1.(1)求7(2)x y +展开式中系数最大的项;(2)求7(2)x y -展开工中系数最大的项.例2.求12(13)x -的展开式中 (1)各项二项式系数之和; (2)奇数项二项式系数和; (3)各项系数和; (4)各项系数绝对值的和.例3.已知数列{}n a 的首项为1,011222111231()(1)(1)(1)(1)n n n n n n n n n n n n n n p x a C x a xC x a x C x a C x x a C x ----+=-+-+-++-+L .(1)若数列{}n a 是公比为2的等比数列,求(1)p -的值;(2)若数列{}n a 是公差为2的等差数列,求证:()p x 是关于x 的一次多项式.例4.(备选题)(1)当*k N ∈时,求证:(1(1k k ++-是正整数;(2)试证明大于2(1n +的最小整数能被12n +整除*()n N ∈ .排列、组合的应用题(1)1.特殊元素、特殊位置的“优先安排法” 2.正难则反:排除法(去杂法)3.相邻问题:捆绑法4.不相邻问题:插空法5.顺序一定问题:除法6.至多、至少问题:正面与反面的选择7.染色问题:“树型图法”、恰当的分类与准确的分步8.相同元素问题:隔板法例1.4男3女坐成一排,下列各小题分别有多少种排法?(1)某人必须在中间(2)某两人只能在两端(3)某人不在中间和两端(4)甲、乙两人必须相邻(5)甲、乙两人不相邻(5)甲、乙两人必须相隔1人(7)4男必须相邻(8)4男必须相邻,3女也必须相邻(9)3女不相邻(10)4男不相邻(11)4男不在两端(12)甲在乙左边(13)3男不等高,按高矮自左向右顺序排列例2.用0、1、2、3、4、5六个数字分别可以组成多少个符合下列条件的没有重复数字的自然数?(1)四位偶数(2)四位奇数(3)是25的倍数的六位数(4)比240135大的六位数(5)个位数字比十位数字小的五位数例3.某旅行社有导游9人,其中3人只会英语,2人只会日语,其余4人既会英语又会日语,现要从中选6人,其中3人做英语导游,另外3人做日语导游,则不同的选择方法有多少种?例4.(备选题)将4个编号1、2、3、4的小球放入4个编号为1、2、3、4的盒子中,(1)每盒子至多一球,有多少种放法?(2)恰好有一个空盒,有多少种放法?(3)每个盒子放一球,并且恰好有一球的编号与盒子的编号相同,有多少种放法?(4)把4个不同的小球换成4个相同的小球,恰有一个空盒子,有多少种放法?(5)把4个不同的小球换成20个相同的小球,要求每个盒子内的球数不少于它的编号数,有多少种放法?排列、组合的应用题(2)1.某天某班的课程表要排语文、数学、外语、物理、化学、体育六门课程,如果第一节不排体育,最后一节不排数学,一共有种不同的排法。
第11讲概率统计__王松桂

一种方法是:由于g(X) 也是随机变量, 故应有概率分布,其分布可以由X的分布求 出。一旦知道了g(X) 的分布, 就可以按照期 望的定义把 E[g(X)] 计算出来。 但使用该方法 必须先求出g(X)的分布。 一般说来,这是比较复杂的事。
那么, 可否不求g(X)的分布,而只根据X 的分布来计算 E[g(X)] 呢? 答案是肯定的。且有如下公式:
Y X 1 2
1
1/8 1/2
2
1/4 1/8
解: E(Z)= g(1,1)0.125+g(1,2)0.25 +g(2,1)0.5+g(2,2)0.125 = 4.25.
例8:设随机变量X和Y相互独立,概率密度分 别为 4e4 x , x 0, 2e2 y , y 0, f X ( x) fY ( y ) 其他, 其他. 0, 0, 求 E(XY)。 解: 因 G(X,Y)=XY, X 和Y 相互独立。
2
E ( X ) 1.68.
这意味着:若从该地区抽查很多成年男 子,分别测量他们的身高。则这些身高的平 均值近似地为1.68。
例4:设某型号电子管的寿命X服从指数分布, 平均寿命为1000小时, 计算 P{1000<X≤1200}。 解:由 E(X) = 1/λ = 1000,知 λ = 0.001,X 的概率密度为 0.001x , x 0, 0.001e f ( x) x 0. 0,
所以,
E[ g ( X , Y )]
xyf X ( x) fY ( y )dxdy 0 0 0
一般来说, 若统计了n天,
(假定每天至多出三件废品) n0天没有出废品; n1天每天出一件废品; n2天每天出两件废品; n3天每天出三件废品.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1个红球 4个黄球
5个红球
4个红球 1个黄球
3个红球 2个黄球
2个红球 3个黄球
1个红球 4个黄球
不可能摸 到黄球。
一定能摸 到红球。
在五个箱子 中,摸到红 球的可能性 最小。
摸到黄球的 可能性比摸 到红球的可 能性大。
在五个箱子 中,摸到黄 球的可能性 最大。
(2)如图是甲、乙两户居民家庭全年各项支出的统计图。 根据统计图,下列对两户家庭教育支出占全年总支出的百分比 作出的判断中正确的是( B)
根据统计图完成下面各题:
(50+40+75+60)÷12 =225÷12 =18.75(万元) =187500(元)
①2011年平均每月产值是多少元? ②第一季度比第二季度的产值增长百分之几?
市级文明生评选: 六年一班的投票结果
六年二班的投票结果
下面( A )图能表示六年一班投票结果。 ( D )图能表示六年二班投票结果。
1、参与调查的家长和学生共有( )人。 400
16+4=20(人) 20÷5%=400(人)
62 )人。 2、在条形统计图中,“非常了解”所对应的学生人数是(
400-83-73-77-54-31-16-4=62(人)
3、在扇形统计图中,分别写出“非常了解”、“了解很少”、 “基本了解”所占的百分数。
A. 5010元 B.5368元 C.3936元 D.16700元
复习时几点注意事项:
注重过程性目标,让学生经历数据的统计过程,加 强对数据的分析的训练; 通过丰富的实例,让学生系统地复习有关的统计与
概率知识;
注重培养学生的“统计”观念,建立随机思想; 设计的数学活动必须是适应发展学生思维的活动; 教学内容的选取应注重生活实际,联系学生身边的 事例;
只能有红球,不可能摸到 黄球,而且一定能摸到红 球。
5个红球
4个红球 1个黄球
3个红球 2个黄球
红球的数量多于黄球,表示摸到红球的 可能性要大于黄球,但并不是一定能摸 到红球。而且黄球越多,摸到的可能性 越大。
2个红球 3个黄球
黄球的数量多于红球,表示摸到黄球的 可能性要大于红球,但并不是一定摸到 黄球。而且最后一个盒子黄球最多,表 示摸到黄球的可能性最大,同时摸到红 球的可能性最小。
B二分店09年全年销售额约占各分店全年销售额总数的13% C二分店下半年销售额比上半年提高了20% √ D一分店上半年销售额比下半年多33万元 ×
√
解决生活中的实际问题:
《课程标准》提出 :认识 到统计在社会生活及科学领域中 的应用,并能解决一些简单的实 际问题、通过实例进一步丰富对 概率的认识,并能解决一些实际 问题。
“非常了解”:(62+83)÷400=36.25% “了解很少”:(54+31)÷400=21.25% “基本了解”:(73+77)÷400=37.5%
根据下面两幅扇形统计图,可以判断下列说法中错误的是( )。 D 津乐超市2009年上半年 津乐超市2009年下半年 各分店销售额所占比例统计图 各分店销售额所占比例统计图 09年6月 09年12月
上半年各分店销售额总计 500万元 解法一: 下半年各分店销售额总计600万元
(500×13+600×13)÷(500+600) =(65+78)÷1100 =143÷1100 解法一 =13% ( 600×13%-500×13%)÷500×13% 上半年: 550 ×57%=285 (万元) =解法二:乘法分配率得知二分店占全年销售额 (78-65 )÷ 65 下半年: 600 × 53%=318(万元) =20% 总数的 13% 。 (解法二: 285+318( )÷( 500+600 ) ≈54. 8% 600-500 )÷ 500=20% A一分店09年全年销售额约占各分店全年销售额总数的54.8%√
曙光小学全校学生为800名贫困山区失学 儿童捐款,下面的扇形统计图是该校一至 (835+1670+2505+4175+2505)÷(1-30%)×30% =5010(元) 六年级学生本次捐款数额所占比例分布图, 条形统计图中有该校一至五年级学生本次 捐款数额的信息。该校六年级学生本次捐 A 款的总额是( )。
甲户教育支出占全年总支出的百分比:1200÷(1200×2+2000+1600)=20% 因为25%>20%,所以乙户比甲户大。选B
培养良好的学习习惯:
良好的学习习惯,有利于激 发学生学习的积极性和主动性; 有利于形成学习策略,提高学习 效率;有利于培养自主学习能力; 有利于培养学生的创新精神和创 造能力。
知识的延伸与拓展:培养学生 逻辑思维能力、创新能力、实
践能力。
( 1 )“校园安全”受到全社会的广泛关注,某校德育 处对部分学生与家长就校园安全知识的了解程度进行了随 机抽样调查,并绘制成如下图所示的两幅统计图,请根据 统计图中的信息,解答下列问题。
1、参与调查的家长和学生共有( )人。 2、在条形统计图中,“非常了解”所对应的学生人数是( )人。 3、在扇形统计图中,分别写出“非常了解”、“了解很少”、“基 本了解”所占的百分数。
教学目标 :
旧教材:使学生掌握所学的统计初步知识, 能够看和绘制简单的统计图表,并且能够计 算求平均数问题。 新教材:使学生掌握所学的统计初步知识,能 够看和绘制简单的统计图表,能够根据数据做 出简单的判断与预测,会求一些简单事件的可 能性,能够解决一些计算平均数的实际问题。
复习建议:
复习与整理
鞍山道小学
戴钧
学段总目标:
经历简单数据的统计过程,进一Leabharlann 步学习收集、整理和描述数据的方法,
并根据数据分析的结果作出判断与预 测;进一步体会事件发生可能性的含
义,并能判断一些简单事件发生的可
能性的大小。
根据《义务教育数学课程标准(2011年版)》 内容与要求,对“统计与概率”教学内容的 编排顺序和教材的结构进行了调整,这样就 使教材的结构发生了一定变化:第一学段降 低教学要求,每一学年只安排一个小单元的 统计教学;第二学段才让学生系统学习统计 图表知识,形成数据整理和分析能力,学习 如何利用数据分析、判断、预测去解决问题。
建立正确的概率直觉,让学生经历“提出猜测 ——
收集和组织数据——分析实验结果——建立理论”的 概率模型的过程。