第19章_一次函数知识点总结
一次函数知识点总结

一次函数知识点总结一、概述一次函数是数学中常见且重要的函数类型之一。
它的表达式形式为y = ax + b,其中 a 和 b 是常数,x 是自变量,y 是因变量。
一次函数具有线性关系,其图象为直线。
本文将对一次函数的相关概念、性质以及应用进行总结。
二、定义和性质1. 定义:一次函数是指其表达式为 y = ax + b 的函数,其中 a 和 b 是常数,且a ≠ 0。
2. 斜率和截距:在一次函数的表达式中,a 表示直线的斜率,b 表示直线与纵轴的交点,即 y 轴上的截距。
3. 直线的方向:当 a > 0 时,直线呈现上升趋势;当 a < 0 时,直线呈现下降趋势。
4. 直线的平行和垂直:两条直线平行的条件是它们的斜率相等;两条直线垂直的条件是它们的斜率的乘积等于 -1。
5. 零点和方程:一次函数的零点是指满足 y = 0 的 x 值,可以通过解一次方程 ax + b = 0 求得。
三、图像与性质1. 图像的特征:一次函数的图像为一条直线,在直角坐标系中呈现线性关系。
根据斜率和截距的不同取值,直线的方向、位置和倾斜程度会有所变化。
2. x 轴和 y 轴的交点:当 x = -b/a 时,直线与 x 轴的交点为横坐标为 -b/a 的点;当 y = 0 时,直线与 y 轴的交点为纵坐标为 b 的点。
3. 斜率的意义:斜率表示了直线上的两个点之间的变化率。
斜率越大,直线越陡峭;斜率为正值时,直线上升;斜率为负值时,直线下降。
4. 点斜式方程:一次函数的点斜式方程为 y - y1 = a(x - x1),其中(x1, y1) 是直线上的任意一点坐标。
5. 一般式方程:一次函数的一般式方程为 ax - y + b = 0,在其中 a,b 均为整数,且 a, b 不同时为 0。
四、应用1. 实际问题建模和解答:一次函数可以用来模拟许多实际问题,如物体的运动轨迹、收入与支出的关系等。
通过确定函数表达式中的参数,可以对问题进行数学建模和求解。
(完整版)第19章-一次函数知识点总结

第十九章一次函数知识点总结基本观点1、变量:在一个变化过程中能够取不一样数值的量。
常量:在一个变化过程中只好取同一数值的量。
例题:在匀速运动公式s vt 中,v表示速度,t表示时间,s表示在时间t内所走的行程,则变量是________,常量是 _______。
在圆的周长公式 C=2πr中,变量是 ________,常量是 _________.2、函数:一般的,在一个变化过程中,假如有两个变量x 和 y,而且对于x 的每一个确立的值,y 都有独一确立的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是 x 的函数。
*判断 Y 能否为 X 的函数,只需看 X 取值确立的时候,Y 能否有独一确立的值与之对应(或许察看图像画竖线,若只有一个交点则Y是X的函数)例题:以下函数(1) y=πx (2)y=2x- 1(3)y=1(4) y=1-3x(5) y=x2- 1 中,是一次函数的有()x2(A)4 个(B)3个(C)2个(D)1个3、自变量取值范围:一个函数的自变量同意取值的范围4、确立函数自变量取值范围的方法:( 1)关系式为整式时,函数自变量取值范围为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实质问题中,函数自变量取值范围还要和实质状况相切合,使之存心义。
例题:以下函数中,自变量x 的取值范围是x≥2的是()A. y= 2 x B. y=1C. y= 4 x2D. y=x 2 · x2 x 25、函数的图像: 一般来说,对于一个函数,假如把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点构成的图形,就是这个函数的图象.6、函数分析式:用含有表示自变量的字母的代数式表示因变量的式子叫做分析式。
7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(依据横坐标由小到大的次序把所描出的各点用光滑曲线连结起来)。
一次函数知识点总结

一次函数知识点总结篇1:一次函数知识点总结一次函数知识点总结一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
第19章 一次函数知识梳理xrr

第19章 一次函数知识梳理知识点一:函数、函数值的概念一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
如果当x=a 时y=b ,那么b 叫做当自变量的值为a 时的函数值。
注:对函数概念的理解,主要抓住以下三点:(1)在某一变化过程中必须有两个变量;(2)一个变量的数值随着另一个变量的数值的变化而变化;(3)对自变量的每一个确定的值,函数有且只有一个值与之对应。
对于一个函数,可能有若干个函数值,x 取不同的值,函数值可能不相等。
因此,我们应该说明是自变量x 取什么值时的函数值,如:函数3y x =-,当0x =时的函数值是-3.类型题:1、判断下列变量之间的关系是不是函数关系(1)已知圆的半径2r cm =,则圆的面积2S r π=;(2)长方形的宽一定时,其长与周长;(3)王明的年龄与他的身高.2、下列关系式中,不是函数关系的是( )A.y =-x (x <0) B.y =±x (x >0) C.y =x (x >0) D.y =-x (x >0)3、下列各曲线中不能表示y 是x 的函数是( )。
A .B .C .D .4、下列函数(1)y =πx ;(2)y =2x -1;(3)y = 1x;(4)y =x 2-1中,是一次函数的有( ) A .4个 B .3个 C .2个 D .1个5、(2008·泰州市中考试题)根据流程右边图中的程序,当输入数值x 为-2时,输出数值y 为( )A .4B .6C .8D .106、(2010·黄冈市中考试题)若函数22(2)22x x y x x ⎧+≤=⎨>⎩ (),则当函数值y =8时,自变量x 的值是( )A .B .4C .或4 D .47、(2010·云南楚雄)根据图中的程序,当输入x =2时,输出结果y = .7、已知函数y=(m-1)x+m 2-1是正比例函数,则m =_____________.8、若函数y = -2x m+2 +n -2正比例函数,则m 的值是 ,n 的值为________.9、下列函数中,与y =x 表示同一个函数的是( )A .y =x 2xB .C .y =(x )2D .y =3x 3知识点二:函数自变量取值范围的确定函数解析式中自变量的取值范围必须使函数解析式有意义.(1)当函数解析式为整式时,自变量的取值范围为全体实数;(2)当函数解析式中含有分式时,自变量的取值范围要使分式的分母不等于零; (3)当函数解析式中含有偶次根式时,自变量的取值范围要使被开方式是非负数; (4)当函数解析式中含有指数为零的式子时,自变量的取值范围要使底数≠0; (5)对于实际问题中的函数,除使解析式有意义外,还要使实际问题有意义。
第十九章一次函数小结与复习

第十九章一次函数小结与复习(第二课时)一、教材分析一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,一次函数这一章在整个教材中将起着承上启下的作用,特别是一次函数的图像和性质的理解和掌握,又是后续知识发展的起点,对今后知识的掌握起着决定性的作用。
二、学情分析八年级的学生已经具备了一定的总结概括能力,在此之前学生已经初步掌握了一次函数的相关概念、图像、性质及简单应用,另一方面八年级学生更加沉稳,不愿意表达自己的见解,需要老师设计富有趣味性与挑战性的问题,激发学生的探究热情。
三、教学目标:(一)知识与技能1.理解掌握正比例函数、一次函数的概念、图像、性质及解析式的确定。
2.理解一次函数与一元一次方程、一元一次不等式、二元一次方程组的关系,会应用于解决数学和实际生活问题。
(二)过程与方法1.进一步培养学生数形结合的意识和能力以及分类讨论的数学思想。
2.进一步培养学生的研究精神和合作交流意识及团队精神。
(三)情感与态度1.在学习过程中,培养学生的合作意识和大胆猜想、参与探究的良好品质。
2.进一步体验数与形的转化,体验数学的简洁美。
激发学生学习数学的兴趣。
四、教学重难点:教学重点:1.一次函数的图像及性质。
2.用函数观点看方程(组)、不等式的解。
教学难点:一次函数的实际应用和数型结合思想在解题中的应用。
五、教法学法讲练结合,自主探究,同学讨论六、教学过程(一)知识点回顾和相应题目小练考点一:正比例函数定义、图像与性质一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫比例系数.例如:y=3x, y=-4x都是正比例函数1.下列函数中是正比例函数的是()ABD A .y=-6x B .y =8x- C .y=3x 2+4 D .y = —2.5x-2 2.正比例函数y=x 的图象大致是( )考点二: 一次函数的定义一般地,如果y=kx+b (k 、b 是常数k ≠0),那么y 叫做x 的一次函数. 例如: y=3x+2, y=-4x+7 特别地,当b =0时,一次函数y =k x +b 变为正比例函数y =k x,所以正比例函数是特殊的一次函数! 对应练习:3.下列是一次函数的有 ,是正比例函数的有 .(1)y=-x (2)y=4x-5 (3)y=3x +2 (4)xy 4= (5)12-=x y (6)y=3x 考点三:一次函数的图形与性质一次函数的图像是一条直线例如:画出一次函数y=2x+1的图象解:列表得:例如:画出下列函数的草图(1)y=3x+1 (2)y=3x-2(4)y=-5x-4(3)y=-4x+3 画图步骤:1、列表;2、描点;3、连线。
(完整word)八年级下第十九章一次函数知识点总结范文文档

(完整word)八年级下第十九章一次函数知识点总结范文文档#/14第十九章一次函数知识点总结知识点1变量与函数在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()太阳光强弱B.水的温度C.所晒时间D.热水器答案:C函数讨=、某—1中,自变量某的取值范围是()某>1B.某>1C.某v1D.某<1答案:B以固定的速度v0(m/)向上抛一个小球,小球的高度h(m与小球的运动时间t()之间的关系为h=vot—4.9t2,在这个关系式中,常量、变量分别为()4.9是常量,t,h是变量B.v0是常量,t,h是变量C.v0,—4.9是常量,t,h是变量D.4.9是常量,v0,t,h是变量答案:C已知f(某)=红冬,那么f(1)=2某+1答案:1某水库的水位持续上涨,初始水位高度为6m水位以0.3m/h的速度匀速上涨,则水库水位高度ym与上涨时间某h之间的函数解析式为.答案:y=6+0.3某物体自由下落的高度h(m)和下落时间t()的关系:在地球上大约是h=5t2,在月球上大约是h=0.8t2.当h=20m时,物体在地球上和在月球上自由下落的时间各是多少?物体在哪里下落得快?答案:(1)当h=20m时,在地球上下落的时间与高度的关系为h=5t2,则有20=5t2,解得t=2;在月球上下落的时间与高度的关系为h=0.8t2,则有20=0.8t2,解得t=5.答:当高度是20m时,在地球上下落的时间为2,在月球上下落的时间为5.(2)v2v5,.物体在地球上下落的速度比在月球上下落的速度快知识点2函数的图象下列曲线不能表示y是某的函数的是()8.下图是我市某一天内的气温变化图,这一天中最高气温是8.下图是我市某一天内的气温变化图,这一天中最高气温是24C这这这F列说法中错误的是()天中最高气温与最低气温的差为天中2时至14时之间的气温在逐渐升高天中只有14时至24时之间的气温在逐渐降低答案:D某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()'离家的距离/Hl1(某某)20001(某某)101520譌家时间血血A.修车时间为15minB.A.修车时间为15minB.学校离家的距离为2000mC.到达学校时共用时间20minD.自行车发生故障时离家距离为1000m答案:A小明放学后步行回家,他离家的路程(m)与步行时间t(min)的函数图象如图所示,则他步行回家的平均速度是m/min.答案:80如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行驶的路程y与经过的时间某之间的函数关系,请根据图象填空:IK5115215315J4535J某IK5115215315J4535J某知前皿⑷501辅枪202201:_;!■十T1■ib'!biIrriirlr出发的早,早了h,到达,先到h;⑵电动自行车的速度为km/h,汽车的速度为km/h.答案:(1)甲2乙2(2)1890用列表法画出y=2某24某的函数图象.答案:列表得:某…-3-2-1…y…6-26…描点连线得:■t-I一勺■+-某描点连线得:■t-I一勺■+某知识点3正比例函数下列问题中,两个变量成正比例关系的是()等腰三角形的面积一定,它的底边和底边上的高等边三角形的面积与它的边长长方形的长确定,它的周长与宽长方形的长确定,它的面积与宽答案:D14.正比例函数y=14.正比例函数y=答案:C已知正比例函数y=(1)某,y随某的增大而减小,则m的取值范围是()A.mv—1mA.mv—1m>—1m>—1m<—1答案:A关于函数y=2某,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随某的增大而增大D.不论某取何值,总有y>0答案:C写一个图象经过第二、四象限的正比例函数的解析式:答案:y=—5某,答案不唯一.正比例函数的图象是当k>0时,直线y=k某过限,y随某的增大而.答案:一条经过原点的直线第一、三增大2已知y与某+1成正比例,当某=-,y=1.求当某=—3时,y的值.3答案:设比例系数为k,二y=k(某+1).当某=—时,y=1,—1=k(—+1),TOC\o"1-5"\h\z33解得k=3.5当某=—3时,y=3(某+1)=3(—3+1)=—6.555知识点4一次函数-0.下列不是一次函数的是()A.y=丄+某B.y=丄(某—1)某-C.y=——1D.y=某+2答案:A-1.下列各点一定在函数y=3某+1的图象上的是()A.(—-,3)B.(3,—-)C.(1,4)D.(4,-)答案:C--.一次函数y=4某,y=—7某,y=—4某的共同特点是()5A.图象位于相同的象限A.图象位于相同的象限C.y随某增大而增大答案:Dy随某增大而减小D.图象都过原点-3.关于一次函数y=—-3.关于一次函数y=—-某+3,下列结论正确的是()A.图象过点(1,—1)y随某的增大而增大答案:DB.图象经过一、二、三象限3D.当某>3时,yV0-4.某一次函数的图象经过点(1,-),且y随某的增大而减小,则这个函数的解析式可能是()A.y=2某+4B.y=3某—1答案:D析式可能是()A.y=2某+4B.y=3某—1答案:DC.y——3某+1D.y——2某+425.(山东菏泽)一条直线y—k某+b,其中k+b——5,kb—6,那么该直线经过()A.第二、四象限C.第一、三象限B.第一、二、三象限D.第二、三、四象限答案:D26.下列图象中,不可能是一次函数y—m某-(m—3)的图象的是()27.已知一次函数y—(4—2m)某+m+1的图象经过一、三、四象限,则m的取值范围是()A.mv—1A.mv—1B.m<—1或m>2C.mK2D.—1vm<2答案:A两个一次函数y1—a某+b与y2—b某+a,它们在同一直角坐标系中的图象可能下列函数:①y——2某+3;②某+y—1;③某y—1;④y—■某+1;⑤y—丄某2+21;⑥y—0.5某.其中属于一次函数的是.(只填序号)答案:①②⑥将一次函数y——2某+3向下平移2个单位得到的一次函数解析式为答案:y=—2某+1在一次函数y=(2—k)某+1中,y随某的增大而增大,则k的取值范围是答案:kv2已知一次函数的图象过点M(1,3),N(—2,12)两点.求函数的解析式;试判断点P(2a,—6a+8)是否在函数图象上,并说明理由答案:(1)设一次函数的解析式为y二k某+b,3—k+b,k——3,由题意得解得12——2k+b,b=6,所以一次函数的解析式为y——3某+6.当某—2a时,y——6a+6工—6a+8,所以点P(2a,—6a+8)不在函数图象上.已知一次函数y—(2a+4)某—(3—b),当a,b为何值时:y随某的增大而增大;图象经过第二、三、四象限;图象与y轴的交点在某轴上方.答案:(1)a>—2(2)av—2且bv3(3)b>3知识点5一次函数与一元一次方程一元一次方程a某—b—0的解为某—3,函数y—a某—b的图象与某轴的交点坐标为()A.(3,0)B.(—3,0)C.(a,0)D.(—b,0)答案:A一次函数y—k某+b的图象如图所示,则方程k某+b—0的解为() C.某=一C.某=一1y=—1答案:C已知方程k某+b=0的解是某=3,则函数y=k某+b的图象可能是若方程某—3=0的解也是直线y=(4k+1)某—15与某轴的交点的横坐标,则k的值为()A.—1B.0C.1D.±1答案:C如图,已知函数y=2某+b和y=a某—3的图象交于点P(—2,—5),根据图如图,根据函数y=k某+b(k,b是常数,且k工0)的图象,求:方程k某+b=0的解;式子k+b的值;方程k某+b=—3的解.答案:(1)由图象可知,当y=0时,某=2.故方程k某+b=0的解是某=2.(2)该直线经过点(2,0)和点(0,—2),则洙+b=0'解得k=1 b=—2,b=—2,故k+b=1—2=—1.(3)当y二一3时,某二一1.故方程k某+b=—3的解是某=—1.知识点6一次函数与一元一次不等式已知一次函数y=某—2,当函数值y>0时,自变量某的取值范围在数轴上表示正确的是()ABCD答案:B已知一次函数y=k某+b的图象如图所示,当某V0时,y的取值范围是()j/rO/\某-2A.y>0B.yV0C.—2vyV0D.yV—2答案:D已知y1=某—5,y2=2某+1.当y1>y2时,某的取值范围是()A.某>5B.某VC.某V—6D.某>—62答案:C一次函数y=k某+b与y=某+a的图象如图,则下列结论:①kV0;②a>0;③当某V3时,y1Vy2.其中正确的个数是()D.3D.3如图,直线y=k某+b过A(-1,2),B(-2,0)两点,贝U0<k某+b<-2的解集为的解集为在直角坐标系某Oy中,直线y=k某+b(k工0)经过(一2,1)和(2,3)两点,且与某轴、y轴分别交于A,B两点,求不等式k某+b>0的解集.答案:根据题意得丄蔦;解得k2'b=2.则一次函数的解析式是y=-某+2,2解不等式-某+2>0得某>-4.2知识点7一次函数与二元一次方程(组)TOC\o"1-5"\h\z把方程某+1=4y+-化为y=k某+b的形式,正确的是()311A.y=-某+1B.y=某+14361C.yC.y=某+16D.y=!某+143答案:B47.图中两直线l1,I2的交点坐标,可以看作是下列哪个方程组的解(A.47.图中两直线l1,I2的交点坐标,可以看作是下列哪个方程组的解( A.某—y=12某—y=—1B.某—y=—12某-y=1C.某—y=32某—y=1D.某—y=—32某—y=—1答案:B48.已知4某=48.已知4某=3是方程组某+y=3,某的解,那么一次函数y=3—某和y=-+1的y——=122答案:C答案:C交点是答案:3,5知识点8选择方案图象中所反映的过程:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步回家.其中某表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()B.张强在体育场锻炼了15minD.张强从早餐店回家的平均速度是3km/h甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离(km)和行驶时间t(h)之间的函数关系的图象如图所示0(15\22.5JST根据图中提供的信息,有下列说法:①他们都行驶了18km②甲在途中停留了0.5h;③乙比甲晚出发了0.5h;④相TOC\o"1-5"\h\z遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地其中,符合图象描述的说法有()A.2个B.3个C.4个D.5个答案:C如图,h为走私船,12为我公安快艇,航行时路程与时间的函数图象,求:盯海里/h(1)刚出发时我公安快艇距走私船多少海里?(2)走私船与公安快艇的速度分别是多少?(3)h,12的解析式;(4)6min时两艇相距多少海里?(5)公安快艇能否追上走私船,若能追上,那么几分钟追上?答案:(1)由图可知,刚出发时我公安快艇距走私船5海里.(2)由图可知,走私船4min航行了9-5=4(海里),我公安快艇4min航行了6海里,走私船的速度为4宁4=1(海里/min),公安快艇的速度为6-4=1.5(海里/min).(3)设h,J的解析式分别为y=灯+b,y=k某+b,将(0,5),(4,9)代入li,bi4kibbi4kibi,解得“ki所以li的解析式为y=某+5.同理将(0,0),(4,6)代入12,b24k2k2=3b24k2k2=3,2所以b的解析式为沪詁当某二6时,yi=11,y=9,所以6min时两艇相距11—9=2(海里).能追上.令某+5=3某,解得某=10.2答:10min时能追上.某公园计划在健身区铺设广场砖,现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积某(m2)的函数关系如图所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积某(m2)的函数解析式为y乙=k某.(1)根据图写出甲工程队铺设广场砖的造价y甲(元)与铺设面积某(m2)的函数解析式;⑵如果该公园铺设广场砖的面积为1600m2,那么公园选择哪个工程队施工更合算?答案:y56某,(g某V500)丫甲=40某+8000,(某>500)当某=1600时,y甲=40某1600+8000=72000,y乙=1600k.当k>45时,选择甲工程队更合算;当Ovkv45时,选择乙工程队更合算;当k=45时,选择两个工程队的花费一样。
人教版八年级下册数学 第19章《一次函数》讲义 第20讲 一次函数的图象及性质(2)

第20讲一次函数的图象及性质(2)(1)、判定点是否在函数图象上(或函数图象是否经过点)的方法:将这个点的横坐标代入函数解析式,得到的函数值如果等于点的纵坐标,这个点就在函数的图象上,如果不满相等,这个点就不在其函数的图象上.(2)、是经过(,0)与(0,b)两点的直线。
因此一次函数y=kx+b的图象也称为直线y=kx+b(3)、(,0)是直线与x轴的交点坐标,(0,b)是直线与y轴的交点坐标。
这两..点也是求直线与坐标轴围成的三角形面积时要用.........................到的两点描点法画函数图形的一般步骤(通常选五点法)第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
(1)直线y=k1x+b1与y=k2x+b2的位置关系:(a)两直线平行:k1=k2且b1≠b2 (b)两直线相交:k1≠k2(c)两直线重合:k1=k2且b1=b2 (d)两直线垂直:即k1﹒k2=-1(e)两直线交于y轴上同一点: b1=b2(2)图象平移问题b>0,向上平移,b<0,向下平移。
反之,b>0,向下平移,b<0,向上平移。
关于点的距离的问题方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;A x yB x y;任意两点(,),(,)A AB B若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -;若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y一般步骤(一设二代三解四还原):(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.考点1、函数图象上点的坐标例1、若正比例函数为y=3x ,则此正比例函数过(m ,6),则m 的值为( ) A 、-2 B 、2 C 、−23 D 、23例2、如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO在y 轴上,点B 1,B 2,B 3,…都在直线例3(填“>”或“<”或“=”).例4、如图,在平面直角坐标系中,点C (0,4),射线CE ∥x 轴,直线y=21-x+b 交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得△ABD 恰为等腰直角三角形,则b 的值为 .例5、如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O′A′B′,点A 的对应点A′落在直线y=-少?例6、如图,在平面直角坐标系中,点A (2,n ),B (m ,n )(m >2),D (p ,q )(q <n ),点B ,D 在直线121+=x y 上.四边形ABCD 的对角线AC ,BD 相交于点E ,且AB ∥CD ,CD =4,BE =DE ,△AEB 的面积是2.求证:四边形ABCD 是矩形.1、在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( )A 、M (2,-3),N (-4,6)B 、M (-2,3),N (4,6)C 、M (-2,-3),N (4,-6)D 、M (2,3),N (-4,6)的中点,点P 为OA 上一动点,PC+PD 值最小时点P 的坐标为( )A 、(﹣3,0)B 、(﹣6,0)C 、(3、已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( )A 、a >bB 、a=bC 、a <bD 、以上都不对4、在一次函数y=﹣2x+5的图象上有两个点A (X 1,y 1)、B (X 2,y 2),已知X 1>X 2,5、已知一次函数y=kx+b 的图象经过点A (2,-3)及点B (1,6). (1)求此一次函数解析式;(2)画出此一次函数图象草图; (3)求此函数图象与坐标围成的三角形的面积.6、在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点. (1)判断点是否为和谐点,并说明理由; (2)若和谐点在直线上,求点的值.考点2、函数图象与几何变换例1、将函数y=-2x 的图象向下平移3个单位,所得图象对应的函数关系式为( )A 、y=-2(x+3)B 、y=-2(x -3)C 、y=-2x+3D 、y=-2x -3例2、在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a ,则直线a 对应的函数表达式为( )A 、y=xB 、y=x -1C 、y=x+1D 、y=-x+1例3、将直线y= 21x+1向右平移4个单位长度后得到直线y=kx+b ,则k ,b 对应的值是 例4、如图,直线834+-=x y 与x 轴、y 轴分别交于A 、B 两点,点M 是OB 上一点,若直线AB 沿AM 折叠,点B 恰好落在x 轴上的点C 处,则点M 的坐标是例5、如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .(1)求直线AB 的表达式;(2)若DB=DC ,求点C 坐标及直线CD 的表达式.例6、如图,在平面直角坐标系中,直线l :434+-=x y 分别交x 轴,y 轴于点A 、B ,将△AOB 绕点O 顺时针旋转90°后得到△A′OB′。
人教版八年级下册数学 第19章《一次函数》讲义 第17讲 函数的认识

第17讲函数的认识1、在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。
2、实际上,常量就是具体的数,变量就是表示数的字母。
(注意“π”是常量)函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
1、例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。
2、对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是11、当一个或几个变量取一定的值时,另一个变量有唯一确定值与之相对应,我们称这种关系为确定性的函数关系。
2、两个变量x,y,用一个等式表示出来,如果x取一个值,y都有唯一的值和他对应。
就是y与x的函数关系式。
1、自变量与函数在一个变化过程中,有两个变量x和y,如果x每取一个值,y都有唯一确定的值与它对应,那么,把x叫自变量,y叫x的函数。
2、函数值如果x=a时,y=b,那么把“y=b叫做x=a时的函数值”。
3、自变量取值范围的确定方法(1)、自变量的取值范围必须使解析式有意义。
当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。
(2)、自变量的取值范围必须使实际问题有意义。
4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义考点1、常量与变量例1、一个长方形的面积是10cm2,其长是acm,宽是bcm,下列判断错误的是()A、10是常量B、10是变量C、b是变量D、a是变量例2、假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是()①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.A、1个B、2个C、3个D、4个例3、“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,______随______变化而变化,其中自变量是______,因变量是______.例4、在公式s=v0t+2t2(v0为已知数)中,常量是,变量是.例5、下列是某报纸公布的世界人口数据情况:(1)表中分别有几个变量?(2)你能将其中某个变量看成另一个变量的函数吗?(3)如果用x表示时间,y表示世界人口总数,那么随着x的变化,y的变化趋势是什么?(4)世界人口每增加10亿,所需的时间是怎样变化的?例6、在烧开水时,水温达到l00℃就会沸腾,下表是某同学做“观察水的沸腾”实验时记录的数据:(1)上表反映了哪两个量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间推移2分钟,水的温度如何变化?(4)时间为8分钟,水的温度为多少?你能得出时间为9分钟时,水的温度吗?(5)根据表格,你认为时间为16分钟和18分钟时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?1、在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A、C,rB、C,π,rC、C,πD、C,2π,r2、以固定的速度v0(米/秒)向上抛一个小球,小球的高度h(米)与小球的运动的时间t(秒)之间的关系式是h=v0t-4.9t2,在这个关系式中,常量、变量分别为()A、4.9是常量,t、h是变量B、v0是常量,t、h是变量C、v0、-4.9是常量,t、h是变量D、4.9是常量,v0、t、h是变量3、如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S (m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是()A、S和pB、S和aC、p和aD、S,p,a4、某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中是自变量,是因变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章 一次函数知识点总结基本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 所走的路程,则变量是________,常量是_______。
在圆的周长公式C =2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应(或者观察图像画竖线,若只有一个交点则Y 是X 的函数)例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个 3、自变量取值围:一个函数的自变量允许取值的围 4、确定函数自变量取值围的方法:(1)关系式为整式时,函数自变量取值围为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数自变量取值围还要和实际情况相符合,使之有意义。
例题:下列函数中,自变量x 的取值围是x ≥2的是( )A .yB .yC .yD .y 5、函数的图像:一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
9、正比例函数及性质一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y =kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k >0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,•直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3) 走向:k >0时,图像经过一、三象限;k <0时,•图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴例题:正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. .函数y =(k -1)x ,y 随x 增大而减小,则k 的围是 ( ) A .0<k B .1>k C .1≤k D .1<k 10、一次函数及性质一般地,形如y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y =kx +b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移) (1)解析式:y =kx +b (k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-kb,0) (3)走向: k >0,图象经过第一、三象限;k <0,图象经过第二、四象限 b >0,图象经过第一、二象限;b <0,图象经过第三、四象限⇔⎩⎨⎧>>0b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>0b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小. (5)倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴. (6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b 个单位; (上加下减,左加右减) 当b <0时,将直线y =kx 的图象向下平移b 个单位. 例题:函数y =ax +b 与y =bx +a 的图象在同一坐标系的大致位置正确的是( )将直线y=3x向下平移5个单位,得到直线;向右平移3个单位,得到直线__________;将直线y=-x-5向上平移5个单位,得到直线.向左平移2个单位,得到直线__________若直线axy+-=和直线bxy+=的交点坐标为(8,m),则=+ba____________.已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1 B.3mC.m D.3m-111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:与y轴的交点(0,b),与x轴的交点(kb-,0).即横坐标或纵坐标为0的点.b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小☆k、b的符号对直线位置的影响☆图像过一、二、三象限图像过一、三、四象限图像过一、二、四象限图像过二、三、四象限(大大不过四)(大小不过二)(小大不过三)(小小不过一)12、正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).13、直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2 (2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2 (4)两直线垂直:k1·k2= –114、用待定系数法确定函数解析式的一般步骤: (1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 15、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y =ax +b 与x 轴的交点的横坐标的值. 16、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax +b >0或ax +b <0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于0(小于0)时,求自变量的取值围. 从图象上看, 相当于已知直线y =ax +b 在x 轴的上方(下方)图像所对应的横坐标的取值围。
.17、一次函数与二元一次方程组:任意一个二元一次方程都可以转化成y=kx+b 的形式,所以每个二元一次方程组都对应一个一次函数,也对应一条直线,每个二元一次方程组都对应两个一次函数,也对应两条直线。
从数的角度看,解方程组相当于求出自变量x 的取值,使两个函数值y 相等;从形的角度看,解方程组相当于确定两条直线交点的坐标。
(1)以二元一次方程ax +by =c 的解为坐标的点组成的图象与一次函数y =bcx b a +-的图象相同. (2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y =1111b c x b a +-和y =2222b cx b a +-的图象交点.18、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(kb-,0). 直线(b ≠0)与两坐标轴围成的三角形面积为s =kb b k b 2212=⨯⨯常见题型一、☆考察一次函数定义 1、若函数()213m y m x=-+是y 关于x 的一次函数,则m 的值为 ;解析式为 .2、要使y =(m -2)x n -1+n 是关于x 的一次函数,n ,m 应满足 , . 二、☆考查图像性质1、已知一次函数y =(m -2)x +m -3的图像经过第一,第三,第四象限,则m 的取值围是________.2、若一次函数y =(2-m )x +m 的图像经过第一、•二、•四象限,•则m •的取值围是______3、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .4、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( )5、直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( ).,1A p q r == .,0B p q r == .,1C p q r =-= .,0D p q r =-=6、如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系图象的位置可能是( )8、如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9、b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上. 10、要得到y =-32x -4的图像,可把直线y =-32x ( ). (A )向左平移4个单位(B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位 11、已知一次函数y =-kx +5,如果点P 1(x 1,y 1),P 2(x 2,y 2)都在函数的图像上,且当x 1<x 2时,有y 1<y 2成立,那么系数k 的取值围是________.12、已知点(-4,y 1),(2,y 2)都在直线y =- 12x +2上,则y 1 、y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较 三、☆交点问题1、若直线y =3x -1与y =x -k 的交点在第四象限,则k 的取值围是( ).(A )k <13 (B )13<k <1 (C )k >1 (D )k >1或k <132、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值围是 .4、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A . 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b << 5、如图所示,已知正比例函数xy 21-=和一次函数b x y +=,它们的图像都经过点P (a ,1),且一次函数图像与y 轴交于Q 点。