最新阅读MRI图像基础知识简介

合集下载

MRI入门

MRI入门

MR都有四个序列:T1、T2、T2压水(FLAIR)、ADC(弥散)并DWI,一般做颅脑时再加脑血管成像(MRA)。

MR的成像基础就是氢原子核的自旋电轴受单向强磁场的作用而偏转再回复原位所发出的信号。

在人体组织中,氢原子核密度最大的就是水了。

而每种组织的含水量与水的状态是一定的,发生病理改变时,水的含量与状态也会相应改变,每种特定的病理改变都有水的相应变化。

而这种变化在不同序列会显示与正常组织不同的差异,这样,通过序列间对比,就可以知道具体发生了什么。

以脑为例,脑脊液是含水量最高的。

脑组织含水量不高。

而脱髓鞘、变性的脑组织含水量比正常脑组织要高,脑梗塞的组织含水量比变性的还高。

这样,就是:脑脊液——脑梗塞--变性--正常脑组织。

在T1序列,脑脊液是黑色的,正常脑是灰白的,变性就比正常脑要灰一些,梗塞的就再灰一些。

而在T2序列,脑脊液是白色的,正常脑组织是灰黑色的。

所以变性与梗塞就比正常脑要白。

T1黑――――――――――――――→灰白脑脊液―→脑梗死―→变性组织―→正常脑组织T2白―――――――――――→灰黑脑脊液―→变性与梗死―→正常脑组织我们的视觉有个特点,就是在亮的地方发现暗的东西很困难,而在暗的地方发现一个亮点很容易。

T1序列有黑的脑脊液和灰白的脑,所以看脑组织很好,但要看病灶就很难——看图1。

而T2的脑组织是灰黑的,病灶比脑子亮,所以容易看病灶。

但周围的脑脊液很亮,干扰还是很大的——图2。

所以,我们有了T2压水序列(FLAIR)。

这个序列就是把T2的自由水的信号压制住,只让结合水显影。

所以,T2压水序列(FLAIR)的脑脊液是黑色的,而脑组织还是灰黑,病灶还是比脑组织要亮——图3。

这下好了。

而且,我们还发现,这个序列(FLAIR)看脑组织更清晰。

因为脑的灰质比白质含水量多(因为供血多),而脑脊液水更多,所以看T1和T2都看不清脑的边缘。

但这个序列(FLAIR),灰质是灰白色的,而脑脊液是黑色的。

磁共振知识点总结

磁共振知识点总结

磁共振知识点总结一、磁共振成像(MRI)基本原理。

1. 原子核特性。

- 许多原子核都具有自旋特性,例如氢原子核(单个质子)。

当置于外磁场中时,这些自旋的原子核会发生能级分裂,产生两种不同的能量状态(平行和反平行于外磁场方向)。

- 两种状态的能量差与外磁场强度成正比,公式为Δ E = γℏ B_0,其中γ是旋磁比(不同原子核有不同的旋磁比),ℏ是约化普朗克常数,B_0是外磁场强度。

2. 射频脉冲(RF)的作用。

- 当施加一个频率与原子核进动频率相同(拉莫尔频率,ω_0=γ B_0)的射频脉冲时,原子核会吸收能量,从低能级跃迁到高能级,处于激发态。

- 射频脉冲停止后,原子核会释放能量回到低能级,这个过程产生磁共振信号。

3. 弛豫过程。

- 纵向弛豫(T1弛豫)- 也称为自旋 - 晶格弛豫。

是指处于激发态的原子核将能量传递给周围晶格(分子环境),恢复到纵向平衡状态的过程。

- T1值反映了组织纵向弛豫的快慢,不同组织的T1值不同。

例如,脂肪组织的T1值较短,水的T1值较长。

- 横向弛豫(T2弛豫)- 也称为自旋 - 自旋弛豫。

是指激发态的原子核之间相互作用,导致横向磁化矢量衰减的过程。

- T2值反映了组织横向弛豫的快慢,一般来说,纯水的T2值较长,固体组织的T2值较短。

二、MRI设备组成。

1. 磁体系统。

- 主磁体。

- 产生强大而均匀的外磁场B_0,是MRI设备的核心部件。

常见的磁体类型有永磁体、常导磁体和超导磁体。

- 永磁体:不需要电源,磁场强度相对较低(一般小于0.5T),维护成本低,但重量大。

- 常导磁体:通过电流产生磁场,磁场强度一般在0.2 - 0.5T,需要大量电力供应,产生热量多。

- 超导磁体:利用超导材料在超导状态下的零电阻特性,通过强大电流产生高磁场(1.5T、3.0T甚至更高),磁场均匀性好,但需要液氦冷却,设备成本和维护成本高。

- 梯度磁场系统。

- 由X、Y、Z三个方向的梯度线圈组成,用于在主磁场基础上产生线性变化的梯度磁场。

MRI基本原理及读片

MRI基本原理及读片

MRI基本原理及读片MRI(Magnetic Resonance Imaging)是一种利用核磁共振原理来获取人体内部组织器官影像的医学影像技术。

MRI的基本原理是利用氢原子在强磁场里的自旋共振现象。

人体组织中的氢原子核具有自旋,当置于强磁场中时,氢核的自旋朝向会与磁场方向保持平行或相反。

施加一个特定的脉冲磁场,可以使氢核自旋发生共振,这时氢核会从低能级跃迁到高能级,并放出能量。

MRI设备会通过感应线圈产生一系列电流脉冲,这些脉冲可以生成有特定频率和角度的磁场。

当这些脉冲磁场作用于患者身上时,会使得氢核自旋共振,并发射出信号。

这些信号通过感应线圈采集,并通过计算机进行处理,最终形成人体内部的影像。

MRI影像的读片过程包括以下几个步骤:1.图像质量评估:读片前首先需要评估图像质量,包括图像的清晰度、对比度和噪声水平等。

如果图像质量不佳,可能需要重新进行扫描。

2.基本解剖结构识别:读片人员需要熟悉人体解剖结构,对不同组织器官、血管和神经进行识别。

这需要对人体解剖学有较好的了解,以便准确地识别各个结构。

3.病理改变的观察:在识别基本解剖结构的基础上,读片人员还需要观察和识别患者身体内部是否存在异常的病理改变,如肿瘤、炎症、损伤等。

通过比较患者的影像与正常图像或其他病例的影像,可以帮助确定病例是否存在异常。

4.总结分析:读片人员需要将所观察到的病理改变进行总结和分析,包括病变的部位、大小、类型等。

他们还需要判断这些病变对患者的健康状况有何影响,并提出治疗建议。

在进行MRI读片时,除了以上步骤外,读片人员还可能会使用一些辅助工具,如注释软件、对比增强剂等,以帮助他们更准确地诊断和分析病例。

总的来说,MRI的基本原理是通过利用核磁共振现象来获取人体内部组织器官的影像。

MRI的读片过程需要对解剖结构和病理改变进行识别和分析,以帮助判断患者的疾病状况,并提出相应的治疗建议。

MRI成像阅片基础知识

MRI成像阅片基础知识

看扫描参数:翻转角
在梯度回波脉冲序列里, 采用小于20°翻转角, 可以得到倾向于SE T2加权像,大于80°可以得到T1加权像。
反转恢复序列 T1FLAIR TR值较长
反转恢复序列 T2FLAIR 自由水被抑制,结合水信号更高
MRI常用序列
概念
MR图像的信号强度取决于射频脉冲的发射方式、梯度磁场的引入方 式和MR信号的读取方式等。为不同成像目的而设计的一系列射频脉 冲、梯度脉冲和信号采集按一定时序排列称作脉冲序列。
如何区分T1、T2 1、看水的信号 2、看脑灰白质信号,肌肉信号 3、看扫描参数 4、看片子上的标记
看水的信号:水是长T1长T2信号 在T1上低信号、T2上高信号
看脑灰白质或肌肉信号: 脑灰质 白质 肌肉
T1:低 稍高 灰 T2:稍高 低 黑
怎么看MRI序列及信号
看扫描参数:TE、TR值 看片子上的标记
作用
自旋回波类序列
自旋回波类序列包括: 自旋回波(SE) 快速自旋回波(FSE) 单次激发快速自旋回波(SSFSE) 半傅立叶采集单次激发快速自旋回波(HASTE) 反转恢复序列(IR) 快速反转恢复序列(TIR)
自旋回波序列
快速自旋回波序列
1986年德国科学家 J . Hennig 《在医学 磁共振杂志 》上发表了一篇关于RARE 的文章,即利用SE多回波技术和革新的K 空间填充方法实现快速 MR 扫描,扫描技 术是原来 SE 方法的数十倍! 这就是现 在普遍使用的快速自旋回波技术。
PHILIPS FFE
GE
FSPGR
GRE和SPGR的图像对比度
GRE T2*
GRE序列采用小的翻转角 (20-30˚ )和较长的TR ( 200 - 600ms ) 来 获 得 T2*加权。

MRI磁共振成像基本原理及读片

MRI磁共振成像基本原理及读片

MRI磁共振成像基本原理及读片MRI(磁共振成像)是一种医学影像技术,利用磁共振原理来获得身体内部的高分辨率图像。

本文将详细介绍MRI的基本原理及读片过程。

一、MRI的基本原理1.磁共振现象:MRI利用磁共振现象来获得图像。

人体组织主要由氢原子构成,而氢原子含有一个质子,质子带有正电荷。

在强磁场的作用下,质子将朝向磁场的方向旋转。

质子的旋转频率与外部磁场的强度成正比。

2.弹性波:磁共振装置内的一套辅助磁场可以加入特定的辅助磁场,这些辅助磁场将会给氢原子的原子核一个脉冲的影响,并造成它们间接或直接在周围的分子上加入一个特定的力,这个力的效应可以用声音形容,并且它的效应在短时间之内会消失。

3.回弹:当辅助磁场停止作用时,氢原子的原子核会回到基本对齐的状态。

在这个过程中,它们会向周围发出信号,被称为MR信号或回声。

回声信号会被感应线圈捕获并送到计算机中进行处理和图像重建。

4.信号解析:计算机将回声信号解析为图像。

这里有几种常用的重建方法,包括傅立叶变换、快速傅立叶变换和回声信号积分。

二、MRI读片过程1.图像质量评估:在开始读片之前,需要对图像质量进行评估。

评估因素包括图像分辨率、对比度、噪声、伪影等。

图像质量好与否对于正确认识病灶和提供准确诊断至关重要。

2.解剖结构分析:先观察解剖结构,包括脑、脊髓、血管、骨骼等。

通过比较对称性、大小、形态等,可以初步判断是否存在异常。

3.病灶检测与定位:在观察解剖结构的基础上,进行病灶的检测与定位。

常见的病灶包括肿瘤、脑梗死、脑出血等。

通过对信号强度、位置、边界特征等进行分析,可以初步判断病灶的类型和范围。

4.强度与序列分析:MRI图像的信号强度与脉冲序列有关。

不同的脉冲序列可以提供不同的对比度和重建方式。

通过比较不同脉冲序列的信号强度变化,可以更好地分析病灶的性质,并提供更准确的诊断依据。

5.影像报告编写:根据对图像的分析和判断,编写MRI影像报告。

报告通常包括病人基本信息、病灶的位置、大小、特征、诊断意见等。

MRI基础知识知识分享

MRI基础知识知识分享
夹层动脉瘤I型
肺动静脉瘘
右侧肾动脉狭窄
正常鼻咽部
鼻咽癌
鼻咽癌伴周围肌肉侵犯
右侧腮腺癌伴颈部淋巴结转移
右侧喉癌伴喉旁侵犯
颈部淋巴管瘤
中央型肺癌伴肺动脉侵犯
转移性纵隔 淋巴结
先心(室缺、大动脉转位、内脏反位)
先心 (右肺动脉流出异常、室缺)
T1WI
T2 WI
左心房粘液瘤
升主动脉瘤
夹层动脉瘤II型
5.MRI的三种基本图象特点
T1WI TR 500ms TE 20ms T2WI TR 1500ms TE 100ms 质子加权 TR 1500ms TE 20ms T2WI和质子加权可在一次成像中得到,质子加权诊断意义不大,现很少使用
肝豆状核变性
脑炎
脑脓肿
蛛网膜囊肿
2. 脊柱病变的诊断 椎间盘病变 椎体病变 椎管肿瘤 先天性畸形
椎间盘变性
颈椎椎间盘突出
椎间盘突出、脊髓压迫水肿
T2WI
T1WI
T2WI
腰椎椎间盘突出
腰椎椎间盘突出
高位椎间盘突出
脑干梗塞 CT颅底伪影多,脑干和小脑病变易漏诊、误诊
小脑多发梗塞 (男性,45岁,突发眩晕)
显示脑灰白质
7.2 高对比度 MRI软组织分辨极高率
T1WI
T2WI
显示脊髓及椎间盘
T2WI
T1WI
显示听神经
T2WI
T1WI
显示半月板及韧带
矢状位:显示胼胝体、脑干、导水管等
冠状位:显示垂体、海马等
顶部脑膜瘤, CT漏诊
CT
冠状位增强
矢状位
游离型椎间盘突出
判断肝肾交界处病灶来源
7.5 一些特殊方式成像 血管成像MRA 心脏大血管成像 MRCP与MRU 功能成像及波谱分析

阅读MRI图像基础知识简介

阅读MRI图像基础知识简介
红核、黑质
利用不同组织间磁敏感度的差异产生图像对比,对于局部磁场变化非常敏感
引起磁场变化的原因: 脑内静脉结构 出血 (血液代谢产物,顺磁性的含铁血黄素) 铁蛋白的沉积
磁敏感加权成像(SWI)
常规图像未见异常,SWI图像可见苍白球明显铁沉积
梗塞组织因血液供应中断,组织出现缺血、水肿、变性、坏死等病理变化
01
梗塞急性期 梗塞部位的水肿致T1和T2均延长,所以梗塞处在T1加权像上信号强度变低,在T2加权像上,信号强度增加
02
亚急性期脑梗塞有时可在T1加权像上表现为高信号,多为不规则脑回状。可能是由于缺血使小动脉壁破坏,梗塞后如血管再通或侧支循环建立,产生出血性变化,导致T1加权像出现高信号
03
梗 塞
1
囊变是一种较特殊的病理改变
2
囊内容物大体上可分为二种:一种为含有纯水分,另一种为含有蛋白质水分
3
前者因其内容物为纯水,故具有长T在T1加权像上其信号强度有所增加,呈中等信号乃至高信号强度表现;在T2加权像上,信号强度也较高,呈白色高信号改变
囊 变
室管膜囊肿-脉络膜裂囊肿
蛛 网 膜 囊 肿
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
汇报人姓名
演讲完毕,感谢观看
胶样囊肿
汇报人姓名
谢谢大家
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
汇报人姓名
鉴别各期脑梗死 MR 弥散成像: 左顶颞叶cMRI正常,DWI高信号,ADC低信号 T1WI T2WI DWI ADC 超急性期脑梗死
亚急性晚期脑梗死伴渗血 MRA-右颈内动脉及大脑中动脉闭塞 T1WI T2WI

磁共振阅片基础知识

磁共振阅片基础知识

磁共振阅片基础知识
磁共振成像(MRI)呀,就像是给身体拍了一部超级清晰的“大片”!咱来好好唠唠这磁共振阅片的基础知识哈。

你想想看,这磁共振就像是一个神奇的“摄影师”,能把我们身体里面的情况拍得清清楚楚。

那片子上的图像啊,可都是身体内部的秘密呢!
先说说那白花花的一片,嘿,那可不是雪哦!那可能是骨头呀,骨头在片子上看起来就是白白亮亮的。

然后呢,还有一些灰色的区域,说不定就是我们的肌肉啦、软组织啥的。

那要是看到一些黑黑的地方呢?别急别急,这可能是一些空腔呀,比如脑室之类的。

就好像一个大房间,里面空空的,所以看起来就比较黑啦。

再来讲讲那些像线条一样的东西。

哎呀呀,那可能就是血管啦!血管在磁共振片子上有时候就像小蛇一样弯弯曲曲的。

你说神奇不神奇?
咱们看片子的时候可不能马虎哦!要像侦探一样仔细观察每一个细节。

比如说,看看有没有异常的亮点呀,或者是形状奇怪的地方。

这可都可能是身体给我们发出的信号呢!
就好比说,如果看到一个地方突然凸出来一块,那是不是就像脸上突然长了个痘痘一样显眼呀?这时候就得好好琢磨琢磨啦,是不是身体哪里出问题啦?
还有哦,不同的部位在片子上也有不同的特点呢。

脑袋的片子和肚子的片子那肯定不一样呀,就像苹果和橘子,长得都不一样嘛!
总之呢,磁共振阅片可不是一件简单的事儿,但也别被它吓住啦!只要我们多学习,多观察,慢慢就会找到其中的窍门啦。

咱得把自己练成一个厉害的“片子解读大师”,这样就能更好地了解自己的身体啦!这不就是对自己健康负责嘛!磁共振阅片,加油学起来呀!
原创不易,请尊重原创,谢谢!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阅读MRI图像基础知识简介T1加权像高信号的产生机制一般认为,T1加权像上的高信号多由于出血或脂肪组织引起。

但近年来的研究表明,T1加权高信号尚可见于多种颅内病变中,包括肿瘤、脑血管病、代谢性疾病以及某些正常的生理状态下。

在射频脉冲的激发下,人体组织内氢质子吸收能量处于激发状态。

射频脉冲终止后,处于激发状态的氢质子恢复其原始状态,这个过程称为弛豫。

在弛豫过程中,氢质子将其吸收的能量释放到周围环境中,若质子及所处晶格中的质子也以与Larmor频率相似的频率进动,那么氢质子的能量释放就较快,组织的T1弛豫时间越短,T1加权像其信号强度就越高。

T1弛豫时间缩短者有3种情况:其一为结合水效应;其二为顺磁性物质;其三为脂类分子。

一.结合水效应小分子的自由水(如脑脊液)具有非常高的运动频率,它的运动频率要远高于MRI的Larmor频率,其T1弛豫时间也远长于身体内其他组织,所以在T1加权像上呈低信号。

如在水中加入大分子的蛋白质,那么具有极性的水分子会被带有电荷的蛋白质分子吸引而结合在蛋白质分子上,从而形成一个蛋白质水化层。

在此蛋白分子水化层内的水分子受蛋白分子的吸引,致使水分子的运动频率下降,接近于Larmor频率。

使其T1驰豫时间缩短,故T1加权成像时呈现出高信号改变。

二.顺磁性物质顺磁性物质的特点是含有不成对的电子,常见的有铁、铬、钆、锰等金属、稀土元素及自由基。

在磁场中顺磁性物质的磁进动与组织内质子进动相互作用,产生一个随机变化的局部微小磁场,这个微小磁场的变化频率与Larmor频率接近,从而使T1弛豫时间缩短。

三.脂类分子纯水分子非常小,运动频率非常高,远高于Larmor频率。

大分子如蛋白质和DNA分子运动频率较慢,低于Larmor频率。

所以大、小分子在T1加权上均呈低信号。

脂类分子为中等大小,其运动频率高于蛋白质,低于纯水,与Larmor频率相似,所以T1弛豫时间短,T1加权像呈高信号。

正常脑组织的MR信号特点水水分子较小,它们处于平移、摆动和旋转运动之中,具有较高的自然运动频率,这部分水在MRI称为自由水。

如果水分子依附在运动缓慢的较大分子蛋白质周围而构成水化层,这些水分子的自然运动频率就有较大幅度的减少,这部分水又被称为结合水。

自由水运动频率明显高于Larmor共振频率,因此,T1弛豫缓慢,T1时间较长;较大的分子蛋白质其运动频率明显低于Larmor共振频率,故T1弛豫同样缓慢,T1时间也很长。

结合水运动频率介于自由水与较大分子之间,可望接近Larmor共振频率,因此T1弛豫颇有成效,T1时间也较上述二者明显缩短。

局部组织含水量稍有增加,不管是自由水还是结合水,MR信号均可发生显而易见的变化,相比之下,后者更为明认识自由水与结合水的概念有助于认识病变的内部结构,有利于对病变作定性诊断。

CT检查由于囊性星形细胞瘤的密度与脑脊液密度近似而难以鉴别,而MRI检查由于囊性星形细胞瘤中的液体富含蛋白质,其T1时间短于脑脊液,在T1加权像中呈较脑脊液信号为高的信号。

又如,MRI较CT更能显示脑软化。

脑软化在显微镜下往往有较多由脑实质分隔的小囊组成,这些小囊靠近蛋白质表面的膜状结构,具有较多的结合水,T1较短,其图像比CT显示得更清楚。

所以MRI所见较CT更接近于病理所见。

再比如,在阻塞性脑积水时,脑脊液(相当于自由水)由脑室内被强行渗漏到脑室周围脑白质后,变为结合水,结合水在T1加权像中信号明显高于脑脊液,而在T2加权像中又低于脑脊液信号。

综上所述,局部组织水份增加可分为自由水和结合水,前者引起T1明显延长而远离Larmor共振频率,后者造成T1稍有延长而接近Larmor频率而致使T1加权像上信号增强。

脂肪与骨髓组织脂肪与骨髓组织有较高的质子密度,且这些质子具有非常短的T1值,根据信号强度公式,质子密度大和T1值小,其信号强度大,故脂肪和骨髓组织在T1加权像上表现为高强度信号,与周围长T1组织形成良好对比,信号高呈白色。

若为质子密度加权像,此时脂肪组织和骨髓组织仍呈高信号,但周围组织的信号强度增加,使其对比度下降;若为T2加权像,脂肪组织和骨髓组织的信号都将受到一定程度的限肌肉组织肌肉组织所含的质子密度明显少于上述脂肪和骨髓组织,且具有较长的T1和较短的T2驰豫特点。

所以在T1加权像上,信号强度较低,影像呈灰黑色。

随着短T2的弛豫特点,信号强度增加不多,影像呈中等灰黑色。

韧带和肌腱组织的质子密度低于肌肉组织,该组织也具有长T1和短T2弛豫特点,其MR信号无论在T1或T2加权像上,均表现为中低信号。

骨骼组织骨皮质内所含的质子密度很小,MR信号非常弱,无论在T1加权或T2加权扫描,均表现为黑色低信号。

钙化软骨的质子密度特点与骨皮质相同,所以也表现为黑色低信号。

组织内出现其他钙化,无论其形态或大小,一般均呈现为与钙化软骨相同的组织影像特点。

纤维软骨组织则与钙化软骨不同,其组织内的质子密度明显高于骨皮质和钙化软骨。

且组织具有较长的T1和较短的T2弛豫特征,但因其具有一定的质子密度,故在T1或T2加权像上,信号强度不高,呈中低信号。

透明软骨内含有75%~80%的水份,具有较大的质子密度,并具有较长的T1和长T2弛豫特征。

在T1加权像上,因T1值长,所以信号强度较低。

而在T2加权像上,因T2值长,信号强度明显增加。

病理组织的MR信号特点不同的病理过程,病理组织有不同的质子密度、T1及T2弛豫时间。

采用不同的脉冲序列,将表现出不同的的信号强度。

掌握这些信号变化特点,有助于判别大体的病理性质,部分作出定性诊断。

水肿脑水肿分为3种类型,即血管源性水肿、细胞毒素水肿及间质性水肿。

血管源性水肿是最为常见的脑水肿,由血脑屏障破坏所致,常见于肿瘤及炎症。

由于血脑屏障破坏,血浆由血管内漏进入细胞外间隙,这是血管源性水肿的病理生理基础。

血管源性水肿主要发生在脑白质内,结构致密的脑灰质通常不易受影响,典型的血管源性水肿呈手指状分布于脑白质之中,在肿瘤、出血、炎症以及脑外伤等脑部疾患中颇为常见。

由于上述脑病变本身也可使T1或T2时间更长,其MRI 表现与水肿有类似之处,尤其在T1加权像上难以分辨。

鉴别的方法是采用重T2加权扫描序列,随着回波时间的延长,水肿信号强度逐渐增高,而肿瘤信号增加幅度不大。

必要时可行Gd-DTPA增强扫描,水肿区无异常对比增强。

细胞毒素水肿是由于缺氧使ATP减少,钠-钾泵功能失常,钠与自由水进入细胞内,造成细胞肿胀,细胞外间隙减少所致。

细胞毒素水肿常见于急性脑梗塞的区域,使脑白质与脑灰质同时受累。

急性脑梗塞有时在T2加权图像上,其边缘部分信号较高,即为细胞毒素水肿的MRI所见,它反映了梗塞区域存在肿胀的脑细胞。

由于细胞毒素水肿出现和存在的时间不长,有时与血管源性水肿同时存在,MRI要绝对区分它们尚有一定的困难。

间质性脑水肿时,由于脑室内压力增高,出现脑脊液经室管膜迁移到脑室周围脑白质的病理生理表现。

当脑室压力高,如急性脑积水或交通性脑积水时,T2加权图像上于脑室周围可出现边缘光整的高信号带;在脑室内压力恢复到近乎正常时(如代偿期),上述异常信号又消失。

间质性水肿由于含有较多的结合水,在T2加权像上已能与脑室内脑脊液(自由水)的信号区别,在质子密度加权图像上,两者信号对比更明显。

出血出血在中枢神经系统疾病中常见。

按出血部位可分为硬膜下、蛛网膜下、脑内及脑室内出血,它们均有一个基础疾病,如外伤、变性血管病、血管畸形、肿瘤或炎症。

MRI在显示出血、判断出血原因以及估计出血时间方面有独特作用,其中以脑内血肿MRI信号演变最具有特征性。

较多血液由血管内溢出后,在局部脑组织内形成血肿。

随着血肿内血红蛋白的演变以及血肿的液化、吸收,MRI信号也发生一系列变化。

因此,探讨血红蛋白及其衍生物的结构对于认识与解释血肿MRI信号甚为重要。

人体血液富含氧合血红蛋白,氧合血红蛋白释放出氧气后即转化为去氧血红蛋白。

氧合血红蛋白与去氧血红蛋白中含有的铁均为二价还原铁(Fe2+),还原铁是血红蛋白携带氧气、释放氧气、行使其功能的物质保证。

人体内维持血红蛋白铁于二价状态的关键在红细胞内多种代谢途径,其结果阻止了有功能的亚铁血红蛋白变为无功能的正铁血红蛋白。

但当血液从血管中溢出后,血管外红细胞失去了能量来源,细胞内多种代谢途径丧失。

同时由于红细胞缺氧,血肿内含氧血红蛋白不可逆地转化为去氧血红蛋白,最终变为正铁血红蛋白,还原铁转化为氧化铁,使血肿的MRI信号发生根本的变化。

脑出血的MRI表现取决于出血时间,主要由血红蛋白的不同代谢状态及血肿的周围环境决定的。

超急性期:出血时间不超过24h。

红细胞内为氧合血红蛋白,氧合血红蛋白内无不成对电子,不具顺磁性。

T1加权像为等或稍低信号,反映了出血内较高的水含量。

T2加权像为稍高信号,说明新鲜出血为抗磁性,不引起T2弛豫时间缩短。

急性期:出血时间为1~3d。

红细胞内为去氧血红蛋白,它有四个不成对电子,具有顺磁性,但它的蛋白构形使水分子与顺磁性中心的距离超过3埃,因此,并不显示出顺磁效应,T1加权像仍成稍低信号。

但由于它具有顺磁性,使红细胞内的磁化高于红细胞外,当水分子在红细胞膜内外弥散时,经历局部微小梯度磁场,使T2弛豫时间缩短,T2加权像呈低信号。

亚急性期:出血的3~14d。

出血后3~7d为亚急性早期,7~14d为亚急性晚期。

在亚急性早期,去氧血红蛋白被氧化为正铁血红蛋白首先出现在血肿的周围,并逐渐向血肿内发展,它具有五个不成对电子,有很强的顺磁性。

由于正铁血红蛋白形成,T1加权像呈高信号,T2加权像因顺磁性物质的磁敏感效应而呈低信号。

亚急性晚期红细胞开始溶解,在T1或T2加权像上均呈高信号。

红细胞溶解使红细胞对正铁血红蛋白的分隔作用消失,水含量增加是T2加权像信号增高的主要原因。

慢性期:出血时间超过14d,含铁血黄素和铁蛋白形成。

在此期间,正铁血红蛋白进一步氧化为氧化铁,同时由于巨噬细胞的吞噬作用使含铁血黄素沉着于血肿周边部,其使T2弛豫时间缩短,因此在血肿的周边部出现低信号的影像环带,其余仍为高强度信号表现。

所以血肿中心T1加权像为等信号,T2加权像为高信号,血肿周边T1加权像为稍低信号,T2加权像为低信号。

铁沉积过多在中高场强MRI系统作T2加权扫描时,可于苍白球、红核、黑质、壳核、尾状核和丘脑部位见到明显的低信号,这是由于高铁物质在上述部位沉积所致。

脑部铁沉着(非亚铁血红蛋白)始于儿童,约在15~20岁达到成人水平。

在6个月龄的婴儿苍白球中已有铁存在,黑质铁沉着见于9~12个月时,红核在1岁半~2岁,小脑齿状核要到3~7岁才显示铁的存在。

上述部位的铁沉着量与年龄增长有一定相关性,仅沉积速度不一样,如苍白球的含铁量在开始时就高,以后缓慢增加;而纹状体(如壳核)的含铁量开始时不高,以后才较苍白球有明显的增加,直到70岁之后接近苍白球内所含的铁量。

相关文档
最新文档