高等代数北大三版向量空间
北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

第9章欧几里得空间9.1复习笔记一、定义与基本性质1.欧几里得空间定义设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β),它具有以下性质:(1)(α,β)=(β,α);(2)(kα,β)=k(α,β);(3)(α+β,γ)=(α,γ)+(β,γ);(4)(α,α)≥0,当且仅当α=0时(α,α)=0.这里α,β,r是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间.2.长度(1)定义非负实数称为向量α的长度,记为|α|.(2)关于长度的性质①零向量的长度是零,②|kα|=|k||α|,③长度为1的向量称为单位向量.如果α≠0,向量1αα就是一个单位向量,通常称此为把α单位化.3.向量的夹角(1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有|(α,β)|≤|α||β|当且仅当α,β线性相关时,等号才成立.(2)非零向量α,β的夹角<α,β>规定为(3)如果向量α,β的内积为零,即(α,β)=0,那么α,β称为正交或互相垂直,记为α⊥β.零向量才与自己正交.(4)勾股定理,即当α,β正交时,|α+β|2=|α|2+|β|2.4.有限维空间的讨论(1)度量矩阵设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得a ij=(εi,εj)(i,j=1,2,…,n),显然a ij=a ji,于是利用矩阵,(α,β)还可以写成(α,β)=X'AY,其中分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵.(2)性质①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC;表明不同基的度量矩阵是合同的.②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的.二、标准正交基1.正交向量组欧式空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组.按定义,由单个非零向量所成的向量组也是正交向量组.2.标准正交基(1)定义在n维欧氏空间中,由n个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基.说明:①对一组正交基进行单位化就得到一组标准正交基.②一组基为标准正交基的充分必要条件是:它的度量矩阵为单位矩阵.(2)标准正交基的求法①定理1n维欧氏空间中任一个正交向量组都能扩充成一组正交基.②定理2对于n维欧氏空间中任意一组基ε1,ε2,…,εn,都可以找到一组标准正交基η1,η2,…,ηn,使L(ε1,ε2,…,εi)=L(η1,η2,…,ηi),i=1,2,…,n.定理2中把一组线性无关的向量变成一单位正交向量组的方法称做施密特正交化过程.例:把α1=(1,1,0,0),α3=(-1,0,0,1),α2=(1,0,1,0),α4=(1,-1,-1,1)变成单位正交的向量组.解:①先把它们正交化,得β1=α1=(1,1,0,0),②再单位化,得3.基变换公式设ε1,ε2,…,εn与η1,η2,…,ηn是欧氏空间V中的两组标准正交基,它们之间的过渡矩阵是A=(a ij),即因为η1,η2,…,ηn是标准正交基,所以矩阵A的各列就是η1,η2,…,ηn在标准正交基ε1,ε2,…,εn下的坐标.4.正交矩阵n级实数矩阵A称为正交矩阵,如果A'A=E.由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基.三、同构1.同构定义实数域R上欧式空间V与V'称为同构的,如果由V到V'有一个双射σ,满足(1)σ(α+β)=σ(α)+σ(β),(2)σ(kα)=kσ(α),(3)(σ(α),σ(β))=(α,β),这里α,β∈V,k∈R,这样的映射σ称为V到V'的同构映射.同构的欧氏空间必有相同的维数.每个n维的欧氏空间都与R n同构.2.同构的性质同构作为欧氏空间之间的关系具有(1)反身性;(2)对称性;(3)传递性;(4)两个有限维欧氏空间同构的充分必要条件是它们的维数相同..四、正交变换1.定义欧氏空间V的线性变换A称为正交变换,如果它保持向量的内积不变,即对于任意的α,β∈V,都有(Aα,Aβ)=(α,β).2.性质。
北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。
高等代数课件北大三版 第六章 向量空间

惠州学院数学系
9
(a2) [f(x)+g(x)]+h(x)= f(x)+ [g(x) +h(x) ],
任给f(x),g(x),h(x) ? F[x].
(a3) 0向量就是零多项式. (a4) f(x)的负向量为(- f(x)). (m1) (ab) f(x)= a(bf(x)).
(m2) a [f(x)+g(x)]= a f(x)+ a g(x). (m3) (a ? b) f(x)= a f(x)+ b f(x).
加法和数乘两种,并且满足(教材P183):
1. A+B=B+A 2. (A+B)+C= A+( B+C) 3. O+A=A 4. A+(-A)=O
5. a(A+B)= aA+Ab 6. (a+b)B=a B +Bb 7. (ab)A=a(b)A 还有一个显而易见的: 8. 1A =A
惠州学院数学系
5
(m4) 1 ? f(x)= f(x).
注1:刚开始,步骤要完整.
惠州学院数学系
10
例5 C[a,b] 表示区间[a,b] 上连续实函数按照通常的加法 与数乘构成实数域 R的向量空间,称为函数空间 . 证明: 比照例3,给出完整步骤. 例6 (1)数域F是F上的向量空间. (2)R是Q上的向量
空间,R是否为C上的向量空间?
惠州学数学系
12
例8 在 R2 上定义加法和数乘:
(a, b) ? (c, d) ? (a ? c, b ? d ? ac) k (a,b) ? (ka, kb? k(k ? 1) a 2 )
2
证明 R2 关于给定运算构成R上的向量空间.
高等代数中空间定义

高等代数中空间定义
在高等代数中,一个空间是指在一定规则下满足一些特定性质的集合。
具体地说,一个空间需要满足以下三个性质:
1. 封闭性:对于空间中的任意两个元素进行某种运算,其结果仍然属于该空间中。
例如,在一个向量空间中,任意两个向量进行线性组合运算后的结果仍然是一个向量。
2. 直和性:空间中的元素可以通过线性组合的方式表示。
也就是说,空间中的任意一个元素都可以被其他元素的线性组合唯一表示。
这个性质表明空间是由一组基向量生成的,这也是向量空间的基础概念。
3. 尺度任意性:对于空间中的任意一个非零元素,我们可以通过对其进行标量乘法运算来获得其他与之平行但尺度不同的向量。
也就是说,空间中的元素具有尺度的任意性。
总之,空间是一个满足封闭性、直和性和尺度任意性三个性质的集合。
常见的空间包括向量空间、矩阵空间、函数空间等。
这些空间在高等代数中都有广泛的应用。
高等代数北大第三版 在线阅读

3° p2+α
则 在有理数域上是不可约的 .
17
证: 若 在 上可约 , 由定理11, f(x)可分解为两次数较低的整系数多项式积
f(x)=(bx+b1x1+…+b)(cmx"+cmx"-1+…+c)
b,cjez, , m < n ,I+m=n
又 不妨设
…p l 或 plc
判别法来判断是其是否可约 ,此时可考虑用适当的
代换
使
满足
Eisenstein判别法条件 , 从而来判定原多项式
不可约 .
22
命题 有理系数多项式 f(x)在有理系数上不可约
多项式 g(x)= f(ax+b) 在有理数域上不可约 .
23
例5 证明:
在 上不可约 .
证: 作变换 x=y+1, 则
f(x)=y2+2y+ 2,
取 p= 2, 由Eisenstein判别法知, y2+ 2y+2 在Q上不可约,
所以 在Q上不可约 .
24
说明:
对于许多 上的多项式来说 ,作适当线性代换后 再用Eisenstein判别法判定它是否可约是一个较好的 办法 ,但未必总是凑效的. 也就是说 ,存在 上的
多项式
无论作怎样的代换
都不能
使
f ( x ) = ( sx- r ) ( bjx" - 1 + … + bx+ b )
bez, i=0,1…n-1 比较两端系数 ,
得
an= sbn1, a0= -rbd. 所以 ,sla, r l a
高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A为一个n级实对称矩阵,且,证明:必存在实n维向量,使。
证因为,于是,所以,且A不是正定矩阵。
故必存在非退化线性替换使,且在规范形中必含带负号的平方项。
于是只要在中,令则可得一线性方程组,由于,故可得唯一组非零解使,Xs即证存在,使。
13.如果A,B都是n阶正定矩阵,证明:也是正定矩阵。
证因为A,B为正定矩阵,所以BX为正定二次型,且,,因此,于是必为正定二次型,从而为正定矩阵。
14.证明:二次型是半正定的充分必要条件是它的正惯性指数与秩相等。
证必要性。
采用反证法。
若正惯性指数秩r,则。
即,22222 若令,y,则可得非零解使。
这与所给条件矛盾,故。
充分性。
由,知,222故有,即证二次型半正定。
.证明:是半正定的。
证()可见:。
21)当不全相等时2)当时f。
2故原二次型是半正定的。
AX是一实二次型,若有实n维向量X1,X2使16.设,。
X1。
证明:必存在实n维向量使X0设A的秩为r,作非退化线性替换将原二次型化为标准型,其中dr为1或-1。
由已知,必存在两个向量X1,X2使222和,X1故标准型中的系数不可能全为1,也不可能全为-1。
不妨设有p个1,q 个-1,且,即,这时p与q存在三种可能:,,下面仅讨论的情形,其他类似可证。
令,,,则由可求得非零向量X0使2222,X0即证。
17.A是一个实矩阵,证明:。
证由于的充分条件是与为同解方程组,故只要证明与同解即可。
事实上,即证与同解,故。
注该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。
一、补充题参考解答1.用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1);2);3);4),其中。
n解1)作非退化线性替换,即,则原二次型的标准形为,且替换矩阵222222使,,其中2)若则。
高等代数-向量空间

(3)若向量组
1
,
2
,
,
是向量空间
r
V
的一
个基,则 V 可表示为
V x 11 22 rr 1 ,,r R
例6 讨论向量空间 V { x (0, x2, 的基与维数.
, xn )T | x2,
, xn R}
解:显然
e2 (0,1, 0, , 0)T e3 (0, 0,1, , 0)T
1 1 1 1 3 0 3 0 2 3 0 3 3 5 5
~ r2 2r1
r3 r1
1 1 1 1 3 0 3 0 2 3 0 3 3 5 5
r2r3~(
3) 3
1 1 1 1 3
0
1
0
2
1
3
0
1
1
5 3
5 3
r2r3~(
3) 3
r1
~
r3
r3 r2
解 V2不是向量空间.
因为若 1,a2 ,,an T V2 , 则2 2,2a2 ,,2an T V2 .
例4 设a,b为两个已知的n维向量,集合
V x a b , R
试判断集合是否为向量空间.
解 V是一个向量空间.因为若x1 1a 1b x2 2a 2b, 则有
x1 x2 (1 2 )a (1 2 )b V ,
1,2, ,n 可由 1,2,
是 Rn 的基.
这n+1个向量线性相关, 且
,n 线性表示, 则 1,2, ,n
定义: 设1,2, ,n是n维向量空间V的基, 对任
一向量 ,有且仅有一组有序数组,x1, x2 , , xn使 x11 x22 xnn
称有序数组 x1, x2 , , xn 为向量 在基 x1, x2 , , xn
第六章向量空间

第六章 向量空间一 综述向量空间是高等代数最基本的概念之一,它用公理化方法首次引进了一个代数系,而这种公理化方法在高等代数以后各章以及在近世代数中将屡次遇到,它是近代数学研究的一个重要方法.本书以后各章如线性变换、欧几里德空间等概念都是直接建立在向量空间定义的基础上的.因此本章内容又是以后各章学习的基础. 二 教学目的使学生在集合、映射概念的基础上,理解并掌握向量空间的定义、性质和构造,并培养学生用公理化方法研究代数系的能力. 三 重点、难点教材重点:向量空间的定义、性质 教学难点:向量空间的定义6.1 定义和例子一 教学思考向量空间的定义是本章的重点和难点,是学生首次接触的一个用公理化方法引进的代数系.这一节的教学目的,不仅使学生正确理解和掌握向量空间的概念,而且应该使学生初步了解以集合论为基础运用公理化方法从具体的代数系抽象出一般的代数系的方法和意义,对此要心中有数,以便在教学中把传授知识与培养能力结合起来. 二 内容和要求1.内容:定义、例子及简单性质2.要求:掌握向量空间的概念及其简单性质,初步了解公理化的思想方法. 三 教学过程1. 引例 三维几何空间的实质及更多的类似结构的代数对象(略). 2. 定义及例子定义 1 令F 是一个数域,F 中的元素用小写拉丁字母 ,,b a 表示;令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα表示.我们把V 中的元素叫做向量,F 中的元素叫做纯量.若下列条件满足,就称V 是F 上的一个向量空间.1)在V 中定义了一个叫加法,对V 中任意两个向量βα,都有V 中唯一确定的向量与它们对应,这个向量叫做α与β的和,记为βα+.2)有一个纯量乘法,对于F 中的每一个数a 和V 中每一个向量α,有V 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,记为αa .3)向量的加法和纯量乘法满足下列算律:F b a V ∈∈∀,;,,γβα有 (1)αββα+=+; (2))()(γβαγβα++=++;(3)在V 中存在一个向量叫零向量,积作ο;它满足对V ∈∀α 有ααο=+; (4)对V ∈∀α,V ∈'∃α使得οαα=+';这样的α'叫做α的负向量;(负向量的定义) (5)βαβαa a a +=+)(; (6)αααb a b a +=+)(; (7))()(ααb a ab =; (8)αα=1. 3. 向量空间的简单性质1)由于向量的加法满足结合律,所以任意n 个向量相加有唯一确定的含义且可写为不加括号的和的形式;再者由于加法满足结合律和交换律,所以在求任意n 个向量的和时可以任意交换被加项的次序.2)命题6.1.1(零向量、负向量的唯一性)在一个向量空间V 中,零向量是唯一的;对V ∈∀α,α的负向量是由α唯一确定的.(同一法,略) 3)命题6.1.2 对V ∈∀α,F a ∈∀有οα=0,οο=a ; αααa a a -=-=-)()(; 0=⇒=a a οα或οα=.4. 介绍一种写法-——(向量矩阵的记法)设V n ∈ααα,,,21 ,把它们排成一行写成一个以向量为元素的n ⨯1矩阵(n ααα,,,21 ),设)()(F M a A m n m n ij ⨯⨯∈=;定义(n ααα,,,21 )),,,(21m A βββ =,其中)1(,1m j a ni i ij j ≤≤=∑=αβ.即按照数域F 上矩阵的乘法定义(n ααα,,,21 )右乘以A (这里约定对V ∈∀α,F a ∈∀有a a αα=).并且设)(F M A m n ⨯∈,)(F M B P m ⨯∈,由向量与纯量乘法所满足的算律有:(n ααα,,,21 )B A AB n )),,,(()(21ααα = ,即结合律成立.6.2 子空间一 教学思考1.向量空间一章主要讨论向量空间的运算、性质和结构,一般是通过向量空间自身(基、维数等)或其子结构(子空间)来讨论的,这正是代数学的基本方法.因而本节的概念(子空间)和结论在理论上与方法上是重要的.2.由于本章与以后内容的(抽象)特点,需重点培养学生逻辑论证能力,除了在教学中经常结合问题讲解分析解决问题的一般思想方法外,还需对以后教学有重要影响的几类具体问题的论证思路作出明确的交代.本章主要是“子空间的判定”.3.内容作如下调整,即先定义子空间,再介绍为何称为子空间,然后介绍子空间的判定和运算. 二 内容要求1.内容:子空间的定义、子空间的交与和.2.要求:理解和掌握向量空间的子空间的概念和判定方法、子空间的交与和的概念.三 教学过程1.子空间的概念及判定 (1)定义定义1 设V 是数域F 上的向量空间,W 是V 的非空子集,若对V ∈∀βα,都有W ∈+βα,则称W 对V 的加法封闭.若对F a V ∈∀∈∀,α都有W a ∈α,则称W 对纯量乘法封闭.定义2 令W 是数域F 上的向量空间V 的一个非空子集,若W 对V 的加法和纯量乘法封闭,则称W 是V 的一个子空间.TH6.2.1设W 是数域F 上的向量空间V 的一个非空子集,若W 对V 的加法和纯量乘法封闭,则W 本身也作成F 上一个向量空间.(2)子空间的判定TH6.2.2向量空间V 的一个非空子集W 是V 的一个子空间的充要条件是对W F b a ∈∀∈∀βα,,,都有W b a ∈+βα.2.子空间的交与和定义3 设21,W W 都是V 的子空间,则21W W 称为两个子空间的交. 命题 21W W 也是V 的子空间.定义 4 设21,W W 都是V 的子空间,由所有能表示为),(221121W W ∈∈+αααα的向量组成的集合成为1W 与2W 的和,记为21W W +;即21W W +={}221121,|W W ∈∈+αααα. 命题 21W W +也是V 的子空间.6.3 向量的线性相关性一 教学思考1.向量的线性相关性在研究向量空间的结构时极为重要,并且学生在学习时感到困难的多是由于逻辑思维混乱以及推理不严谨造成的.2.本节重要的在于讲清诸概念,理清它们之间的关系,介绍一般方法和特殊方法,补充一些容易混淆的问题及一些错误做法或判断. 二 内容要求内容:向量的线性相关性定义、性质;替换定理;极大无关组.要求:正确理解和掌握向量组的线性相关性的概念及性质,掌握判断向量组线性关系的一般方法和特殊方法. 三.教学过程1.线性相关与线性无关(1)线性组合、线性表示及其性质定义 1 设r ααα,,,21 是向量空间V 的r 个向量,r a a a ,,,21 是数域F 中任意r 个数,我们把和r r a a a ααα ++2211叫做向量r ααα,,,21 的一个线性组合.定义 2 若V 中向量α可以表示成r ααα,,,21 的线性组合,即∃F a a a r ∈,,,21 使得r r a a a αααα ++=2211,则称α可以由r ααα,,,21 线性表示.(例略)性质 命题6.3.1向量组r ααα,,,21 中每一向量都可以由这一组向量线性表示.命题6.3.2若向量γ可以由r βββ,,,21 线性表示,而每个i β可由s ααα,,,21 线性表示,则γ可以由s ααα,,,21 线性表示.(2)线性相关、线性无关及有关性质定义3 设r ααα,,,21 是向量空间V 的r 个向量,若存在数域F 中r 个不全为0的数ra a a ,,,21 使得οααα=++r r a a a 2211,则称r ααα,,,21 线性相关,否则称r ααα,,,21 线性无关. 例1 若r ααα,,,21 中有一个零向量,则r ααα,,,21 一定线性相关. 例2 判断3F 中向量)9,7,1(),0,1,2(),3,2,1(321-==-=ααα是否线性相关 例3 在][x F 中对任意非负整数n ,证明nx x x ,,,,12线性无关.(解略)性质命题 6.3.3 若向量组{r ααα,,,21 }线性无关,则它的任一部分向量组也线性无关;等价地:若{r ααα,,,21 }有一部分组线性相关,则整个向量组{r ααα,,,21 }也线性相关.(证略)命题 6.3.4 设{r ααα,,,21 }线性无关,而{βααα,,,,21r }线性相关,则β一定可以由r ααα,,,21 线性表示,且表示法唯一.命题6.3.5 向量r ααα,,,21 (2≥r )线性相关的充要条件是其中某个向量是其余向量的线性组合.(证略)2.向量组的等价、替换定理定义 4 设{}r ααα,,,21 和{}s βββ,,,21 是V 中的两个向量组,若每个),2,1(r i i =α都可以由s βββ,,,21 线性表示,而每个),2,1(s j j =β也可以由r ααα,,,21 线性表示,则称这两个向量组等价.定理6.3.6(替换定理)设向量组{}r ααα,,,21 (1)线性无关,且每个),2,1(r i i =α都可以由{}s βββ,,,21 (2)线性表示.则A )s r ≤;B )必要时对(2)中向量重新编号,使得用r ααα,,,21 替换r βββ,,,21 后得向量组{}s r r ββααα,,,,,,121 +(3)与(2)等价.推论6.3.7两个等价的线性无关向量组含有相同个数的向量. 3.极大无关组(讨论一个非零向量组的一种部分组)定义 5 向量组{r i i i ααα,,,21 }是向量组{}n ααα,,,21 的一个部分组(n r ≤),若满足:1)ri i i ααα,,,21线性无关;2)每个),,1(n j j =α都可由ri i i ααα,,,21线性表示.则称rii i ααα,,,21是向量组{}n ααα,,,21 的一个极大线性无关部分组(简称极大无关组). 极大无关组的求法:1)一般方法——设给定{}n ααα,,,21 ,求其一个极大无关组.先从1α考虑,若οα≠1,保留;考虑21,αα看其是否线性无关.无关,保留;相关舍去2α,考虑31,αα看其是否线性无关.依次类推直至n α,便得.(由于考虑次序不同可得不同的极大无关组)例4 求向量组{}32,2,,12+++x x x x 的一个极大无关组.(解略)2)特殊方法——对n F 中向量组{}n ααα,,,21 ,求极大无关组. 首先:可以证明“命题”:“设)(F M m n ⨯的矩阵A 经过行的初等变换得到)(F M m n ⨯的矩阵B ,则A 与B 的列向量有相同的线性关系.”(证略)这样可得:A )求nm F ∈ααα,,,21 的线性关系,可以以m ααα,,,21 列作矩阵A ,通过对A 作行初等变换化为标准形B ,由B 的列向量的线性关系可得A 的列向量的线性关系.进而B )用上述方法可求n F 中向量组{}n ααα,,,21 的极大无关组. 例5 求3R 中向量组)6,1,5(),4,0,3(),3,1,2(),1,2,1(4321====αααα的一个极大无关组. 解:以4321,,,αααα为列作矩阵B A =⎪⎪⎪⎭⎫⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛=210010101001643110125321.设B 的列向量为4321,,,ββββ,这样4321,,,αααα与4321,,,ββββ有相同的线性关系.容易看出321,,βββ线性无关,且=4β3212βββ+-;因此321,,ααα线性无关且=4α3212ααα+-.于是321,,ααα是4321,,,αααα的一个极大无关组.6.4 基与维数一 教学思考1.向量空间的结构中基起着重要作用,那么基概念的引入及作用为重点.2.从内容上本节在于给出了基与维数的概念后,解决基的存在性、个数及求法,要注意方法的总结归纳,特别是生成子空间.3.从定义上维数依赖于基,即要求一个向量空间的维数须求一个基;但反过来从结果上看,若已知维数n 求基的话,即求一组n 个线性无关的向量.4.本节及以后主要讨论有限维向量空间,有所谓的维数公式,其反映有限维向量空间的两个子空间与它们的和与交空间的维数之间的关系.在证明中,从“最小”的子空间的基出发逐步扩充为所出现的子空间的基的方法是重要的.5.基的存在性、个数、求法(生成子空间的基的求法)、余子空间等方法,注意总结归纳. 二 内容要求内容:向量空间的基与维数,有限维向量空间的维数公式,余子空间要求:正确理解和掌握向量空间的基与维数的概念,余子空间的定义,了解基在向量空间的结构中的重要作用,掌握求基、余子空间的一般方法和特殊方法. 三 教学过程1.引言我们知道当{}ο≠V 时,V 有无穷多向量,那么它们之间的结构如何?具体地,我们能否用V 中有限个向量表示所有向量.下面讨论这个问题.2.一类特殊子空间——由一组向量生成的子空间定义1设V r ∈ααα,,,21 ,那么由r ααα,,,21 的线性组合组成的集合{}F a a a a W i r r ∈+++=|2211ααα 称为由这一组向量r ααα,,,21 生成的子空间.记为L (r ααα,,,21 ),其中r ααα,,,21 叫做生成元.例1 n F 中)1,,0,0(,),0,,,0,1(1 ==n εε,则nn F L =),,(1εε . 例2 ][x F 中n n x x ===+121,,,1ααα ,则][),,,1(x F x x L n n= .关于生成子空间有:定理 6.4.1设V n ∈ααα,,,21 ,且不全为零向量,r i i i ααα,,,21 为其一个极大无关组,则L (n ααα,,,21 )=L (r i i i ααα,,,21 ).3.基与维数1)定义2 设V n ∈ααα,,,21 ,若1)n ααα,,,21 线性无关;2)V ∈∀α都可由n ααα,,,21 线性表示.则称n ααα,,,21 为V 的一个基.定义 3 一个向量空间V 的一个基所含向量的个数叫做V 的维数;记为V dim .规定零空间的维数为0.2)定理定理6.4.2(基的作用)设n ααα,,,21 为V 的一个基,则V ∈∀α都可唯一地由n ααα,,,21 线性表示.定理6.4.3n 维向量空间V 任意多于n 个向量的向量组一定线性相关.定理 6.4.4设n V =dim ,V r ∈ααα,,,21 线性无关(易知n r ≤),则总可以添加r n -个向量n r r ααα,,,21 ++,使得n ααα,,,21 作为V 的一个基.特别V 的任意n 个线性无关向量都可以取作基.例3 将)1,2,3,1(),1,0,2,1(21-==αα扩充为4R 的一个基.解:(法一)思想方法:由定理的证明过程,取4R 的一个基(如标准基4321,,,εεεε),然后用21,αα代替其中某两个如21,εε,使得21,αα,43,εε线性无关;而代替哪两个,可用逐步添加法使添在21,αα上后线性无关.(法二)思想方法:可以从21,αα出发,利用21,αα为列再添上两个作成一个4阶方阵A ,使得0≠A ,如⎪⎪⎪⎪⎪⎭⎫⎝⎛-1011012000320011,取)1,0,0,0(),0,1,0,0(23==αα,则4321,,,αααα为4R 的一个基. 定理6.4.5设21,W W 是F 上向量空间V 的两个有限维子空间,则21W W +也是V 的一个有限维子空间,且:)dim (dim dim )dim (212121W W W W W W ⋂-+=+.推论 对n 维向量空间V 的子空间21,W W 有:}{dim dim dim 2121ο=⋂⇔=+W W V W W .4.余子空间(1) 定义:设W 是V 的子空间,若存在V 的子空间W '满足:1)V W W ='+,2)){ο='⋂W W ;则称W '是W 的一个余子空间,且称V 是W 与W '的直和,记为W W V '⊕=. (2)定理定理 6.4.6设W W V '⊕=,则对V ∈∀α有α可以唯一地表示成ββα'+=,其中W W '∈'∈ββ,.定理 6.4.7n 维向量空间V 的任一子空间W 都有余子空间.若W '是W 的一个余子空间,则V W W dim dim dim ='+.(3)上述概念及结论可扩充至有限设t W W W ,,,21 是V 的子空间,若1)t W W V ++= 1;2){}),,2,1(,)(111t i W W W W W t i i i ==+++++⋂+-ο,则称V 是t W W W ,,,21 的直和,记为t W W V ⊕⊕= 1.且有类似于定理6、7的结论.6.5 坐标一 教学思考1.对n 维向量空间V 取定基后,任意向量引入了坐标的概念后,可将抽象的对象用具体的形式(nF中的向量)表示出来,为我们研究抽象的向量空间提供了方便,如由此可建立n V 与nF 的同构,所以本节概念及结论在空间的讨论中有重要的作用.2.注意坐标的概念依赖于基的选择,坐标变换依赖于相应的基变换;注意过渡矩阵的概念与性质以及结论,其是下节建立n V 与nF 的同构的基础.3.具体方法有:1)坐标的求法(定义法、坐标变换法);2)过渡矩阵的求法;3)过渡矩阵的性质及由此反映的矩阵的运算的意义. 二 内容要求1. 内容:坐标、基变换、坐标变换、过渡矩阵;2. 要求:掌握坐标的概念及其意义,基变换与坐标变换公式,过渡矩阵的概念和性质. 三 教学过程(一) 坐标的概念1.定义 设{}n n V αα,,,dim 1 =是V 的一个基,对V ∈∀ξ有n n a a ααξ++= 11,则称n 元有序数组),,(1n a a 为向量ξ关于基{}n αα,,1 的坐标;其中i a 叫做向量ξ关于基{}n αα,,1 的第i 个坐标.2.定理6.5.1设{}n n V αα,,,dim 1 =是V 的一个基,V ∈ηξ,关于此基的坐标分别为),,(1n x x 和),,(1n y y ,则ξηξk ,+关于此基的坐标分别为: ),,(11n n y x y x ++ ,),,(1n ax ax .(二)坐标变换 1.基变换设,dim n V ={}n αα,,1 和{}n ββ,,1 是V 的两个基,则每个j β),,2,1(n j =可由{}n αα,,1 线性表示,设⎪⎪⎩⎪⎪⎨⎧++=++=++=nn n n nn nn a a a a a a ααβααβααβ1112112211111 (1),以j β关于基{}n αα,,1 的坐标为列构成的矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a T212222111211称为由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵. (1)式可以写成矩阵等式),,(1n ββ =T n ),,(1αα (2);称(1)或(2)为(由基{}n αα,,1 到基{}n ββ,,1 的)基变换. 设V ∈ξ关于基{}n αα,,1 的坐标为),,(1n x x ,关于基{}n ββ,,1 的坐标为),,(1n y y ,则一方面=ξ⎪⎪⎪⎭⎫ ⎝⎛n n x x 11),,(αα (3);另一方面=ξ⎪⎪⎪⎭⎫⎝⎛n n y y 11),,(ββ (4);(2)代入(4)得=ξ⎪⎪⎪⎭⎫ ⎝⎛n n y y T 11)),,((αα=))(,,(11⎪⎪⎪⎭⎫⎝⎛n n y y T αα (5),比较(3)和(5)由坐标的唯一性得⎪⎪⎪⎭⎫ ⎝⎛n x x 1=⎪⎪⎪⎭⎫⎝⎛n y y T 1 (6);于是得 定理 6.5.2设,dim n V =T 由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵,则V ∈ξ关于基{}n αα,,1 的坐标与关于基{}n ββ,,1 的坐标为),,(1n y y 由等式(6)⎪⎪⎪⎭⎫ ⎝⎛n x x 1=⎪⎪⎪⎭⎫⎝⎛n y y T 1联系着.3.过渡矩阵的性质 (1)基变换的传递性设,dim n V ={}n αα,,1 、{}n ββ,,1 、{}n γγ,,1 都是V 的基,且由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,基{}n ββ,,1 到基{}n γγ,,1 的过渡矩阵为B ,即),,(1n ββ =A n ),,(1αα 、),,(1n γγ =),,(1n ββ B ,则),,(1n γγ =A n ),,(1αα B ,即由基{}n αα,,1 到基{}n γγ,,1 的过渡矩阵为AB .(2)定理6.5.3设,dim n V =由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,那么A 是一个可逆矩阵.反过来,任意一个n 阶可逆矩阵A 都可以作为n 维向量空间中由一个基到另一个基的过渡矩阵.且若由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,则由基{}n ββ,,1 到基{}n αα,,1 的过渡矩阵为1-A .6.6 向量空间的同构一 教学思考1.向量空间的本质是一个带有加法和数乘的代数系,我们研究向量空间着眼点主要在于运算,至于元素是什么无关紧要.把具有某种关系的向量空间作为本质上没有区别的加以研究,从而取出其代表加以研究讨论以达到目的,本节正是解决这样一个问题.2.“同构”是这种关系的体现,在此关系下,同构的向量空间可以不加区别,因而维数就成了数域F 上有限维向量空间的唯一本质特征.3.注意“同构”映射的概念,向量空间同构的概念及各自的性质,以及有限维向量空间同构的判定. 二 内容要求1、内容:同构映射、向量空间同构的概念及各自的性质,有限维向量空间同构的判定.2、要求:理解向量空间同构的概念及性质,有限维向量空间同构的判定. 三 教学过程1.同构的概念和性质 (1)概念1)同构映射 设V 和W 是数域F 上两个向量空间,V 到W 的一个映射f 叫做一个同构映射; 若A )f 是V 到W 的一个双射;B )对)()()(,ηξηξηξf f f V +=+⇒∈∀;C )对)()(,,ξξξaf a f V F a =∈∀∈∀.(2)定理6.6.1数域F 上任一n 维向量空间V 都与nF 同构. (3)性质 1)同构映射的性质定理6.6.2设V 和W 是数域F 上两个向量空间, f 是V 到W 的一个同构映射,则: A);)(οο=f B)对ααα-=-∈∀)(,f V ;C))()()(1111n n n n f a f a a a f αααα++=++ ,其中V F a i i ∈∈α,; D))(,,1V n ∈αα 线性相关))((,),(1W f f n ∈⇔αα 线性相关; E) f 的逆映射1-f是W 到V 的一个同构映射.2)同构关系的性质(等价关系)A ) 反身性:V V ≅;B ) B )对称性:若W V ≅,则V W ≅;C) 传递性:若W V ≅,U W ≅,则U V ≅.(由双射性质及定义易证) 2.有限维向量空间同构的充要条件定理6.6.3数域F 上两个有限维维向量空间V 和W 有:W V ≅W V dim dim =⇔.6.7 矩阵的秩,齐次线性方程组的解空间一 教学思考1.矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构.2.注意:齐次线性方程组(含n 个未知量)的解的集合构成nF 的子空间,而非齐次线性方程组的解的集合非也.3.注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系. 二 内容要求1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间.2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法. 三 教学过程1.矩阵的秩的几何意义几个术语:设)(F M A n m ⨯∈,⎪⎪⎪⎭⎫⎝⎛=mn m n a a a a A 1111,A 的每一行看作nF 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的nF 的子空间),,(1m L αα 叫做矩阵A 的行空间.类似地,A 的每一列看作mF 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的mF 的子空间叫做矩阵A 的列空间.引理6.7.1设)(F M A n m ⨯∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间.定理6.7.2矩阵)(F M A n m ⨯∈的行空间的维数等于列空间的维数,等于这个矩阵的秩.定义 矩阵A 的行(列)向量组的极大无关组所含(行(列)空间的维数)向量的个数,叫做矩阵A 的秩.2.线性方程组的解的结构1)再证线性方程组有解的判定定理:“数域F 上线性方程组有解的充要条件是它的系数矩阵与增广矩阵的秩相同.”2)齐次线性方程组的解空间设⎪⎩⎪⎨⎧=++=++00111111n mn m n n x a x a x a x a(3)是数域F 上一个齐次线性方程组,令A 为其系数矩阵,则(3)可写为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001 n x x A (4)或ο=AX ;(3)的每一个解都可以看作n F 的一个向量,叫做(3)的一个解向量.令S 表示(3)的全体解向量构成的集合;首先:因S ∈ο,所以Φ≠S ;其次:F b a S ∈∀∈∀,,,ηξ,有οηξηξ=+=+bA aA b a A )(,即S b a ∈+ηξ.因此S 作成nF 的一个子空间,这个子空间叫做齐次线性方程组(3)的解空间.重新回顾解线性方程组的过程:设(3)的系数矩阵A 的秩为)(n r <,则A 可经过一系列(行)初等变换化为⎪⎪⎭⎫ ⎝⎛----r n r m r r m r n r r C I ,,,οο,与此相应的齐次线性方程组为:(5)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+++=+++++++0000001111111 n rn r rr r n n r r y c y c y y c y c y ,这里n y y ,,1 是n x x ,,1 的重新编号.(5)有r n -个自由未知量n r y y ,,1 +,依次让它们取)1,,0,0(,),0,,1,0(),0,,0,1( ,可得(5)的r n -个解向量:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=++++++100,,010,001122121111 rn n n rr r r rr r r c c c c c c ηηη.下面证其是(5)的解空间的一个基. 首先:n r ηη,,1 +线性无关.事实上设οηη=++++n n r r k k 11,由下面r n -个分量易得01===+n r k k .其次:设),,,(21n k k k 是(5)的任一解,代入(5)得:n rn r rr r nn r r nn r r k c k c k k c k c k k c k c k ---=---=---=++++++112112211111又有恒等式:nn r r k k k k ==++ 11此n 个等式即为n n r r n k k k k ηη++=⎪⎪⎪⎭⎫ ⎝⎛++ 111,即(5)的每个解向量都可以由n r ηη,,1 +线性表示,故{n r ηη,,1 +}为(5)的解空间的一个基.注意到(5)与(4)在未知量重新编号后同解,所以重新编排n r ηη,,1 +的次序可得(4)的解空间的一个基,从而解决了齐次线性方程组的解的构造问题.并且上述讨论也给出了求解空间的具体方法:即通过解方程组的允许变换得到等价组,在等价组中自由未知量是清楚的,给其一组线性无关值,便得等价组的一组解向量,其构成等价组的解空间的一个基,再调整解向量的次序便得.上述讨论得:定理 6.7.3数域F 上一个n 元齐次线性方程组的一切解作成nF 的一个子空间,称之为这个线性方程组的解空间.若所给方程组的系数矩阵的秩为r ,则解空间的维数为r n -.定义 一个齐次线性方程组的解空间的一个基,叫做这个方程组的一个基础解系.3)非齐次线性方程组的解的结构 设))((,11F M A b b x x A n m m n ⨯∈⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛ (6)是数域F 上一个n 元线性方程组.问题当(6)有无穷解时,解的结构如何?为此先引入:把(6)的常数项都换成0,便得一个齐次线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001 n x x A (7),齐次线性方程组(7)叫做方程组(6)的导出齐次线性方程组.定理6.7.4若(6)有解,则(6)的任一解都可以表示为(6)的一个固定解与(7)的一个解的和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惠州学院数学系
2. 向量空间的定义-抽象出的数学本质
定义1 设F是一个数域,V是一个非空集合.我们把V中的 元素称为向量,V称为向量空间,如果下列条件成立:
闭合性: (c1) V上有(闭合的)加法运算,即:对任意u,v属于V, 一定有u+v属于 V. (c2) F上的数对V上的向量有 (闭合的)数乘运算,即:对任意F中数 和V中元素v, 一定有: v属于V. 加法的性质: (a1) u+v= v +u,对所有u和v属于V. (a2) u+(v+w)= (u+v)+w, 对所有u、v和w属于V. (a3) V中存在一个向量பைடு நூலகம்记作o, 它满足:v+o= v 对所有V中的v. (a4) 给定V中每一个向量v, V中存在一个向量u满足:
➢ 向量空间产生有着丰富的数学背景,又在许多领域(包 括数学本身)中有着广泛的应用,例如:线性非常组解 的结构.
➢ 向量空间是我们遇到的第一抽象的代数系统. 所谓代数 系统,就是带有运算的集合.通过本章的学习,初步熟悉 用公理系统处理代数问题的思维方法、逻辑推理的方法.
惠州学院数学系
§6.1 向量空间的定义和例子
(c1) f(x)+g(x) F[x], 任给f(x),g(x) F[x]. (c2) af(x) F[x],任给 aF,f(x)F[x]. (a1) f(x)+g(x)= g(x) + f (x), 任给f(x),g(x) F[x].
惠州学院数学系
(a2) [f(x)+g(x)]+h(x)= f(x)+ [g(x) +h(x) ],
例3 按照定义1,F mn 是数域F上的向量空间,称为矩阵
空间.
(1) F1n , F n1 统称为n元向量空间,统一用符号 F n表示.
(2) Rn是解析几何的坐标平面、坐标空间的推广它是常
用的一类. ……
例4 数域F上一元多项式集合F[x]按照通常的加法与数乘 构成F上的向量空间,称为多项式空间. 证明:根据多项式加法和数乘的定义,
不懂几何者勿入内 (指:柏拉图学园) ---柏拉图(Plato,约公元前427年-前347年)
不懂向量空间者无法进入数学圣殿的大门 ---匿名者
惠州学院数学系
向量空间(Vector Spaces)又称线性空间(Linear Spaces).本章的特点及要求:
➢ 向量空间是线性代数的最基本的、最重要的概念之一, 是进一步学习数学必备的内容.
1. 引例―――定义产生的背景. 2. 向量空间的定义――――抽象出的数学本质. 3. 进一步的例子―――加深对定义的理解. 4. 一些简单性质.
惠州学院数学系
1. 引例―――定义产生的背景
例1 设 F 是一个数域,F mn 表示上m×n矩阵的集合, 回忆一下 F mn 上所能够施行的运算(教材P182):只有 加法和数乘两种,并且满足(教材P183):
任给f(x),g(x),h(x) F[x].
(a3) 0向量就是零多项式. (a4) f(x)的负向量为(- f(x)). (m1) (ab) f(x)= a(bf(x)).
(m2) a[f(x)+g(x)]= af(x)+ ag(x). (m3) (a b) f(x)= af(x)+ b f(x).
(m4) 1 f(x)= f(x).
注1:刚开始,步骤要完整.
惠州学院数学系
例5 C[a,b]表示区间[a,b]上连续实函数按照通常的加法 与数乘构成实数域R的向量空间,称为函数空间. 证明: 比照例3,给出完整步骤. 例6 (1)数域F是F上的向量空间. (2)R是Q上的向量
空间,R是否为C上的向量空间?
注2:这个例子说明向量空间与F有关.
惠州学院数学系
例7 设数域取R, 集合为R+(实数),加法和数乘定义为:
a b ab, k a ak , a,b R, k R 证明 R 关于给定的运算构成R上的向量空间. 证明:……
注3:运算可以是通常的,可以重新定义的. 如何理解 运算?…… 注4:取数乘为通常的乘法如何?……,向量空间与运算 有关. 注5:证明向量空间需要10条性质,其中:8条是验证,2 条需要解方程求出零向量与负向量.
u+v= 0. 这样的u称为v的负向量.
惠州学院数学系
乘法的性质: (m1) (ab)V a(bV ),a,b F.
(m2) a(U V ) aU aV. (m3) (a b)U aU bU.
(m4) 1u= u 对所有u属于V.
惠州学院数学系
3. 进一步的例子――加深定义的理解
惠州学院数学系
例8 在 R2 上定义加法和数乘:
(a,b) (c, d ) (a c,b d ac) k (a,b) (ka, kb k(k 1) a2 )
2
证明 R2 关于给定运算构成R上的向量空间.
证明:留作课外练习.
惠州学院数学系
4. 简单性质
(1) 零向量0是唯一的. (2) 一个向量v的负向量是唯一的,用(- v)表示.
第6章 向量空间
6.1 向量空间的定义和例子 6.2 子空间 6.3 向量的线性相关 6.4 基和维数 6.5 坐 标 6.6 向量空间的同构 6.7 矩阵的秩 齐次线性方程组的解空间
数学研究理想结构(突出应用于实际问题),并在这 种研究中去发现各种结构之间的未知关系。 ---皮尔斯(S. Peirce,1838-1914)
1. A+B=B+A 2. (A+B)+C= A+( B+C) 3. O+A=A 4. A+(-A)=O
5. a(A+B)= aA+Ab 6. (a+b)B=a B +Bb 7. (ab)A=a(b)A 还有一个显而易见的: 8. 1A=A
惠州学院数学系
例2 设R是实数域,V3表示空间向量的集合.两个向量可 以作加法(平行四边形法则),可以用R中的一个数乘一个 向量,加法和数乘满足同样的8条性质. 按照解析几何的 方法,向量可以用的坐标(x,y,z)来表达,加法和数乘都 有表达式,…… 类似的问题许多,……,有必要总结它们的共性: