高等代数(北大版第三版)知识题目解析一到四章

合集下载

高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。

2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。

高等代数习题答案

高等代数习题答案

高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。

证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。

故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。

于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。

13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。

证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

高等代数北大第三版

高等代数北大第三版
由定理10, g1( x)h1( x)本原, 从而有 a rs,
即 rs Z . f ( x) rsg1( x) h1( x). 得证.
推论 设 f ( x), g( x) 是整系数多项式,且 g( x)是本原
旳,若 f ( x) g( x)h( x), h( x) Q[ x], 则 h( x) 必为整系数多项式.
f ( x) (bl xl bl1 xl1 b0 )(cm xm cm1 xm1 c0 ) bi ,c j Z , l, m n, l m n
an blcm , a0 b0c0 . p | a0 , p | b0 或 p | c0 ,
又 p2 | a0 , p 不能同步整除 b0 , c0 . 不妨设 p | b0 但 p | c0 .
对a,b Q ( a 0), 多项式 g( x) f (ax b) 在有理数域上不可约.
例5 证明:f ( x) x2 1 在 Q上不可约. 证: 作变换 x y 1, 则
f ( x) y2 2 y 2, 取 p 2, 由Eisenstein鉴别法知, y2 2 y 2 在Q上不可约, 所以 f ( x) 在Q上不可约.
bi Z , i 0,1, 2, , n. 若 bn ,bn1, ,b1,b0 没有 异于 1 旳公因子,即 bn ,bn1, ,b1,b0 是互素旳, 则称 g( x)为本原多项式.
有关性质
1.f ( x) Q[ x], r Q, 使 f ( x) rg( x), 其中 g( x)为本原多项式. (除了相差一种正负号外,这种表达法是唯一旳).
在 R 上,不可约多项式只有一次多项式与某些 二次多项式;
但在 Q上有任意次数旳不可约多项式.如
xn 2, n Z . 怎样判断 Q上多项式旳不可约性呢?

高等代数北大版(第三版)答案

高等代数北大版(第三版)答案

令(x2+x+1)=0
得 ε1
=
−1+ 2
3i
,ε2
=
−1− 2
3i
∴f(x)与g(x)的公共根为 ε1,ε2 .
P45.16 判断有无重因式
① f (x) = x5 − 5 x4 + 7x3 + 2x2 + 4x − 8 ② f (x) = x4 + 4x2 − 4x − 3
解① f '(x) = 5x4 − 20x3 + 21x 2 − 4x + 4

f (x) d ( x)
=
f1 ( x),
g(x) d ( x)
=
g1 ( x),

d
(x)
=Байду номын сангаас
u(x)
f
(x)
+
v( x) g ( x).
所以 d (x) = u(x) f1(x)d (x) + v(x)g1(x)d (x).
消去 d (x) ≠ 0 得1 = u(x) f1(x) + v(x)g1(x)
P45.5
(1) g(x) = (x −1)(x2 + 2x +1) = (x −1)(x +1)2 f (x) = (x + 1)(x3 − 3x −1) ∴ ( f (x), g(x)) = x +1
(2) g(x) = x3 − 3x2 +1不可约 f (x) = x4 − 4x3 + 1不可约
3
u = − 1 [(t 2 + t + 3)(t 2 + 2t − 8) + 6t + 24] = −2(t + 4) ∴3

北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】

北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】
所以 q(x)=2x4-6x3+13x2-39x+109,r(x)=-327. (2)q(x)=x2-2ix-(5+2i),r(x)=-9+8i.
4.把 f(x)表成 x-x0 的方幂和,即表成 c0+c1(x-x0)+c2(x-x0)2+…的形式. (1)f(x)=x5,x0=1;
2 / 108
圣才电子书 十万种考研考证电子书、题库视频学习平台
6.求 u(x),v(x)使 u(x)f(x)+v(x)g(x)=(f(x),g(x)): (1)f(x)=x4+2x3-x2-4x-2,g(x)=x4+x3-x2-2x-2. (2)f(x)=4x4-2x3-16x2+5x+9,g(x)=2x3-x2-5x+4. (3)f(x)=x4-x3-4x2+4x+1,g(x)=x2-x-1. 解:(1)用辗转相除法进行计算.
所以 x5=(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1.
3 / 108
圣才电子书

(2)应用综合除法
十万种考研考证电子书、题库视频学习平台
所以 f(x)=(x+2)4-8(x+2)3+22(x+2)2-24(x+2)+11. (3)f(x)=(x+i)4-2i(x+i)3-(1+i)(x+i)2-5(x+i)+7+5i. 5.求 f(x)与 g(x)的最大公因式: (1)f(x)=x4+x3-3x2-4x-1,g(x)=x3+x2-x-1. (2)f(x)=x4-4x3+1,g(x)=x3-3x2+1.
圣才电子书

十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 1 章 多项式
1.用 g(x)除 f(x),求商 q(x)与余式 r(x): (1)f(x)=x3-3x2-x-1,g(x)=3x2-2x+1; (2)f(x)=x4-2x+5,g(x)=x2-x+2. 解:(1)用分离系数的竖式进行计算

北京大学数学系《高等代数》(第3版)章节题库-第四章至第五章(上册)【圣才出品】

北京大学数学系《高等代数》(第3版)章节题库-第四章至第五章(上册)【圣才出品】

5.设 A、B、C 均为 n 阶矩阵,E 为 n 阶单位矩阵,如 B=E+AB,C=A+CA,则 B -C 为( ).
A.E B.-E C.A D.-A 【答案】A 【解析】由题设(E-A)B=E,所以有 B(E-A)=E. 又 C(E-A)=A,故(B-C)(E-A)=E-A. 结合 E-A 可逆,得 B-C=E.
A.A-1P1P2 B.P1A-1P2 C.P1P2A-1 D.P2A-1P1
【答案】C
【解析】因为 B=AP2P1,而 P1-1=P1,P2-1=P2,所以 B-1=P1-1P2-1A-1=P1P2A- 1.
4.设 n(n≥3)阶矩阵
2 / 90
圣才电子书

十万种考研考证电子书、题库视频学习平台
O
B
A 1 O
O
A1
B 1
O
O A*
B* | B |
O
| A|
O 且 B
A 1 O
1 6
O B
A* O ,所以
O
B
A* O
6
O
B
A 1
O
O 3 A*
2B*
O
5 / 90
圣才电子书 十万种考研考证电子书、题库视频学习平台

9.设 A、B 为满足 AB=0 的任意两个非零矩阵,则必有( ). A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的行向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法 1:设 A=(aij)m×n,B=(bij)n×p,并记 A 各列依次为α1,…,αn. 由于 B≠0,不妨设 b11≠0,由于 AB=0 可推得 AB 的第一列 b11α1+b21α2+…+bn1αn =0,从而α1,…,αn 线性相关. 又由 AB=O 知,B′A′=O,由已知及以上证明知 B′的列线性相关,即 B 的行向量组线 性相关. 方法 2:设 A=(aij)m×n,B=(bij)n×p,由于 AB=O,所以有 r(A)+r(B)≤n. 考虑到 A≠0,B≠0,即 r(A)>0,r(B)>0,所以有 R(A)<n,r(B)<n,故 A 的列向量组及 B 的行向量组均线性相关.

高等代数(北大版第三版)习题答案II

高等代数(北大版第三版)习题答案II

设 A 的秩为 r ,作非退化线性替换 X CY 将原二次型化为标准型
2 X AX d1 y12 d 2 y 2 d r y r2 ,
其中 d r 为 1 或-1。由已知,必存在两个向量 X 1 , X 2 使
AX 1 0 X1

AX 2 0 , X2
故标准型中的系数 d1 , , d r 不可能全为 1,也不可能全为-1。不妨设有 p 个 1, q 个-1, 且 p q r ,即
X AX 0 ,
因此
X BX 0 ,
X A B X X AX X BX 0 ,
于是 X A B X 必为正定二次型,从而 A B 为正定矩阵。 14. 证明: 二次型 f x1 , x2 ,, xn 是半正定的充分必要条件是它的正惯性指数与秩相等。 证 必要性。采用反证法。若正惯性指数 p 秩 r ,则 p r 。即
高等代数(北大*第三版)答案
目录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章 多项式 行列式 线性方程组 矩阵 二次型 线性空间 线性变换
—矩阵
欧氏空间 双线性函数与辛空间
注:
答案分三部分,该为第二部分,其他请搜索,谢 谢!
12.设 A 为一个 n 级实对称矩阵,且 A 0 ,证明:必存在实 n 维向量 X 0 ,使

2 2 xn ( 2 x1 x2 2 x1 xn 2 x2 x3 n 1 x12 x2


2 x2 xn 2 xn1 xn )
2 2 2 2 x12 2 x1 x2 x2 x12 2 x1 x3 x3 xn 1 2 x n 1 x n x n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数(北大*第三版)答案
第一章 多项式
1. 用 g(x) 除 f (x) ,求商 q(x) 与余式 r(x) :
1) f (x) = x3 − 3x 2 − x −1, g(x) = 3x 2 − 2x +1;
2) f (x) = x 4 − 2x + 5, g( x) = x2 − x + 2 。
解 1)由带余除法,可得 q(x) = 1 x − 7 , r(x) = − 26 x − 2 ;
39
99
2)同理可得 q(x) = x 2 + x −1, r( x) = −5x + 7 。
2. m, p, q 适合什么条件时,有
1) x 2 + mx −1 | x3 + px + q ,
2) x 2 + mx + 1| x4 + px2 + q 。
2) f (x) = x3 − x2 − x, g( x) = x −1 + 2i 。
q(x) = 2x4 − 6x3 +13x2 − 39x +109
解 1)

r (x) = −327
2) q(x) = x2 − 2ix − (5 + 2i ) 。 r (x) = −9 + 8i
4.把 f (x) 表示成 x − x0 的方幂和,即表成 c0 + c1 (x − x0 ) +c2 (x − x0 )2 + ... +cn (x −x0 )n +⋯的形式: 1) f (x) = x5 , x0 =1; 2) f (x) = x4 − 2x2 + 3, x0 = −2; 3) f (x) = x4 + 2ix3 − (1+ i )x2 − 3x + 7 + i, x0 = −i 。 解 1)由综合除法,可得 f (x) = 1+ 5(x −1) +10(x −1)2 +10(x −1)3 +5(x −1)4 +(x −1)5; 2)由综合除法,可得 x4 − 2x2 + 3 = 11− 24(x + 2) + 22(x + 2)2 − 8(x + 2)3 + (x + 2)4 ; 3) 由综合除法,可得 x4 + 2ix3 − (1+ i )x2 − 3x + (7 +i ) = (7 + 5i) − 5(x + i )+ (− 1− i )(x + i )2 − 2i (x + i )3 + (x + i )4 。 5.求 f (x) 与 g(x) 的最大公因式: 1) f (x) = x4 + x3 − 3x2 − 4x −1,g (x ) = x3 + x2 − x − 1; 2) f (x) = x4 − 4x3 +1,g (x ) = x3 − 3x2 +1; 3) f (x) = x4 −10x2 +1, g (x) = x4 − 4 2x3 + 6x2 + 4 2x + 1。 解 1) ( f ( x), g( x)) = x +1 ; 2) ( f (x), g( x)) =1; 3) ( f ( x), g( x)) = x2 − 2 2 x −1。 6.求 u(x), v( x) 使 u(x) f (x) + v(x)g (x) = ( f (x), g (x)) 。 1) f (x) = x4 + 2x3 − x2 − 4x − 2, g (x) = x4 + x3 − x2 − 2x − 2; 2) f (x) = 4x4 − 2x3 −16x2 + 5x + 9, g (x) = 2x3 − x2 − 5x + 4 ; 3) f (x) = x4 − x3 − 4x2 + 4x + 1, g (x) = x2 − x − 1。 解 1)因为 ( f ( x), g( x)) = x2 − 2 = r2( x)
3)由 ( f ( x), g( x)) =1 可得 u(x) = −x −1, v( x) = x3 + x2 − 3x− 2 。
7.设 f (x) = x3 + (1+ t )x 2 + 2x + 2u 与 g( x) = x3 + tx2 + u 的最大公因式是一个二次多项 式,求 t, u 的值。 解 因为 f (x) = q1(x)g (x) + r1(x) = (x3 +tx2 +u) + (x2 + 2x +u) ,
=
q
+1;而当
2 − p − m2 = 0 时,代入(2)可得 q = 1 。
⎧ m=0
综上所诉,当
⎨ ⎩
p
=
q
+
1


⎨ ⎩
p
q =1 + m2 =
时,皆有
2
x2
+
mx
+1|
x4
+
px 2
+
q

3.求 g (x) 除 f (x) 的商 q(x) 与余式:
1) f (x) = 2x5 − 5x3 − 8x, g (x) = x + 3;
于是 u(x) = −q2 (x) = −x −1

v(x) = 1+ q1 (x )q2 (x ) = 1+1i(x + 1) = x + 2
2)仿上面方法,可得 ( f (x), g( x)) = x−1,且 u(x) = − 1 x + 1 ,v(x) = 2 x 2 − 2 x −1。
33
33
g( x) = q2( x)r1( x) + r2( x)
= (x + (t − 2))( x2 + 2 x + u) − (u + 2t −4) x + u(3 − t) ,
且由题设知最大公因式是二次多项式,所以余式 r2 (x) 为 0,即
⎧ ⎨ ⎩
−(u + 2t u(3 −
再由 x) g( x)
+
r1 ( x)

⎩ g( x) = q2 ( x)r1( x) + r2 ( x)
解得
r2
(x)
=
g
(x)

q2
(x)r1
(x)
=
g
(x)

q2
(x)[
f
( x)

q1
(
x)
g(
x)]

= [−q2( x)] f ( x) + [1+ q1( x)q2 ( x)] g( x)
解 1)由假设,所得余式为 0,即 ( p + 1 + m2 )x + (q − m) = 0,
所以当
⎧ ⎨
p
+1+ m2
=
0 时有 x 2
+ mx −1|
x3
+
px
+ q。
⎩ q−m=0
2





⎧m(2 − p − m2 )
⎨ ⎩q
+1−
p

m2
= =
0 0
,于是当
m
=
0
时,代入 (2)可得
p
相关文档
最新文档