三相异步电动机的运行特性要点

合集下载

三相异步电动机的运行原理要点

三相异步电动机的运行原理要点

n
p
n1 60
sf1
转子转动后的基本方程式
E2s 4.44 f2 N2kdp2m 4.44sf1N2kdp2m sE2
X 2s 2 f2L 2 2 sf1L 2 sX 2
转子感应电势以及转子漏电抗均与转差率成正比。
二、 定、转子磁动势关系
1、 定子磁动势 F1
2、 转子旋转磁动势 F2
五.等效电路
T形等效电路
等效机械负载的附加电阻
各参数的物理意义:
定子铁耗的等效电阻
定子绕组的电阻r1、漏抗x1
对应主磁通的励磁电抗
转子绕组归算后的电阻r’2、漏抗x’2
R '2 s
6. 磁动势,磁通正方向:由定子指向转子;
7. 假设转子位置超前定子位置任意电角度 0(0 0 3600)。
二、转子绕组开路时的基本电磁关系
定子绕组接三相对称电源上,转子绕组开路,相 当于变压器空载运行。
说明:上图中 Es1 为定子绕组感应的漏电动势,X1 为定子 绕组漏电抗,其物理意义和分析方法类同于变压器中对漏电 动势和漏电抗。
幅值:
F2
3 2
4
2 2
N2kdp2 p
I2s
转向:由电流相序决定,为逆时针旋转;
转速:
n2
60 f2 p
60sf1 p
sn1
瞬间位置:
当转子绕组哪相电流达最大值,转子磁动势正 好位于该相绕组轴线上。
3、 励磁磁动势 幅值
转向:二者相对于定子都为逆时针旋转; 转速:
转子转动后,由转子电流所产生的转子基波旋转磁势相对
(3)E2的大小和相位:
e2
d2 dt
1N2kdp2m sin

三相绕线式异步电动机各种运行状态下的机械特性

三相绕线式异步电动机各种运行状态下的机械特性

三相绕线式异步电动机各种运行状态下的机械特性原理简述机械特性是指其转速与转矩间的关系,一般表示为。

由于三相异步电动机的机械特性呈非线性关系,所以函数表达式以转速为自变量,转矩为因变量,写为更为方便。

又因转差率s也可以用来表征转速,而且用s表示的机械特性表达式更为简洁,所以对三相异步电动机一般用来表示机械特性,同时将作为横坐标,这样和原的图形是一致的。

一、三相异步电动机机械特性的表达式三相异步电动机机械特性的表达式一般有三种:1.物理表达式其中为异步电机的转矩常数;为每极磁通;为转子电流的折算值;为转子回路的功率因数。

2.参数表达式其中。

3.实用表达式其中为最大转矩,为发生最大转矩时的转差率。

三种表达式其应用场合各有不同,一般物理表达式适用于定性分析与及间的关系,参数表达式可以分析各参数变化对电动机运行性能的影响,而实用表达式最适合用于进行机械特性的工程计算。

二、三相异步电动机的机械特性1.固有机械特性固有机械特性是指异步电动机在额定电压、额定频率下,电动机按规定方法接线,定子及转子回路中不外接电阻(电抗或电容)时所获得的机械特性,如图15-1所示。

图15-1 三相异步电动机的固有机械特性下面对机械特性上反映其特点的几个特殊点进行分析:(1)起动点:其特点是:,,起动电流;(2)额定运行点:其特点是:,,;(3)同步速点:其特点是:,,,,点是电动状态与回馈制动的转折点;(4)最大转矩点:电动状态最大转矩点,其特点是:,;回馈制动最大转矩点,其特点是:,;由公式可以看出,。

2.人为机械特性由三相异步电动机机械特性的参数表达式可见,异步电动机的电磁转矩在某一转速下的数值,是由电源电压、频率、极对数及定转子电路的电阻、电抗、、、决定的。

因此人为的改变这些参数,就可得到不同的人为机械特性。

现介绍改变某些参数时人为机械特性的变化:(1)降低电压不变,不变,因为,,,所以降低电压时,、、均减小,其人为机械特性见图15-2。

三相异步电动机的工作特性(精)

三相异步电动机的工作特性(精)
6.5.1异步电动机的工作特性
概念:指在额定电压和额定频率下,电动机的转
速 n 、输出转矩 M 2、定子电流 I1 、功率因数 cos2 及效率 等物理量随输出功率 P2 变化的关系曲线。
图6-11 异步电动机的工作特性曲线
一、转速特性 n f (P 2)
P2 0 时, M M 0 , n n1 。
P2
M2
n
E2
I2
I 0 I1 I 2
I1
四、功39; r1 s r2' 2 )2 (r1 ) ( x1 x20 s
cos1
曲线基本是上升
P2 0
I1 I 0 ,基本是无功性质的, cos1 0.2 。
P2
M2
可变损耗 不变损耗
曲线是先上升后下降的曲线
P2 0
0 。

当可变损耗 不变变损耗,即 约(0.75~ 1.1)P N时
P2
max
P2
可变变损

PN
(0.75~ 1.1)P N
结论:异步电动机的功率因数和效率都是在额定
负载附近达到最大值。因此,选用电动机时,应使电
动机容量与负载容量相匹配。 ▲电动机容量选择过大,电机长期处于轻载运行,
投资费用高,且功率因数和效率都低,运行不经济。
▲若电动机容量选择过小,将使电动机过载而造成
发热,影响其寿命,甚至损坏。
P2
M2
n
曲线是一条微微向下倾斜的曲线
二、转矩特性 M 2 f ( P2 )
P2 P2 M2 2n 60
曲线在正常范围运行时是一条 稍微上翘的 直线 P2 0 时, M 2 0
P2

三相异步电动机的工作特性及测取方法

三相异步电动机的工作特性及测取方法

三相异步电动机的⼯作特性及测取⽅法三相异步电动机的⼯作特性及测取⽅法*转速特性*定⼦电流特性*功率因数特性*电磁转矩特性*效率特性异步电动机的⼯作特性在额定电压和额定频率运⾏的情况下,* 电动机的转速n、* 定⼦电流I1、* 功率因数cosΦ1、* 电磁转矩Tem、* 效率η等与输出功率P2 的关系即U1 = UN,f = fn 时的⼀.⼯作特性的分析(⼀) 转速特性输出功率变化时转速变化的曲线n = f (P2)转差率s、转⼦铜耗Pcu2 和电磁功率Pem 的关系式负载增⼤时,必使转速略有下降,转⼦电势E2s 增⼤,所以转⼦电流I2增⼤,以产⽣更⼤⼀点的电磁转矩和负载转矩平衡因此随着输出功率P2的增⼤,转差率s 也增⼤,则转速稍有下降,所以异步电动机的转速特性为⼀条稍向下倾斜的曲线(⼆)定⼦电流特性定⼦电流的变化曲线I1= f (P2)定⼦电流⼏乎随P2按正⽐例增加(三)功率因数特性定⼦功率因数的变化曲线cosΦ1 = f(P2)(1)空载时定⼦电流I1主要⽤于⽆功励磁,所以功率因数很低,约为0.1~ 0.2(2)负载增加时转⼦电流的有功分量增加,使功率因数提⾼,(3)接近额定负载时功率因数达到最⼤(4)负载超过额定值时s 值就会变得较⼤,使转⼦电流中得⽆功分量增加,因⽽使电动机定⼦功率因数⼜重新下降了(四)电磁转矩特性电磁转矩特性Tem = f (P2) 接近于⼀条斜率为1/Ω的直线(五)效率特性异步电动机的效率为当可变损耗等于不变损耗时,异步电动机的效率达到最⼤值中⼩型异步电机的最⼤效率出现在⼤约为3/4的额定负载时异步电动机的⼯作特性可⽤直接负载法求取,也可利⽤等效电路进⾏计算*空载试验*励磁参数与铁耗及机械损耗的确定通过空载试验可以测定异步电动机的励磁参数,异步电动机的励磁参数决定于电机主磁路的饱和程度,所以是⼀种⾮线性参数;通过短路试验可以测定异步电动机的短路参数异步电动机的短路参数基本上与电机的饱和程度⽆关,是⼀种线性参数⼀.空载试验与励磁参数的确定(⼀) 空载试验1.异步电动机空载运⾏指在额定电压和额定频率下,轴上不带任何负载的运⾏状态2.空载试验电路图5.7.1异步电动机空载试验电路3.空载试验的过程定⼦绕组上施加频率为额定值的对称三相电压,从(1.10 ~ 1.30) 倍额定电压值开始调节电源电压,逐渐降低到可能使转速发⽣明显变化的最低电压值为⽌每次记录端电压、空载电流、空载功率和转速,根据记录数据,绘制电动机的空载特性曲线图5.7.2空载特性曲线(⼆) 励磁参数与铁耗及机械损耗的确定从空载特性可确定计算⼯作特性所需等值电路中的励磁参数、铁耗和机械损耗1.机械损耗和铁耗的分离空载试验时输⼊电动机的损耗有:定⼦铜耗、铁耗和机械损耗其中定⼦铜耗和铁耗与电压⼤⼩有关,⽽机械损耗仅与转速有关上式改写为由于可认为铁耗与磁密平⽅成正⽐,因⽽铁耗与端电压平⽅成正⽐,绘制曲线p Fe + p mec = f (U1)2图5.7.3 机械损耗与铁耗的分离作曲线延长线相交于直轴于0ˊ点,过0ˊ作⼀⽔平虚线将曲线的纵坐标分为两部分,由于空载状态下电动机的转速n 接近n0 ,可以认为机械损耗是恒值所以虚线下部纵坐标表⽰与电压⼤⼩⽆关的机械损耗,虚线上部纵坐标表⽰对应于某个电压U1 的铁耗2.励磁参数的确定(1)空载试验时的等效电路图5.7.4 空载试验等效电路(2)励磁参数计算公式⼆. 短路试验与短路参数的确定(⼀) 短路试验对异步电动机⽽⾔,短路是指T 形等效电路中的附加电阻(1-s)r2'/s = 0 的状态,即电动机在外施电压下处于静⽌的状态1.短路试验电路图5.7.5 异步电动机短路试验电路2.短路试验的过程短路试验在电动机堵转降低电源电压情况下进⾏,⼀般从U1 = 0.4 UN 开始,然后逐步降低电压,测量5~7个点,每次记录端电压、定⼦短路电流和短路功率,并测量定⼦绕组的电阻。

第九章 三相异步电动机的机械特性及各种运转状态 第一节 三相异步电动机机械特性的三种表达式

第九章 三相异步电动机的机械特性及各种运转状态 第一节 三相异步电动机机械特性的三种表达式

U
2 X
(10 17)
R12
(X1
X
' 2
)
2
正号对应于电动机状态,而负号则适用于发电机状态 考虑 R1 << ( X1 + X2') ,可得:
Sm
R2'
X1
X
' 2
(10 18)
Tm
m1U
2 X
20 ( X1
X
' 2
)
(10 19)
可以看出:
4.几点规律
1)当电动机各参数及电源频率不变时, Tm 与 UX2 成正比,sm 因与 UX 无关而保持不变
二.异步电动机机械特性的参数表达式
采用参数表达式可直接建立异步电动机工作时转矩和转速关系并 进行定量分析
E
' 2
2f1W1kW1 m (10 5)
0
2f
p
(10 6)
T
m1 0
E
' 2
I
' 2
c
os
' 2
(10 7)
E
' 2
I
' 2
Z
' 2
(10 8)
R2'
c
os
' 2
PT
3I
2 2
R2 R f s
(10 44)
转子轴上机械功率为
P2 PT (1 s) (10 45)
s > 1,P2 为负值,即电动机由轴上输入机械功率 转子电路的损耗为
DP2 PT (1 s) (10 45)
DP2 数值上等于 PT 与 P2 之和,所以反接制动时能量损耗极大 3)用途 可以用于稳定下放位能性负载

三相异步电动机运行特性

三相异步电动机运行特性

第13章 三相异步电动机运行特性
图13-1 异步电动机工作特性曲线
第13章 三相异步电动机运行特性
13.2 转矩特性
三相异步电动机的转矩特性是指在电源电压和频率为额定值,
并且电动机固有参数不变的情况下,电磁转矩与输出功率的关系
特性,即T=f(P2)的关系曲线。 电动机稳定运行时,电磁转矩应与负载制动转矩相平衡,即
即启动电流也将达到最大值,三相异步电动机的启动电流一般可
达额定电流的4~7倍。启动电流的大小是
Ist I2
U1 (r1 r2 )2 (x1 x2 )2
(14-1)
第13章 三相异步电动机运行特性
较大的启动电流是十分有害的,对频繁启动的电动机来说, 会引起电动机过热而温升较高,使电动机绝缘材料老化,使用寿 命减少。对供电变压器来说,当变压器容量有限,输电距离较长 时,大的启动电流将造成变压器输出电压下降,并且会影响到同 一供电线路上的其他设备的正常工作。例如,在电动机启动瞬间, 照明灯会变暗,数控机床会失控等。
(14-2)
第13章 三相异步电动机运行特性
异步电动机启动时,在满足启动转矩的条件下,应尽量减小 启动电流。由式(14-1)和式(14-2)看出,降低启动电流的方法有三 种: 一是降低电源电压;二是增加定子回路电阻或电抗值;三是 增加转子回路电阻或电抗值。加大启动转矩的方法是适当增加转 子电阻。
第13章 三相异步电动机运行特性
空载时,输出功率P2=0,转子电流I2接近于零,转子转速n接 近于同步转速。由负载转矩公式T2=P2/Ω可知,随着负载的增大, 即输出功率的增大,输出转矩也将增大,以达到电磁转矩与负载 转矩平衡。而转子电流增大才能保证电磁转矩增大,也就是说转 子电动势E2s必须增大,因此,转子转速随着负载的增大而下降。 为了保证电动机负载时有较高的效率,转子铜耗不能太大, 因此 负载时转差率限制在比较小的范围内。所以,随着负载的增大, 转速降并不大。三相异步电动机的转速特性是一条稍向下倾斜的 曲线,特性曲线较硬,如图13-1所示。

三相异步电动机的机械特性

三相异步电动机的机械特性

空载时损耗占比例大,效率低;随P2增 加,增加,当负载过大,铜损耗增加快,使 效率下降,如图所示。
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
效率曲线和功率因数曲线都是在额定负载附近 达到最高,因此合理选用电动机容量时,对电动 机的寿命、功率因数和效率都有很实际的意义。 5、功率因数特性cos1=f(P2)
§4-5 三相异步电动机的机械特性
本节要点: 一、三相异步电动机的工作特性 二、机械特性:n = f ( T ) ㈠固有机械特性曲线分析 ㈡人为机械特性 三、运行性能 1、运行状态 2、启动转矩倍数
3、过载能力 4、异步电动机机械特性的结论
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
原因:是静止的转子导体与定子旋转磁 场之间的相对切割速度很大(n1)。将 产生很大的I2,使定子电流也增大。但 由于转子绕组的功率因数cosφ2很小, 由于Tst=CTφI2cosφ2,故启动转矩并不 很大。
只有当Tst达到一定值时,电动机才 能启动。
Tst>TL ,将 S = 1代入T公式,即 可得Tst 的表达式。
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
⑵额定运行点(TN、nN) TN = 9.55 PN/nN
⑶临界工作点(Tm、nm) 当S = Sm 时,电磁转矩达到最大
值。
Sm ∈( 0.04,0.14 ) ⑷同步点(0、n1)
n = n1
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
2、转矩特性T=f(P2) 空载时P2=0,电磁转矩T等于空载转矩 T0。随着P2的增加,已知T2=9.55P2/n, 如n基本不变,则T2为过原点的直线。 考虑到P2增加时,n稍有降低,故 T2=f(P2)随着P2增加略向上偏离直线。 在T=T0+T2式中。T0很小,且为常数。所 以T=f(P2)将比平行上移T0数值,如图所 示。

04实验三、三相异步电动机在各种状态下的机械特性

04实验三、三相异步电动机在各种状态下的机械特性

实验三、三相异步电动机在各种运行状态下的机械特性执笔:姚立红、罗琴娟、王政一、实验目的了解三相线绕式异步电动机在各种运行状态下的机械特性。

二、预习要点1. 如何利用现有设备测定三相绕式异步电动机的机械特性。

2. 测定各种运行状态下的机械特性应注意哪些问题。

3. 如何根据所测出的数据计算被试电机在各种运行状态下的机械特性。

三、实验项目a) 测定三相绕线式转子异步电动机在Rs=0时,电动运行状态和回馈(发电)制动状态下的机械特性。

b) 测定三相绕线转子异步电动机在Rs=36Ω(70%R2N)时,测定电动状态与反转状态下的机械特性。

c) Rs=36Ω,定子绕组加直流励磁电流I1=0.6I N及I1=I N时,分别测定能耗制动状态下的机械特性。

四、实验设备1. RTDJ36 三相绕线式异步电动机2. RTDJ45 校正过直流电机3. RTT16 三相可调电阻器(0~90Ω)4. RTT16-1三相可调电阻器(0~900Ω)5. RTZN02 智能直流电压,电流表6. RTZN08 智能存储式真有效值电流表7. RTZN09 智能存储式真有效值电压表8. RTZN12 智能转矩,转速,功率表9. RTDJ47-1 电机导轨,测速编码器10.RTT15直流电机励磁电源,电枢电源11. 万用表、呆扳手五、实验方法按图1接线,图中:M用RTDJ36,额定电压:220V,定子绕组Y连接。

用呆扳手安装并固定好。

MG用RTDJ45。

用呆扳手安装并固定好。

交流电流表A1选用RTZN08。

交流电压表V1选用RTZN09。

Rs选用RTT16三组可调电阻,其大小按下列各实验要求选用。

R1选用RTT16-1的可调电阻,其大小按下列各实验要求选用。

R2选用RTT16-1的1800Ω可调电阻。

R3选用RTT16-1的900Ω可调电阻。

测速编码器的输出接至RTZN12。

1. Rs=0时的电动及反馈制动状态下的机械特性(测1、2象限特性)⑴S1合向1位置,S2合向2′位置;M的转子绕组三个红色接线柱相互短接,即Rs=0;R1用1980Ω(即900Ω+900Ω+180Ω)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档