小学三年级奥数0基础班[第-4-讲]-应用题入门之植树问题
植树问题

学而思奥数网奥数专题 (应用题综合)解植树问题的必备公式【植树问题公式】(1)不封闭线路的植树问题:间隔数+1=棵数;(两端植树)路长÷间隔长+1=棵数。
或间隔数-1=棵数;(两端不植)路长÷间隔长-1=棵数;路长÷间隔数=每个间隔长;每个间隔长×间隔数=路长。
(2)封闭线路的植树问题:路长÷间隔数=棵数;路长÷间隔数=路长÷棵数=每个间隔长;每个间隔长×间隔数=每个间隔长×棵数=路长。
(3)平面植树问题:占地总面积÷每棵占地面积=棵数1、三年级应用题综合:植树问题难度:中难度2、三年级应用题综合:植树问题难度:高难度学而思奥数网奥数专题(应用题综合)1、三年级应用题综合:植树问题:【答案】2米2、三年级应用题综合:植树问题【答案】69棵三年级应用题:植树问题难度:中难度马路的一边,相隔8米有一棵杨树,小明乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小明从家到学校共坐了半小时的汽车,问:小明的家距离学校多远?解答:第一棵树到第153棵树中间共有153-1=152(个)间隔,每个间隔长8米,所以第一棵树到第153棵树的距离是:152×8=1216(米),汽车经过1216米用了4分钟,1分钟汽车经过:1216÷4=304(米),半小时汽车经过:304×30=9120(米),即小明的家距离学校9120米.难度:中难度在一条长1200米的马路两边每隔30米种一棵梧桐树,在每相邻的2棵梧桐树之间又补栽1棵香樟树.这条马路两边一共栽了多少棵树?解答:1200米里有几个30米就有几段,1200÷30=40(段),马路一边共有梧桐树40+1=41(棵),每段里补栽一颗香樟树,马路一边共有香樟树1×40=40(棵),马路一边共栽了41+40=81(棵)树,两边一共栽了81×2=162(棵).难度:中难度有一个圆形花坛,绕着它走一圈是120米.如果沿着这一圈每隔6米栽一棵丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花,可栽丁香花多少株?可栽月季花多少株?两株相邻的丁香花之间的2株月季花相距多少米?解答:在圆周上栽树时,由于开始栽的一棵与依次栽的最后一棵将会重合在一起,所以可栽的株数正好等于分成的段数.由于每相邻的两株丁香花之间等距离地栽2株月季花,所以栽月季花的株数等于2乘以段数的积.要求两株相邻的丁香花之间的2株月季花相距多少米?需要懂得两株相邻的丁香花之间等距离地栽2株月季花,就是说这4株花之间有3段相等的距离.以6米为一段,圆形花坛一圈可分的段数,即是栽丁香花的株数:120÷6=20(株),栽月季花的株数是:2×20=40(株),每段上丁香花和月季花的总株数是:2+2=4(株),4株花栽在6米的距离中,有3段相等的距离,每两株之间的距离是:6÷(4-1)=2(米).1、有一幢房高17层,相邻两层间都有17个台阶。
奥数小学三年级精讲与测试-第4讲-植树问题

第4讲植树问题知识点、重点、难点以植树为内容,研究植树的棵树、棵与棵之间的距离(棵距)和需要植树的总长度(总长)等数量间关系的问题,称为植树问题.植树问题在生活中很有实际运用价值,其基本数量关系和解题的要点是:1.植树问题的基本数量关系:每段距离×段数=总距离.2.在直线上植树要根据以下几种情况,弄清棵数与段数之间的关系:(1)在一段距离中,两端都植树,棵数=段数+1;(2)在一段距离中,两端都不植树,棵数=段数-1;(3)在一段距离中,一端不植树,棵数=段数.3.在封闭曲线上植树,棵数=段数.例题精讲:分析:先将全长1000米的公路每25米分成一段,一共分成多少段?种树的总棵树和分成的段数的关系是棵数=段数+1.解1000÷25+1=41(棵).答:一共需要准备41棵树苗.例 2 公路的一旁每隔40米有木电杆一根(两端都有).共121根.现改为水泥电杆51根(包括两端),求两根相邻水泥电杆之间的距离.分析:公路全长为40×(121-1)解40×(121-1)÷(51-1)=40×120÷50=96(米).答:两根相邻水泥杆之间的距离是96米.例 3 两幢大楼相隔115米,在其间以等距离的要求埋设22根电杆,从第1根到第15根电杆之间相隔多少米?分析:在相距115米的两幢大楼之间埋设电杆,是两端都不埋电杆的情况,115米应该分成22+1=23段,那么每段长是115÷23=5米,而第1根到第15根电杆间有15-1=14段,所以第1根到第15根电杆之间相隔(5×14)米.解115÷(22+1)×(15-1)=115÷23×14=70(米)答:从第1根到第15根之间相隔70米.例 4 工程队打算在长96米,宽36米的长方形工地的四周打水泥桩,要求四角各打一根,并且每相邻两根的距离是4米,共要打水泥桩多少根?分析:先求出长方形的周长是(96+36)×2=264米,每4米打一根桩,因为是沿着长方形四周打桩,所以段数和根数相等,可用264÷4来计算.解 (96+36)×2÷4=132×2÷4=66(根).答:共要打水泥桩66根.例 5 一个圆形水库,周长是2430米,每隔9米种柳树一棵.又在相邻两棵柳树之间每3米种杨树1棵,要种杨树多少棵?分析:沿着封闭的圆形水库四周植树,段数与棵数相等,沿着2430米的四周,每隔9米种柳树一棵,共可种2430÷9=270棵,也就是把水库四周平分成270段.又在相邻两棵柳树之间,每隔3米种杨树一棵,每段可种9÷3-1=2棵,总共可种杨树2×270=540棵.解 (9÷3-1)×(2430÷9)=2×270=540(棵)答:水库四周要种杨树540棵.例 6 红星小学有125人参加运动会的入场式,他们每5人为一行,前后两行的距离为2米,主席台长32米.他们以每分钟40米的速度通过主席台,需要多少分钟?分析:这是一道与植树问题有关的应用题.利用"有125人,每5人为一行"可求出一共有125÷5=25行,行数相当于植树问题中的棵数,"前后两行距离是2米"相当于每两棵树之间的距离,这样可求出队伍的长度是2×(25-1)米.再加上主席台的长度,就是队伍所要走的距离.用队伍所要走的距离,除以队伍行走的速度,可求出所需行走的时间了.解 [2×(125÷5-1)+32]÷40=[2×24+32]÷40=80÷40=2(分钟).答:队伍通过主席台要2分钟.水平测试 4A 卷一、填空题1.学校有一条长80米的走道,计划在走道的一旁栽树,每隔4米栽一棵.(1)如果两端都栽树,那么共需要______棵树.(3)如果只有一端栽树,那么共需要______棵树.2.一个圆形水池的周长是60米,如果在水池的四周每隔3米放一盆花,那么一共能放______盆花.3.16米的校园大道两边都种上树苗,从路的两头起每隔2米种一棵,共种______棵4.蚂蚁爬树枝,每上一节需要10秒.它从第一节爬到第13节需要_______秒5.一根木料长24分米,现在要将这跟木料锯成长度相等的6段,每锯一次要10秒,共要______秒.二、解答题6.同学们布置教室,要将一根200厘米长的彩带剪成20厘米长的小段.如果彩带不能折叠,需要剪多少次?7.公园的一个湖的周长是1800米,在这个湖的周围每隔20米种一棵柳树.然后在每两棵柳树之间每隔4米种一棵迎春花,需要柳树多少棵、迎春花多少棵?8.在一幢高25层的大楼里,甲、乙两个比赛爬楼梯.甲到9楼时,乙刚上到5楼.照这样的速度,当甲到了顶层时乙到了几楼?9.一个人以均匀的速度在路上散步,从第1根电线杆走到第7根电线杆用了12分钟,这个人走了30分钟,他走到了第几根电线杆?他走到第30根电线杆处,用了几分钟?10.甲村到乙村,原计划栽树175棵,相邻两棵树距离8米,后决定改为栽树117棵,问相邻两树应相距多少米?11.一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后两车相隔5米,问这列车队共长多少米?B 卷一、填空题1.有一条长1000米的公路,在公路两边从头到尾每隔10米栽一棵树,共可栽______棵树.2.两幢楼房相距90米,现在要在两楼之间每隔10米种一棵树,需要种_____树.3.一根木料锯成4段需要18分钟,改成锯8段要_____分钟.4.园林工人放盆花,每7盆花距离12米.照这样计算,36盆花的距离是______米.5.某街心公园新辟一条小道长50米,从头到尾在小道的一旁等距离放6个长5米的花坛,花坛间隔是_____米.6.师专附小举行运动会入场仪式,四年级有246名同学排成6路纵队,前后每行间隔2米,主席台长40米.他们以每分钟40米的速度通过主席台.需要______分钟.二、解答题花?8.有一个正方形池塘,在它四周种树,四个顶点都有一棵,这样每边都有5棵,问池塘四周共种树多少棵?9.人民公园有一个湖泊,周长168米.现在沿边长等距离做8个长9米的花坛,问花坛间隔是多少米?10.一根木料长4米,锯成每段40厘米,需要36分钟.如果把它锯成每段长50厘米,需要多少时间?11.在铁路一旁,每隔50米有电杆一根.一旅客在行进的火车里,从经过第1根电杆起到第89根电杆为止,恰好经过了4分钟,问火车行进的速度是每小时多少千米?12.有一根长180米厘米的绳子,从它的一端开始,每3厘米作一个记号,每4厘米也作一个记号.然后将有记号的地方剪开,问绳子共可剪成多少段?C 卷一、填空题1.在相距100米的两楼之间栽树,每隔10米栽一棵,共栽了______棵树.2.一个长方形的池塘长120米、宽28米,在池塘边每隔2米种一棵树,一共需要种_____棵树.3.一个人以均匀的速度在路上散步,从第一根电线杆走到第七根电线杆用了12分钟,这个人走了30分钟,他走到了第______根电线杆.4.国庆节接受检阅的一列车队共52辆,每辆车长4米,前后每辆车相隔6米,车队每分钟行驶105米,这列车队要通过536米长的检阅场地,要______分钟.5.锯一条4米长的圆柱形的钢条,锯5段耗时1小时20分钟.如果把这样的钢条锯成半米长的小段,需要______分钟.6.小王要到大厦的36层去上班,一日因停电他步行上楼,他从一层到六层用了100秒.如果用同样的速度走到36层,还需要_____秒.二、解答题7.马路的一边每隔10米种一棵树,小明乘汽车2分钟共看到201棵树,汽车每小时行多少千米?8.公园里有个湖,湖边周长是3600米,按等距离共种了120棵柳树.现在要在每3棵柳树间等距离地安放一条长椅供游人休息,沿湖边安放一周需要多少条长椅?两条长椅间相距多少?9.公路两旁距离均匀地栽有一批杨树.清晨琳琳以同一速度在公路一侧跑步,从第1棵树跑到第9棵树用了4分钟.她准备往返跑步30分钟,琳琳应该跑到第几棵树时返回?10.一条道路的一边,每隔30米有一根电线杆,共有51根.现在要进行线路改造,每隔50米设一根电线杆,改造过程中有多少根电线杆不需要移动?11.图2是五个大小相同的铁环连在一起的图形,它的长度是多少毫米?十个这样的铁环连在一起有多少毫米长?12.盒子里有许多黑色和白色的围棋子,明明从盒子里取出19枚,排成一排.他先放1枚白色棋子,放几枚黑色棋子;再放1枚白色棋子,放几枚黑色棋子;......每次放的黑色棋子的枚数都相同.巧的是最后一枚也是白色棋子.请你在图中画出棋子的摆法:植树问题答案:水平测试 4A卷1.(1)21. 80÷4+1=21(棵)(2)19. 80÷4-1=19(棵)(3)20. 80÷4=20(棵)2.20. 这是一个封闭图形.60÷3=20(盆).3.18. 注意这是两边种树.先求一边:16÷2+1=9(棵),9×2=18(棵)4.120. (13-1)×10=120(秒)5.50. (6-1)×10=50(秒)6.9次. 200÷2-1=97.柳树90棵,迎春花360棵.柳树:1800÷20=90(棵),迎春花:(20÷4-1)×90=360(棵).8.13楼. 甲上到9楼就是上了8层楼梯,乙上到5楼就是上了4层楼梯,这样甲的速度就是乙的2倍.(9-1)÷(5-1)=2,(25-1)÷2+1=13(楼).9.16根,58分钟. 第一根电线杆到第七根电线杆之间有6个间距,走6个间距要12分钟,可知走一个间距所需时间.12÷(7-1)=2(分钟),30÷2+1=16(根),(30-1)×2=58(分钟).10.12米. 先求出两村距离:(175-1)×8=1392(米).再求间距:1392÷(117-1)=12(米).11.265米. 30辆车之间有29个间隔,这个车队的长度包括车长和间隔.30×4+(30-1)×5=265(米).B 卷1.202. (1000÷10+1)×2=202(棵).2.8. 90÷10-1=8(棵).3.42. 锯一段所需时间,18÷(4-1)=6(分钟),6×(8-1)=42(分钟).4.70. 两盆花之间的距离:12÷(7-1)=2(米),(36-1)×2=70(米).5.4. (50-6×5)÷(6-1)=4(米)6.3. 同学们通过主席台所走的路程包括:主席台的长度和队伍本身的长度.队伍长:(246÷6-1)×2=80(米),(80+40)÷40=3(分钟).倍.400÷40=10(盏)......灯,3×10=30(盆)......花.8.从图可看到,四边共种了16棵,若每边种了(5-1)棵,则4边种了4×4=16棵;若每边种5棵树,四边共5×4=20棵树,去掉四个角上重复的棵数,那么也成了20-1×4=16棵;解法一(5-1)×4=16(棵); 解法二5×4-1×4=16(棵).9.花坛的总长是9×8=72(米),还剩下的米数是168-72=96(米).在封闭曲线上,8个花坛间有8个间隔,每个间隔的距离是96÷8=12(米).(168-9×8)÷8=96÷8=12(米).10.4m=400cm,36÷(400÷40-1)×(400÷50-1)=36÷9×7=28(分钟).11.从第1根到第89根,火车共走了50×(89-1)=50×88=4400米.走这些路程用了4分钟,所以火车每分钟走4400÷4=1100米,那么1小时可走1100×60÷1000=66千米.50×(89-1)÷4×60÷1000=50×88÷4×60÷1000=66(千米/小时).12.180米长的绳子,每隔3厘米做一个记号,记号数比段数少1,有180÷3-1=59个记号.同样每隔4厘米做一个记号,则有180÷4-1=44个记号.由于3×4=12厘米,可以想象,每隔12厘米,3厘米处的记号与4厘米处的记号重复一次,那么在180厘米长的绳子上共重复了180÷12-1=14次,所以绳子上的记号总数为59+44-14=89个,而记号处都要剪开,共剪了89次,剪成了90段(段数比次数多1).(180÷3-1)+(180÷4-1)-[180÷(3×4)-1]+1=59+44-14+1=90(段).C 卷1.9. 100÷10-1=9(棵).2.148. (120+28)×2÷2=148(棵)3.16. 12÷(7-1)=2(分钟),30÷2+1=16(根).4.10. 车队行进的长度包括检阅场地和车队本身长度.(52-1)×6+52×4=514(米),(514+536)÷105=10(分钟).5.140. 1小时20分=80分,80÷(5-1)=20(分钟),(4×2-1)×20=140(分钟).6.640. 100÷(6-1)=20(秒),(36-1)×20=740(秒),740-100=640(秒).7.60千米/时. 小明2分钟经过了201棵树,这之间就有201-1=200(个)间隔,每个间隔10米,就能求出汽车开过的路程.(201-1)×10=2000(米)=2(千米),2÷2×60=60(千米/时).8.60条,60米. 三棵树之间的间距:3600÷120×2=60(米),也就是每60米要放一张长椅,所以3600÷60=60(条).9.31棵. 4分钟=240秒.240÷(9-1)=30(秒),琳琳30秒跑一个间距.30分钟=1800秒,1800÷30=60(个),琳琳1800秒要跑60个间距,往返各30个间距,所以30+1=31(棵).琳琳跑到第31棵树时返回.10.11根. 道路总长度:30×(51-1)=1500(米).当30米与50米的公倍数150米处时,这根电线杆不需要移动,还有开头的这根也不需要移动.1500÷150+1=11根.11.152米,292米.4cm=40mm,40-4×6=16(mm),40×3+16×2=152(mm).40×5+16×4+(40-12)=292(米).12.略.。
三年级植树问题解题技巧和方法

植树问题解题是三年级数学课程中的重要内容。
作为基础数学题型,植树问题的解题技巧和方法对学生建立数学思维,培养逻辑推理能力具有重要意义。
下面,将介绍植树问题的解题技巧和方法,帮助三年级学生更好地掌握这一题型。
一、理解植树问题的定义和特点植树问题是指在一定条件下,根据已知条件求未知数目的树的问题。
这类问题一般会涉及到树的数量、排列方式等概念,需要根据题目条件进行逻辑推理,确定未知数目。
二、理清题意,找出已知和未知1. 通读题目,理清题意,明确要求解的问题是什么,需要求出的未知数目是什么。
2. 找出已知条件,包括已知数量、排列方式、特定规律等。
3. 确定未知数目,明确需要求解的未知数目。
三、分析问题,寻找解题思路1. 根据已知条件,寻找各种可能的排列方式,明确排列方式的规律与特点。
2. 寻找可能的数学关系,包括等差数列、等比数列等,利用数学知识进行问题分析和求解。
四、根据规律,建立方程或思维框架1. 根据问题要求,建立相应的数学关系式,列出方程或思维框架,明确未知数的关系。
2. 利用建立的方程或思维框架,推导出未知数目的具体值。
五、检查求解结果,确定答案的正确性1. 将已知条件带入建立的方程或思维框架中,检查计算过程和结果的准确性。
2. 对求解结果进行逻辑推理,确定答案的正确性。
通过以上的技巧和方法,相信三年级学生可以更好地掌握植树问题的解题技巧,提高数学解题能力,建立数学思维。
老师在教学中也应该注重引导学生理解题目、分析问题,并进行适当的例题训练,帮助学生熟练掌握植树问题的解题方法。
希望本文所介绍的技巧和方法能对三年级学生的数学学习有所帮助。
文章已经包含了解题技巧和方法的基本内容,接下来可以继续扩展该内容,以提供更多的具体例子和案例分析,帮助三年级学生更深入地理解植树问题的解题技巧和方法。
六、举例分析,深入理解解题技巧举例是帮助学生深入理解解题技巧的重要方法,下面通过具体例子对植树问题的解题技巧进行进一步解析:例1:小明家有一片土地,计划在这片土地上植树,要求植树的行数是等差数列,第一行植树5棵,最后一行植树15棵,问共植树了多少棵?解:根据题目要求,确定已知条件:已知:第一行植树5棵,最后一行植树15棵,且是等差数列根据植树的行数是等差数列,可以列出植树数量的规律,每一行的植树数量可以用等差数列公式表示为:a1=5, an=15根据等差数列的通项公式an=a1+(n-1)d,其中n为行数,d为公差 15=5+(n-1)dd=(15-5)/(n-1)d=10/(n-1)进而可得出公差d和行数n的关系。
奥数--植树问题

例6、时钟4点钟敲4下,用12秒敲完。那么6点钟敲6下,多少秒敲完?
练习:
1、挂钟5点钟敲5下,10秒敲完,那么12点钟敲12下,几秒敲完?
2、一座楼房每上1层要走20级台阶,到小英家要走100级台阶,小英家住在几楼?
3、有一根木料长20米,先锯下2米长的损坏部分,然后把剩下的木料锯成一样长的木条,又锯了5次,每根短木条长多少米?
知识归纳
植树问题专题
姓名:
一、概念梳理
知识点一:植树问题的意义
植树问题通常是指沿着一定的路线植树,这条路线被树平均分成若干段(间隔),由于路线或植树要求的不同,求解路线的总长度与路线被分成的(间隔数)和植树的棵数之间的关系。
基本关系:路长=株距×段数株距=路长÷段数段数=路长÷株距
知识点二:
植树问题通常有两种情况:一种是植物路线是不封闭的;另一种是植树路线是封闭的。
4、一个圆形水池周围每隔2米栽一棵柳树,共栽40棵,水池的周长是多少?
5、在一条公路上两侧每隔16米架设一根电线杆,共用电线杆52根,这条公路全长多少米?
6、在一条长250米的路两旁栽树,起点和终点都栽,一共栽了11棵,每两棵相邻的树之间的距离都相等,你知道是多少米吗?
7、在一条长50米的跑道两旁,从头到尾每隔5米插一面彩旗,一共插多少面彩旗?
1)对于一条不封闭的路线,分两种情况:
A、两端都栽:段数=棵数—1路长=株距×(棵数-1)
株距=路长÷(棵数—1)棵数=路长÷株距+ 1
B、两端都不栽:段数=棵数+1路长=株距×(棵数+1)
株距=路长÷(棵数+1)棵数=路长÷株距—1
2)对于一条封闭的路线:段数=棵数路长=株距×棵数
04三年级奥数班第四讲——植树问题

远辉教育春季奥数班数学学案主讲人:杨老师学生:三年级电话:第四讲——植树问题专题简析:确定在一定条件下栽树、种花的棵数是最简单、最基本的“植树问题”。
还有许多应用题可以化为“植树问题”来解,或借助解“植树问题”的思考方法来解。
介绍四类最简单、最基本的植树问题。
例题简析:【例题1】小朋友们在路的一边植树,先植一棵树,以后每隔3米植一棵,已经植了9棵,问第一棵和第九棵树相距多少米?举一反三:1.在路的一侧插彩旗,每隔5米插一面,从起点到终点共插了20面,这条道路有多长?2.在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了20盆,这条走廊长多少米?3.在一条20米长的绳子上挂气球,从一端起每隔5米挂1个气球,4个气球能挂满这根绳子吗?【例题2】在一条36米长的走廊的一侧摆花盆,两端都摆,平均每隔2米摆一个花盆。
一共需要摆多少盆花?举一反三:1.在马路的一侧竖电线杆,平均每五米竖一根,如果两端都竖.100米长的马路一共需要多少根电线杆?2.在长50米的跑道一侧插彩旗,如果平均2米插一面,两端都插,一共需要多少面彩旗?3.在跑道的一边每隔3米植1颗树,如果两端都植,那么75米长的跑道一共要植多少颗树?【例题3】在一条长40米的大路两侧栽树,从起点到终点一共栽了22棵,已知相邻两棵树之间的距离都相等,问相邻两棵树之间的距离是多少米?举一反三:1.在一条32米长的公路的一侧插彩旗,从起点到终点共插了5面彩旗,相邻两面彩旗之间的距离相等,问相邻两面彩旗之间相距多少米?2.在公园一条长25米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子的距离相等,相邻两把椅子之间相距多少米?3.要把一根木料锯成8段,已知每锯开1段需要2分钟,把这根木料全部锯完需要多少分钟?【例题4】在一条50米长的马路一边植树,每隔5米植一棵,如果两端都不植,一共需要植多少棵树?举一反三:1.在60米长的围墙上安装宣传栏,每隔2米安装一个,如果两端不安装,一共需要安装多少个?2.在一条70分米长的绳子上打结,每隔2分米打一个结,如果两端都不打,一共需要打多少个结?3.在一条5米长的晾衣绳上晾衣服,每隔25厘米挂一个衣架,如果两端都不挂,一共可以晾多少件衣服?【例题5】在周长为50米的圆形池塘边栽树,每隔5米栽一棵,一共可以栽多少棵?举一反三:1.在周长200米的正方形四周安装彩灯,每隔10米安装一个彩灯,一共需要安装多少个?2.在边长40米的正方形鱼池四周安装报警器,每隔20米安装一个,一共安装多少个?3.在一个等边三角形花坛的周围插彩旗,每隔3米插一面彩旗,如果这个等边三角形花坛的边长为24米,一共需要插多少面彩旗?。
小学三年级奥植树问题知识点及练习题

小学三年级奥植树问题知识点及练习题1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=段数+1。
2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=段数。
3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=段数-1。
二、在封闭线路上植树,棵数与段数相等,即:棵数=段数。
三、在方形线路上植树,如果每个顶点都要植树。
则棵数=(每边的棵数-1)×边数。
【练习题】2、一条走廊长21米,从走廊的一端每隔3米放一盆花。
走廊的两边一共需要几盆花?3、学校两座教学楼之间的距离是40米,如果每隔5米种1棵树,共可以种多少棵树?4、在一条长为48米的马路一旁栽树,如果每4米栽一棵,一共可以栽几棵?如果一共要栽9棵,那么每两棵之间应相隔多少米?5、一根木料长20米,把它锯成5米长的一段,如果每锯一次需要3分钟,一共需多少分钟?6、一幢六层楼房,每层楼有14级楼梯,小明从底楼走到六楼,共走了多少级楼梯?7、从1楼走到4楼共要走36级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?8、时钟6点钟敲6下,10秒钟敲完,敲8下需要多少秒?9、一个木工锯一个长13米的木条。
他先把一头损坏部分锯下1米,然后锯了5次,锯成许多一样长的短木条。
求每根短木条长多少米?10、校门口摆一排菊花,一共9盆。
再在每两盆菊花中间摆3盆桂花。
共摆了几盆桂花?11、一个老人在公路上散步,从第一根电线杆走到第12根用了11分,这个老人走了24分,走到第几根电线杆?12、一个圆形花圃周围长30米,沿周围每隔3米插一面红旗,每两面红旗中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?13、A、B 两人比赛爬楼梯,A跑到4层楼时,B恰好跑到3层楼,照这样计算,A跑到16层楼时,B跑到几层楼?14、大人上楼的速度比小孩快1倍,小孩从1楼到3楼要3分钟,那么,大人从1楼到5楼要多少分钟?15、在一块正方形地四周种树,每边都种了15棵,并且四个顶点都种有一棵树。
三年级奥数基础教程-植树问题小学

植树问题——含答案先介绍四类最简单、最基本的植树问题。
为使其更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
显然,只有下面四种情形:(1)非封闭线的两端都有“点”时,“点数”=“段数”+1。
(2)非封闭线只有一端有“点”时,“点数”=“段数”。
(3)非封闭线的两端都没有“点”时,“点数”=“段数”-1。
(4)封闭线上,“点数”=“段数”。
最简单、最基本的植树问题只有这四类情形。
例如,一条河堤长420米,从头到尾每隔3米栽一棵树,要栽多少棵树?这是第(1)种情形,所以要栽树420÷3+1=141(棵)。
又如,肖林家门口到公路边有一条小路,长40米。
肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?由于门的一端不能栽树,公路边要栽树,所以,属于第(2)种情形,要栽树40÷2=20(棵)。
再如,两座楼房之间相距30米,每隔2米栽一棵树,一直行能栽多少棵树?因紧挨楼房的墙根不能栽树,所以,属于第(3)种情形,能栽树30÷2-1=14(棵)。
再例如,一个圆形水池的围台圈长60米。
如果在此台圈上每隔3米放一盆花,那么一共能放多少盆花?这属于第(4)种情形,共能放花60÷3=20(盆)。
许多应用题都可以借助或归结为上述植树问题求解。
例1在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
这段路长多少米?解:这是第(1)种情形,所以,“段数”=10-1=9。
这段路长为50×(10-1)=450(米)。
答:这段路长450米。
例2小明要到高层建筑的11层,他走到5层用了100秒,照此速度计算,他还需走多少秒?分析:因为1层不用走楼梯,走到5层走了4段楼梯,由此可求出走每段楼梯用100÷(5-1)=25(秒)。
走到11层要走10段楼梯,还要走6段楼梯,所以还需25×6=150(秒)。
三年级数学植树问题例题解析

三年级数学植树问题例题解析
摘要:
1.植树问题的基本概念
2.三年级数学植树问题的例题
3.例题的解析方法
4.植树问题的实际应用
正文:
【植树问题的基本概念】
植树问题是一种典型的数学问题,主要涉及到树的种植方式和数量。
一般来说,植树问题可以分为两类:一是在直线上种植树木,二是在平面上种植树木。
在三年级数学中,通常学习的是在直线上种植树木的问题。
【三年级数学植树问题的例题】
例题:小明家到学校有一条长为500 米的路,他想在这条路上种一些树,每隔5 米种一棵,问小明可以在这条路上种多少棵树?
【例题的解析方法】
解:首先,我们要知道,树的两端都是不能种植树木的,所以,小明在这条500 米长的路上,最后一棵树距离路的终点应该是5 米,而不是0 米。
因此,小明实际上只能在这条路上种(500-5)/5=99 棵树。
【植树问题的实际应用】
植树问题在生活中有很多实际应用,比如,我们要计算在一条街道上需要种多少棵树,或者计算在一块土地上需要种多少棵树,都可以用植树问题的方
法来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲
应用题入门之植树问题
【例题精讲】
例 1
植树节到了,同学们在一条90米长的小路一旁栽树,每隔3米栽一棵。
⑴如两端都各栽一棵,需要多少棵树?
⑵如只有一端栽树,需要多少棵树?
例 2
在一个湖泊周围筑成720米的大堤,堤上每隔6米栽柳树一棵,然后在相邻的两棵柳树之间栽桃树2棵,大堤上栽柳树和桃树各多少棵?
例 3
小敏用同样的速度在校园的林荫道上散步,他从第1棵树走到第6棵树用了10分钟,当他走了18分钟时应到达第几棵树?
例 4
把一根木头锯成4段需要6分钟,如果要锯成13段,需要多少分钟?
例 5
小平和小亮同住在一幢大楼里,小平住五楼,小亮住三楼,小平每天回家要走80级台阶,小亮回家要走多少级台阶?
例6
牛牛爬楼梯,发现:
⑴从1楼到5楼需要40秒,那么,牛牛从一楼爬到十五楼需要多长时间?
⑵从第一层走到第三层需要爬36级台阶。
那么牛牛从第一层爬到第十层需要爬多少级台阶?
【趣味大挑战】
有块三角形土地,三条边的长度分别属120米,150米,80米。
在边界上每隔10米种一棵树,三角形的每个顶点都必须种。
一共要种多少棵树?
【知识点总结】。