九年级 一元二次方程综合练习题
中考数学复习专项提升练习:一元二次方程(含答案)

中考数学复习专项提升练习:一元二次方程一、选择题1.在下列方程中,属于一元二次方程的是( )A.2x2+x=1x−5B.x2−3x+2C.−5x2+3y−2=0D.y2=162.用配方法解一元二次方程式x2+4x-5=0,此方程可变形为( )A.(x+2)2=9B.(x-2)2=9C.(x+2)2=1D.(x-2)2=13.已知3x2=12,则x的值为( )A.4B.9C.2D.±24.关于x的一元二次方程(a−2)x2+x+a2−4=0的一个根是0,则a的值为( )A.2B.−2C.2或−2D.05.如果关于x的一元二次方程k2x2−(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )A.k>-14B.k>-14且k≠0C.k<-14D.k≥-14且k≠06.设一元二次方程x2−3x+2=0的两根为x1,x2,则x1+x2−x1x2的值为( )A.1B.−1C.0D.37.据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为( )A.3.2(1−x)2=3.7B.3.2(1+x)2=3.7C.3.7(1−x)2=3.2D.3.7(1+x)2=3.28.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足1α+1β=−1 ,则m的值是( )A.3B.1C.3或−1D.−3或1二、填空题9.m= 时,关于x的方程(m+1)x m2+1+mx+5=0是一元二次方程.10.已知一元二次方程x2+mx+1=0有两个相等的实数根,则m的值为 .11.三角形的两边长分别为6和8,第二边长是方程x2−12x+20=0的一个实根,则第三边长为 .12.已知α,β是一元二次方程x2−2023x−2024=0的两个根,则α2−2024α−β的值等于 . 13.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片,如果全班有x名学生,根据题意,列出方程为 .三、解答题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(m+3)x+3m=0.(1)求证:无论m取任何实数,方程总有实数根;(2)若一元二次方程的两根为x1,x2,且满足x21+x22−x1x2=19,求m的值.16.方程14x2−kx+k2+2k−3=0是关于x的一元二次方程.(1)若这个方程有两个不相等的实数根,求k的取值范围;(2)若等腰三角形ABC的三边分别用a、b、c表示,其中一边a长为4,另外两边b、c长恰好是这方程的两个根,求△ABC的周长.17.如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.18.某租赁公司拥有80辆汽车.据统计,当每辆车的日租金为300元时,可全部租出.每辆车的日租金每增加5元,未租出的车将增加1辆.租出的车每辆每天的维护费为15元,未租出的车每辆每天的维护费为5 元.(1)当每辆车的日租金定为300元时,公司的当日日收益(租金收入扣除维护费)是多少元?(2)当每辆车的日租金定为360元时,能租出多少辆?(3)当每辆车的日租金定为多少元时,租赁公司的日收益(租金收入扣除维护费)可达23360元?参考答案1.D2.A3.D4.B5.B6.A7.B8.A9.110.±211.1012.113.(x﹣1)x=164014.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵Δ=b2−4ac =[−(m+3)]2−12m=m2+6m+9−12m=m2−6m+9=(m−3)2;又∵(m−3)2≥0,∴b2−4ac≥0,∴无论m取任何实数,方程总有实数根;(2)解:∵x1+x2=m+3,x1⋅x2=3m,x21+x22−x1x2=19,∴(x1+x2)2−3x1x2=19,∴(m+3)2−3×3m=19,整理得m2−3m−10=0,解得m=5或m=−2,故m的值为5或−2.16.(1)解:∵方程14x2−kx+k2+2k−3=0有两个不相等的实数根∴Δ=b2−4ac=(−k)2−4×14(k2+2k−3)>0解得:k<32(2)解:①当b=c时,则Δ=b2−4ac=(−k)2−4×14(k2+2k−3)=0,解得k=32,把k=32代入原方程得:14x2−32x+94=0方程可化为x2−6x+9=0解方程得x1=x2=3,所以b=c=3,△ABC的周长=4+3+3=10;②当a=b=4或a=c=4时,把x=4代入方程14x2−kx+k2+2k−3=0,可解得k=1当k=1时,方程化为14x2−x=0,解得x1=0,x2=4.x1=0即为c=0或b=0,不符合题意,舍去。
初中数学一元二次方程综合练习题(附答案)

初中数学一元二次方程综合练习题一、单选题1.一元二次方程293x x -=-的解是( )A.3x =B.4x =-C.123,4x x ==-D.123,4x x ==2.直角三角形两条直角边长的和是7,面积是6,则斜边长是()B.5D.73.一元二次方程220x x -=的两根分别为1x 和2x ,则12x x 为( )A.2-B.1C.2D.0A.2m =±B.2m =C.2m =-D.2m ≠±5.若a ,β为方程22510x x --=的两个实数根,则2235a a ββ++的值为( )A.13-B.12C.14D.15A.2B. 1-C.2或1-D.不存在7.已知关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x 的方程20x bx a ++=的根B.0一定不是关于x 的方程20x bx a ++=的根C.1和1-都是关于x 的方程20x bx a ++=的根D.1和1-不都是关于x 的方程20x bx a ++=的根8.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( )A.18a >-B.18a ≥-C. 18a >-且1a ≠D. 18a ≥-且1a ≠9.一个正方体的表面展开图如图所示,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为( )A.1B.1或2C.2D.2或310.定义一种新运算:()a b a a b =-♣.例如,434(43)4=⨯-=♣.若23x =♣,则x 的值是( )A.3x =B.1x =-C.123,1x x ==D.123,1x x ==-二、解答题11.已知关于x 的一元二次方程2(1)210m x mx m --++=.(1)求方程的根;(2)当m 为何整数时,此方程的两个根都为正整数?12.阅读材料:把形如2ax bx c ++ (,,a b c 为常数)的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:222213(1)3,(2)2,(2)24x x x x x -+-+-+是224x x -+的三种不同形式的配方,即“余项”分别是常数项、一次项、二次项.请根据阅读材料解决下列问题:(1)仿照上面的例子,写出242x x -+的三种不同形式的配方;(2)已知2223240a b c ab b c ++---+=,求a b c ++的值.14.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方15.若关于x 的一元二次方程220mx x m ++=的两根之积为-1,则m 的值为 .16.小明设计了一个魔术盒,当任意实数对(,)a b 进入其中时,会得到一个新的实数223a b -+.若17.已知关于x 的方程260x x k -+=的两根分别是12,x x ,且满足12113x x +=,则k = .参考答案1.答案:C解析:方程293x x -=-变形为(3)(3)(3)0x x x +-+-=,将方程左边因式分解得(3)(4)0x x -+=,所以123,4x x ==-.2.答案:B解析:设其中一条直角边的长为x ,则另一条直角边的长为7x -,由题意,得1(7)62x x -=,解得1234x x ==,5=.故选B3.答案:D解析:∵一元二次方程220x x -=的两根分别为1x 和2x ,∴120x x =.故选:D .4.答案:B方程,故2m =5.答案:B解析:a β,为方程22510x x --=的两个实数根,故251251022a a ββββ+==---=,,,从而2521ββ=- 222225123523212()1211222a a a a a a ββββββ⎛⎫⎛⎫∴++=++-=+--=---= ⎪ ⎪⎝⎭⎝⎭. 6.答案:A解析:由题意得0m ≠,2(2)44404m m m m ⎡⎤∆=-+-=+>⎣⎦,解得1m >-且0m ≠. 121212211414m x x m m x x x x +++=== 解得1221m m ==-,(舍去),所以m 的值为2.7.答案:D解析:关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,2210(2)4(1)0a b a +≠⎧∴⎨∆=-+=⎩ 1b a ∴=+或(1)b a =-+.当1b a =+时,有10a b -+=,此时1-是方程20x bx a ++=的根;当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根.10a +≠,1(1)a a ∴+≠-+1∴和1-不都是关于x 的方程20x bx a ++=的根.当0a =时,0是关于x 的方程20x bx a ++=的根.综上,D 正确.8.答案:D解析:根据一元二次方程的定义和根的判别式的意义得到1a ≠且234(1)(2)0a ∆=--⋅-≥,然后求出两个不等式解集的公共部分即可. 9.答案:C解析:正方体的平面展开图共有六个面,其中面“2x ”与面“32x -”相对,面“★”与面“1x +”相对.因为相对两个面上的数值相同,所以232x x =-,解得1x =或2x =.又因为不相对两个面上的数值不相同,当2x =时,2324x x +=-=,所以x 只能为1,即12x =+=★.10.答案:D解析:23,(2)3x x x =∴-=♣整理,得2230x x --=,因式分解,得(3)(1)0x x -+=,30x ∴-=或10x +=,123,1x x ∴==-.故选D.11.答案:(1)解:根据题意,得1m ≠1,2,1a m b m c m =-=-=+224(2)4(1)(1)4b ac m m m ∴∆=-=---+=(2)12(1)1m m x m m --±∴==--则121,11m x x m +==- (2)由(1),知112111m x m m +==+--. 方程的两个根都为正整数,21m ∴-是正整数, 11m ∴-=或12m -=,解得2m =或3.即m 为2或3时,此方程的两个根都为正整数。
人教版九年级数学上一元二次方程和二次函数综合练习题附详细答案教师版

人教版九年级数学上一元二次方程和二次函数综合练习题附答案一、单选题1.已知方程x2−2021x+1=0的两根分别为m、n,则m2−2021n的值为()A.1B.−1C.2021D.−2021【答案】B【解析】【解答】解:∵方程x2﹣2021x+1=0的两根分别为m,n,∴mn=1,m2﹣2021m+1=0,∴m2=2021m-1,m=1 n∴m2﹣2021n=2021m-1-2021m=-1.故答案为:B.【分析】根据一元二次方程根的概念可得m2-021m+1=0,根据根与系数的关系可得mn=1,则m2=2021m-1,m=1n,接下来代入待求式中计算即可.2.一学生推铅球,铅球行进的高度y(m)与水平距离x(m)之间的关系为y=−112x2+23x+53,则学生推铅球的距离为()A.35m B.3m C.10m D.12m 【答案】C【解析】【解答】令函数式y=−112x2+23x+53中,y=0,即−112x2+23x+53=0,解得x1=10,x2=−2(舍去),即铅球推出的距离是10m.故答案为:C.【分析】求学生推铅球的水平距离,就是求y=0的时候对应的自变量的值,将y=0代入解析式,解方程,再根据实际情况检验即可得出结论。
3.下列各式中,y是x的二次函数的是()A.B.C.D.【答案】B【解析】【解答】由二次函数的定义,可以化为关于的最高次数为2次的整式方程,B项可化为,故选B.【分析】根据二次函数的定义来进行解答。
4.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.【答案】D【解析】【解答】解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(−1,0),排除A、B;当a>0时,二次函数开口向上,一次函数经过一、三、四象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故答案为:D.【分析】由一次函数y=ax+a可知,一次函数的图象与x轴交于点(−1,0),排除A、B;当a>0时,二次函数开口向上,一次函数经过一、三、四象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;即可得出答案。
初中数学一元二次方程综合练习题(附答案)

初中数学一元二次方程综合练习题(附答案)初中数学一元二次方程综合练题一、单选题1.一元二次方程x²-9=3-x的解是(。
)A.x=3B.x=-4C.x1=3,x2=-4D.x1=3,x2=42.直角三角形两条直角边长的和是7,面积是6,则斜边长是()A.√37B.5C.√38D.73.一元二次方程x²-2x=0的两根分别为x1和x2,则x1x2为()A.-2B.1C.2D.04.方程(m+2)x²=0的根为A.m=±2B.m=2C.m=-2D.m≠±25.若a,β为方程2x²-5x-1=0的两个实数根,则2a+3aβ+5β的值为()A.-13B.12C.14D.156.已知关于x的一元二次方程mx²-(m+2)x+2m+m²-8=0是关于x的一元二次方程,则m=有两个不相等的实数根x1,x2.若4x1+11x2=4m,则m的值是()A.2B.-1C.2或-1D.不存在7.已知关于x的一元二次方程(a+1)x+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是(。
)A.1一定不是关于x的方程x²+bx+a的根B.0一定不是关于x的方程x²+bx+a的根C.1和-1都是关于x的方程x²+bx+a的根D.1和-1不都是关于x的方程x²+bx+a的根8.关于x的一元二次方程(a-1)x+3x-2=0有实数根,则a的取值范围是(。
)A.a>-1B.a≥-1C.a>-1且a≠1D.a≥-1且a≠19.一个正方体的表面展开图如图所示,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为(。
)A.1B.1或2C.2D.2或310.定义一种新运算:a♣b=a(a-b).例如,4♣3=4×(4-3)=4.若x♣2=3,则x的值是(。
)A.x=3B.x=-1C.x1=3,x2=1D.x1=3,x2=-1二、解答题11.已知关于x的一元二次方程(m-1)x-2mx+m+1=0.(1)求方程的根;把形如 $ax^2+bx+c(a,b,c$ 为常数$)$ 的二次三项式(或其一部分)配成完全平方式的方法叫做配方法。
九年级数学解一元二次方程专项练习题(带答案)

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4) 0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
一元二次方程的解法综合练习题及答案

一元二次方程之概念
.在下列方程中,一元二次方程的个数是( ). ①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 A.1 个 B.2 个 C.3 个 D.4 个
一元二次方程之根的判别
一、选择题 1.一元二次方程 x2-ax+1=0 的两实数根相等,则 a 的值为( ). A.a=0 B.a=2 或 a=-2 C.a=2 D.a=2 或 a=0 2.已知 k≠1,一元二次方程(k-1)x2+kx+1=0 有根,则 k 的取值范围是( ). A.k≠2 B.k>2 C.k<2 且 k≠1 D.k 为一切实数
A、 1 -x2+5=0 x
B、x(x+1)=x2-3 C、3x2+y-1=0
3x 1 5
10、方程 x2-8x+5=0 的左边配成完全平方式后所得的方程是( )
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
中考数学一元二次方程综合练习题附详细答案

一、一元二次方程真题与模拟题分类汇编(难题易错题)1.阅读下列材料计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4(3)解方程:(x2+4x+1)(x2+4x+3)=3【答案】(1);(2)(a2﹣5a+5)2;(3)x1=0,x2=﹣4,x3=x4=﹣2【解析】【分析】(1)仿照材料内容,令+=t代入原式计算.(2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a.(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.【详解】(1)令+=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=(2)令a2﹣5a=t,则:原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2(3)令x2+4x=t,则原方程转化为:(t+1)(t+3)=3t2+4t+3=3t(t+4)=0∴t1=0,t2=﹣4当x2+4x=0时,x(x+4)=0解得:x 1=0,x 2=﹣4 当x 2+4x =﹣4时, x 2+4x +4=0 (x +2)2=0 解得:x 3=x 4=﹣2 【点睛】本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(2 【解析】 【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=5,利用完全平方公式进行变形即可求得答案. 【详解】(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根, ∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0, ∴k >34; (2)当k =2时,原方程为x 2-5x +5=0, 设方程的两个根为m ,n , ∴m +n =5,mn =5,∴==.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.3.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.4.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】 【分析】设321xy x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】解:设321xy x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3,∴3121x x =--或3321xx =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.5.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】6.(问题)如图①,在a×b×c (长×宽×高,其中a ,b ,c 为正整数)个小立方块组成的长方体中,长方体的个数是多少? (探究)探究一:(1)如图②,在2×1×1个小立方块组成的长方体中,棱AB 上共有1+2=232⨯=3条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为3×1×1=3. (2)如图③,在3×1×1个小立方块组成的长方体中,棱AB 上共有1+2+3=342⨯=6条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为6×1×1=6. (3)依此类推,如图④,在a×1×1个小立方块组成的长方体中,棱AB 上共有1+2+…+a=()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为______. 探究二:(4)如图⑤,在a×2×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2=232⨯=3条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+×3×1=()3a a 12+.(5)如图⑥,在a×3×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2+3=342⨯=6条线段,棱AD 上只有1条线段,则图中长方体的个数为______. (6)依此类推,如图⑦,在a×b×1个小立方块组成的长方体中,长方体的个数为______.探究三:(7)如图⑧,在以a×b×2个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC 上有()b b 12+条线段,棱AD 上有1+2=232⨯=3条线段,则图中长方体的个数为()3a a 12+×()b b 12+×3=()()3ab a 1b 14++.(8)如图⑨,在a×b×3个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有()b b 12+条线段,棱AD 上有1+2+3=342⨯=6条线段,则图中长方体的个数为______.(结论)如图①,在a×b×c 个小立方块组成的长方体中,长方体的个数为______. (应用)在2×3×4个小立方块组成的长方体中,长方体的个数为______. (拓展)如果在若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论. 【答案】探究一:(3)()a a 12+ ;探究二:(5)3a (a+1);(6)()()ab a 1b 14++ ;探究三:(8)()()3ab a 1b 12++ ;【结论】:①()()()abc a 1b 1c 18+++ ;【应用】:180;【拓展】:组成这个正方体的小立方块的个数是64,见解析. 【解析】 【分析】(3)根据规律,求出棱AB ,AC ,AD 上的线段条数,即可得出结论; (5)根据规律,求出棱AB ,AC ,AD 上的线段条数,即可得出结论; (6)根据规律,求出棱AB ,AC ,AD 上的线段条数,即可得出结论; (8)根据规律,求出棱AB ,AC ,AD 上的线段条数,即可得出结论; (结论)根据规律,求出棱AB ,AC ,AD 上的线段条数,即可得出结论; (应用)a=2,b=3,c=4代入(结论)中得出的结果,即可得出结论; (拓展)根据(结论)中得出的结果,建立方程求解,即可得出结论.【详解】解:探究一、(3)棱AB 上共有()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为()a a 12+ ×1×1=()a a 12+ ,故答案为()a a 12+ ;探究二:(5)棱AB 上有()a a 12+ 条线段,棱AC 上有6条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+ ×6×1=3a (a+1),故答案为3a (a+1); (6)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+ ×()b b 12+×1=()()ab a 1b 14++,故答案为()()ab a 1b 14++;探究三:(8)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有6条线段,则图中长方体的个数为()a a 12+ ×()b b 12+×6=()()3ab a 1b 12++,故答案为()()3ab a 1b 12++;(结论)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有()c c 12+条线段,则图中长方体的个数为()a a 12+×()b b 12+×()c c 12+=()()()abc a 1b 1c 18+++,故答案为()()()abc a 1b 1c 18+++;(应用)由(结论)知,()()()abc a 1b 1c 18+++,∴在2×3×4个小立方块组成的长方体中,长方体的个数为()()()2342131418⨯⨯⨯+⨯+⨯+=180,故答案为为180;拓展:设正方体的每条棱上都有x 个小立方体,即a=b=c=x , 由题意得33(1)8x x +=1000, ∴[x (x+1)]3=203, ∴x (x+1)=20,∴x 1=4,x 2=-5(不合题意,舍去) ∴4×4×4=64所以组成这个正方体的小立方块的个数是64. 【点睛】解此题的关键在于根据已知得出规律,题目较好,但有一定的难度,是一道比较容易出错的题目.7.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=, 0,40m n n ∴-=-=, 4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7 【解析】 【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值. 【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0 ∴(x +y )2+(y +1)2=0 ∴x +y =0 y +1=0 解得:x =1,y =﹣1 ∴x ﹣y =2;(2)∵a 2+b 2﹣6a ﹣8b +25=0 ∴(a 2﹣6a +9)+(b 2﹣8b +16)=0 ∴(a ﹣3)2+(b ﹣4)2=0 ∴a ﹣3=0,b ﹣4=0 解得:a =3,b =4∵三角形两边之和>第三边∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c 2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b +c =2﹣(﹣2)+3=7. 故答案为7. 【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.8.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2 【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式2b x a-=求解即可.试题解析:方程化为x 2-4x -1=0. ∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x=, ∴x1=2,x 2=29.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩ 解之得:108a b =⎧⎨=⎩ 答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.10.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.。
人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)

第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程综合练习题
一、选择题:
1.方程x 2-4│x │+3=0的解是( )
A.x=±1或x=±3
B.x=1和x=3
C.x=-1或x=-3
D.无实数根
2.当2-≤m 时,关于y x ,的方程组⎩⎨⎧=+-=012x y my
x 的实数解有( )
A.1个
B.2个
C.3个
D.4个
3.如果方程03432=-+-a x x 有一个正数根,和一个负根,则962+-a a 的化简结果是( )
A.3-a
B.a -3
C.a --3
D.非上述答案
4.若b a ,都是实数0,≠≠ab b a ,且满足13,1322+=+=b b a a ,则代数式22b a +的值是( ) A.7
B.9
C.11
D.10
5.如果关于x 的一元二次方程x 2+px+q=0的两根分别为x 1=3,x 2=1,•那么这个一元二次方程是( ).
A.x 2+3x+4=0
B.x 2-4x+3=0
C.x 2+4x -3=0
D.x 2+3x -4=0
6.设x 1,x 2是二次方程x 2+x-3=0的两个根,那么1942
231
+-x x 的值等于( ) A.-4 B.8 C.6 D.0
7.已知方程3x 2+2x -6 = 0 ,以它的两根的负倒数为根的新方程应是( ) A.6x 2-2x +1=0 B.6x 2+2x +3=0 C.6x 2+2x +1=0 D.6x 2+2x -3=0 8.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm 2,设金色纸边的宽为xcm ,•那么x 满足的方程是( ).
A.x 2+130x -1 400=0
B.x 2+65x -350=0
C.x 2-130x -1 400=0
D.x 2-65x -350=0 二、填空题:
9.满足1)1(22=--+n n n 的整数n 的值有 个,分别为 10.如果a 2-5ab -14b 2=0,则
235a b
b
+= 11.若实数y x ,满足方程013461012522=+--+-y x y xy x ,则=x ,=y . 12.已知方程04)55()15(2=--+-x x 的有理根为a ,则a a a 4223--=
13.在一元二次方程02=++c bx x 中,若系数c b ,在1、2、3、4、5、6中取值,则其中有实数解的方程有 个.
14.已知3是方程x 2+mx+7=0的一个根,则m= ,另一根为 15.方程 x + 6 = x 的根是_________
16.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是___ 17.若方程 x 2+mx -15 = 0 的两根之差的绝对值是8,则m = 18.已知x1,x2是方程2x2-2tx+t=0的两根,且(x1-1)(x2-1)=1,则
1
125+-t t 的值是
19.设方程x 2
-2(m+1)x+m 2
-3=0的两根分别为x 1,x 2,当12)()(21221=+-+x x x x 时,m 的值为 20.若方程x2-3x+1=0的两根为a 和b ,则a2-2a+b= 21.若x 2-5x+1=0,则1
539222++
+-x x x =
22.已知m 、n 都是方程020*******=-+x x 的根,则)20102007)(20082007(22-+-+n n m m 的值为 三、综合题:
23.解关于x 的方程0)12()1(2=+---a x a x a 24.解关于x 的方程:(x 2+x)·(x 2+x -2)=24
24.方程x 2-6x -k =1与x 2-kx -7=0有相同的根,求k 值及相同的根.
25.已知1x ,2x 是方程=--92x x 0的两个实数根,求代数式663722
23
1-++x x x 的值.
26.x 1、x 2是方程2x 2—3x —6=0的二根,求过A(x 1+x 2,0)B(0,x l ·x 2)两点的直线解析式.
27.a 、b 、c 都是实数,满足8)2(22+++++-c c b a a ,ax 2+bx+c =0,求代数式x 2+2x+1的值.
28.已知12,x x 是方程220x x a -+=的两个实数根,且1223x x +=-
(1)求12,x x 及a 的值;(2)求32111232x x x x -++的值.
29.若21,x x 是一元二次方程01442=++-k kx kx 的两个实数根.问是否存在实数k ,使
()()2
3222121-=--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由.
30.解关于x 的方程01--2)1(2=+-a x x a 的根都是整数,求整数a 的值。
31.设m 为整数,且404<<n ,方程08144)32(222=+-+--m m x m x 有两个不相等的整数根,求m 的值及方程的根。
32.在等腰△ABC 中,三边分别为a 、b 、
c ,其中5a =,若关于x 的方程()2260x b x b +++-=有两个相等的实数根,求△ABC 的周长.
33.已知m 为有理数,当k 取何值时,方程0423442
2=+-++-k m m x mx x 的根为有理根?。