人教版九下数学第二十七章 相似第3节《位似(1)》导学案
九年级数学27.3位似(一)整理导学案

·OBCA27.3位似(一)导学案学习目标1.知道位似图形及其有关概念.2.明确位似与相似的联系和区别及位似图形的性质.3.学会画位似图形,能够利用作位似图形的方法将一个图形放大或缩小.4. 感知生活中的位似图形。
学习重点、难点1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.学习过程:一、自主学习1、课前准备(1) 我们已经学过的图形变换有变换、变换、变换.(2)什么是相似图形?(3)以O为对称中心,画△ABC关于O点的对称△A1B1C12、自主研讨(课本P59-60)(1)你了解放映电影时屏幕上的图形是怎样得到的吗?(2)给你一个三角形,你能将它按比例放大(或缩小)吗?(3)什么叫做位似图形?什么叫做位似中心?自主学习的困惑:。
二、合作探究1.下面哪几组中的每两个图形是位似图形? 为什么?2.观察上图回答:在各组图形中位似图形的位似中心与这两个图形有什么位置关系?3. 提出问题:可否应用位似图形的性质放大或缩小图形呢?如何把△ABC放大为原来的2倍?画位似图形的步骤:小组讨论疑难:。
B1C1D1A BCDA BCDA1B1C1D1C1AD1B1BC DA1ACB●OAB CA1B1C1三、展示提升1.如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.2.已知:四边形ABCD 及点O ,试以O 点为位似中心,将四边形放大为原来的两倍.四、精讲点拨1.位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.2.常见的图形变换.五、有效训练1.下列说法正确的是( )A.两个图形如果是位似图形,那么这两个图形一定全等;B.两个图形如果是位似图形,那么这两个图形不一定相似;C.两个图形如果是相似图形,那么这两个图形一定位似;D.两个图形如果是位似图形,那么这两个图形一定相似。
人教版九年级数学下册:27.3《位似》教案1

人教版九年级数学下册:27.3《位似》教案1一. 教材分析《人教版九年级数学下册》第27.3节“位似”是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的定义,掌握位似图形的性质,并能够运用位似的概念解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质,对图形的相似性有一定的认识。
但在实际应用中,学生可能对位似的概念理解不够深入,难以运用位似知识解决生活中的问题。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例分析,引导学生深入理解位似的概念,提高学生的实际应用能力。
三. 教学目标1.了解位似的定义,掌握位似图形的性质。
2.能够识别生活中的位似图形,并运用位似知识解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.重点:位似的定义,位似图形的性质。
2.难点:运用位似知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提问,学生回答,引导学生主动探究位似的概念。
3.小组合作学习:学生分组讨论,共同完成实践任务,提高学生的合作能力。
六. 教学准备1.准备相关的图片和实例,用于教学演示。
2.准备练习题,用于巩固所学知识。
3.准备黑板,用于板书关键知识点。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似图形,如放大或缩小的图片、相似的建筑等。
引导学生观察这些图形,并提出问题:“你们认为这些图形有什么共同的特点?”让学生思考并回答,从而引出位似的概念。
2.呈现(10分钟)介绍位似的定义,并用具体的实例进行分析。
讲解位似图形的性质,如对应边的比例关系、对应角的相等性等。
让学生通过观察实例,理解并掌握位似的概念。
3.操练(10分钟)学生分组讨论,找出生活中的位似图形,并运用位似知识进行分析。
2023年人教版九年级数学下册第二十七章《位似的基本概念》导学案

新人教版九年级数学下册第二十七章《位似的基本概念》导学案【明确目标】1.掌握位似图形的定义、性质、画法.2.使学生经历对位似图形的观察、画图、分析、交流,体验探索得出数学结论的过程.3.通过经历对位似图形的认识、操作、归纳等过程,激发学生探究问题的兴趣,得到解决问题的成功体验,培养同学们之间的合作交流意识.【自主预习】1.以前我们学习了解平移、对称、旋转变换,它们的特点是什么?2.展示一组图片,提出问题:其形状、大小是否发生变化?图形位置有什么关系?阅读教材P47—48,自学“思考”与“探究”,理解位似的概念,会找出位似图形的位似中心,并能按要求将图形进行放大或缩小的位似变换.并完成自主预习区.1.如果两个图形不仅是相似图形,而且对应顶点的连线__________,对应边互相__________,这样的图形叫做位似图形,这个点叫做__________.2.如下图所示,下列图形中不是位似图形的是( )【合作探究】活动1 探究新知:(一)位似图形的定义(1)观察与思考:学生完成教材P47“思考”.(2)理解位似图形的定义:①两个图形相似;②对应点的连线交于一点;③对应边互相平行.(3)强化概念的理解.①下图是否是位似图形?如果是位似图形,请指出位似中心;如果不是,请说明理由.②下图中是位似图形的是( )③下列说法正确的是( )A.位似图形必须是两个直角三角形B.全等图形必是位似图形C.位似图形对应点的连线必相交于一点D.相似图形一定是位似图形④下列说法正确的是( )A.两个图形如果是位似图形,那么这两个图形一定全等B.两个图形如果是位似图形,那么这两个图形不一定相似C.两个图形如果是相似图形,那么这两个图形一定位似D.两个图形如果是位似图形,那么这两个图形一定相似⑤用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在( )A.原图形的外部B.原图形的内部C。
原图形的边上D.任意位置活动2 新知应用:(二)利用位似图形可以将一个图形放大或缩小例如图所示,作出一个新图形,使新图形与原图形对应线段的比为2:1.【当堂反馈】完成教材P48练习第1、2题.知识点一位似图形的概念1.下列各组图形中,不是位似图形的是( )2.图中两个四边形是位似图形,它们的位似中心是( )A.点M B.点N C.点O D.点P3.下列是△ABC位似图形的几种画法,其中正确的个数有( )A.1个B.2个C.3个D.4个4.按如下方法将△ABC缩小为原来的12.如图,任取一点O,连接AO,BO,CO. 并取它们的中点D,E,F,连接DE,EF,DF,得到△DEF,则下列说法正确的有( )①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF周长的比为2:1;④△ABC与△DEF面积的比为4:1.A.1个B.2个C.3个D.4个知识点二位似图形的性质5.两个图形中,对应点到位似中心线段的比为3:2,则这两个图形的位似比为( )A.3:2 B.9:4 C.3:2D.2:16.关于对位似图形的表述,下列命题正确的是__________.(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在直线都经过同一点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.7.如图,△ABC与△A'B'C'是位似图形,点O是位似中心,且OA=2AA',S△ABC =8,则S△A'B'C'=________.【拓展提升】如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以O为位似中心,在网格图中作△A'B'C'和△ABC位似,且位似比为1:2;(2)连接(1)中的AA',求四边形AA'C'C的周长.(结果保留根号)【课后检测】一、选择题1.下列各组图形中,是位似图形的有( )A.2对B.3对C.4对D.5对2.已知点E是□ABCD中BC边延长线上的一点,连接AE交CD于点0,则图中的位似图形有( )A.1对B.2对C.3对D.4对二、填空题3.已知△ABC,点A为位似中心,作出△ADE,使△ADE是△ABC放大2倍的图形,这样的图形可以作__________个,它们之间的关系是_________________________________.4.如图,以点O为位似中心,将五边形ABCDE放大后,得到五边形A'B'C'D'E'.已知OA=10cm,OA'=20cm,则五边形ABCDE的周长与五边形A'B'C'D'E'的周长的比值是__________.三、解答题5.用直尺画出下面位似图形的位似中心点O.6.如图,△OAB与△ODC是位似图形,试问:(1)AB与CD平行吗?请说明理由;(2)如果OB=3,OC=4,OD=3.5,试求△0AB与△ODC的位似比及OA 的长.7.如图,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A'B'C'的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于l:2.5.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
人教版数学九年级下册27.3《位似(1)》教学设计

人教版数学九年级下册27.3《位似(1)》教学设计一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的概念,掌握位似图形的性质,并能够运用位似性质解决实际问题。
教材通过丰富的图形和实例,引导学生探究、发现位似的性质,培养学生的空间想象能力和抽象思维能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质和判定,具备了一定的几何知识基础。
但九年级学生的空间想象能力和抽象思维能力仍需进一步提高。
因此,在教学过程中,教师应注重引导学生通过观察、操作、思考、交流等活动,自主探究位似图形的性质,提高学生的空间想象能力和抽象思维能力。
三. 教学目标1.知识与技能:理解位似的概念,掌握位似图形的性质,能够运用位似性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和创新精神。
四. 教学重难点1.重点:位似的概念,位似图形的性质。
2.难点:位似性质的证明和运用。
五. 教学方法1.情境教学法:通过丰富的图形和实例,引导学生观察、操作,激发学生的学习兴趣。
2.问题驱动法:设置问题引导学生思考,培养学生的问题解决能力。
3.合作学习法:分组讨论,培养学生团队合作意识和交流能力。
4.启发式教学法:引导学生自主探究,培养学生的抽象思维能力。
六. 教学准备1.准备相关的图形和实例,用于引导学生观察和操作。
2.准备投影仪或大屏幕,用于展示图形和实例。
3.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中常见的位似图形,如放大或缩小的地图、图片等,引导学生观察并提问:“这些图形有什么共同特点?”让学生思考位似图形的性质,激发学生的学习兴趣。
2.呈现(10分钟)教师通过展示位似图形的定义和性质,引导学生理解和掌握位似的概念。
人教版九年级数学RJ下册精品教案 第27章 相似 27.3 位似

27.3 位似第1课时位似教师备课素材示例●情景导入 1.生活中我们经常把照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.2.如图,多边形ABCDE,把它放大为原来的2倍,即新图与原图的相似比为2∶1,应该怎样做?你能说出画相似图形的一种方法吗?【教学与建议】教学:从实际生活中具有位似特征的现象引入课题,感受位似的存在.建议:可以让学生寻找身边类似的图形,理解位似是一种特殊的位置关系.●归纳导入请观察下列图形,并回答问题.【归纳】1.每组图形内的两个图形是__相似__图形.2.对于两个多边形,如果它们的对应顶点的连线__相交于一点__,并且这点与对应顶点所连线段__成比例__,那么这两个多边形就是位似多边形.对应顶点的连线的交点叫做__位似中心__.【教学与建议】教学:通过几组位似图形的展示及问题的层层深入,对位似图形的概念和性质有初步的了解和认识.建议:强调抓住两个关键点:一是两个图形的对应顶点的连线相交于一点;二是这点与对应顶点所连线段成比例.两个图形位似需满足以下条件:①两个图形相似;②对应边互相平行或在同一条直线上;③两个图形的每对对应点所在直线相交于一点.【例1】下列各组图中,不是位似图形的是(B)A B C D【例2】已知△ABC∽△A′B′C′,下列图形中,△ABC与△A′B′C′存在位似关系的是__①②③__.(填序号)①②③④位似中心是位似图形上对应点所在直线的交点,通过作直线找到交点,这个交点就是位似中心.【例3】如图,两个三角形是位似图形,它们的位似中心是(A)A.点PB.点OC.点MD.点N(例3题图)(例4题图)【例4】如图,△ABC与△A′B′C′是位似图形,且相似比是1∶2.若AB=2cm,则A′B′=__4__cm,并在图中画出位似中心O.位似是一种特殊的相似,故相似图形的一切性质都适用于位似图形.【例5】如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF的面积比为1∶9,则AB∶DE的值为(A)A.1∶3B.1∶2C.1∶3D.1∶9(例5题图)(例6题图)【例6】如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD和四边形A′B′C′D′的周长的比为__1∶2__.通过作位似图形,可以将一个图形放大或缩小.作位似图形的关键是确定原图形中各顶点的对应点,原理是位似图形上各对应点到位似中心的距离之比等于相似比.【例7】如图,请在8×8的正方形网格中,以点O为位似中心,作出△ABC的一个位似图形△A′B′C′,使△A′B′C′与△ABC的相似比为2∶1.解:如图,△A′B′C′为所求的三角形.高效课堂教学设计1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握画位似图形的方法.▲重点理解并掌握位似图形的定义、性质及画法.▲难点位似图形的多种画法.◆活动1 新课导入在日常生活中,我们经常看到下面这些相似的图形,它们有什么特征呢?◆活动2 探究新知1.教材P47.提出问题:(1)观察图27.31和图27.32,两个图形中对应点的连线有什么共同特征?(2)位似图形和相似图形有什么联系与区别?(3)如何判断两个图形是否是位似图形?学生完成并交流展示.2.教材P47图27.32,P48第1个探究.提出问题:(1)如何利用位似将一个图形放大或缩小?(2)画位似图形的一般步骤是什么?(3)画位似图形时需要注意什么问题?学生完成并交流展示.◆活动3 知识归纳1.如果两个图形不仅是相似图形,而且每组对应点连线相交于一点,那么这样的两个图形叫做位似图形.这个点叫做位似中心.这时的相似比又称为位似比.2.位似图的性质:(1)位似图形一定相似,位似比等于__相似比__;(2)位似图形对应点和位似中心在__同一条直线上__;(3)任意一对对应点到位似中心的距离之比等于位似比或相似比;(4)对应线段__平行__或者在__同一条直线上__.3.总结画位似图形的一般步骤:(1)确定位似中心(位似中心可以在图形外部,也可以在图形内部,还可以在图形的边上,还可以在某一个顶点上);(2)连接图形各顶点与位似中心O的线段(或延长线);(3)按位似比进行取点;(4)顺次连接上述各点,得到放大或缩小的图形.◆活动4 例题与练习例1 如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB∶FG=2∶3,则下列结论正确的是( B )A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F例2 如图,矩形ABCD与矩形AB′C′D′是位似图形,A为位似中心,已知矩形ABCD的周长为24,BB′=4,DD′=2,求AB,AD的长.解:∵矩形ABCD的周长为24,∴AB+AD=12.设AB=x,则AD=12-x,AB′=x+4,AD′=14-x.∵矩形ABCD与矩形AB′C′D′是位似图形,∴ABAB′=ADAD′,即xx+4=12-x14-x,解得x=8,∴AB=8,AD=12-8=4.例3 如图,△ABC 与△A′B′C′关于点O 位似,BO =3,B ′O =6.(1)若AC =5,求A′C′的长;(2)若△ABC 的面积为7,求△A′B′C′的面积.解:(1)∵△ABC 与△A′B′C′是位似图形,BO ∶B ′O =3∶6=1∶2,∴△ABC ∽△A ′B ′C ′,且相似比为12,∴AC A′C′=12,即5A′C′=12,∴A ′C ′=10;(2)由(1),得S △ABC S △A ′B ′C ′=⎝ ⎛⎭⎪⎫122=14,即7S △A ′B ′C ′=14,∴S △A ′B ′C ′=7×4=28.练习1.教材P 48 练习第1,2题.2.下列说法正确的是( C )A .分别在△ABC 的边AB ,AC 的反向延长线上取点D ,E ,使DE∥BC,则△ADE 是△ABC 放大后的图形B .两位似图形的面积之比等于相似比C .位似多边形中对应对角线之比等于相似比D .位似图形的周长之比等于相似比的平方3.已知四边形ABCD 和位似中心点O ,画出它的位似图形A′B′C′D′,且四边形A′B′C′D′与四边形ABCD 的相似比为1∶2.(画一个)解:如图所示:◆活动5 完成附赠手册◆活动6 课堂小结1.位似图形的概念.2.画位似图形的一般步骤.1.作业布置(1)教材P51习题27.3第1,2题;(2)学生用书对应课时练习.2.教学反思。
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版

课后拓展
1.拓展内容:
-阅读材料:《数学的故事》中关于几何变换的起源和发展,了解位似变换在数学史上的地位。
-视频资源:寻找与位似图形相关的教学视频,如介绍位似变换的基本概念、性质和应用实例。
-学生通过观察生活中的位似图形,将所学知识应用到实际中,提高解决问题的能力。
-鼓励学生针对位似图形的特定性质或应用进行深入研究,撰写研究报告,培养探究精神。
-教师提供必要的指导和帮助,如推荐阅读材料、解答学生在自主学习中遇到的疑问等。
-教师组织学生开展课后讨论活动,让学生分享自己的学习心得和研究成果,促进交流与合作。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何画板绘制位似图形,演示位似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
2.位似比的概念及其计算方法;
3.位似图形的画法,包括位似中心、位似向量、位似图形的作图方法;
4.应用位似变换解决实际问题。
本节课将结合新人教版教材,以生活实例为导入,让学生在实际操作中体会位似图形的特点,培养他们的观察能力和空间想象能力,从而提高解决几何问题的能力。
核心素养目标
本节课旨在培养学生的以下数学核心素养:
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
学校
授课教师
人教版九年级下第27章《相似》27.3位似导学案

第27.3位似导学案一、新知引入:1、如果两个图形不仅是相似图形,而且,像这样的两个图形叫=====》位似图形.2、位似中心与位似比K二、位似性质1、对应顶点的连线经过位似中心,对应边相互平行2、位似中心可以出现在任何位置,但只要k值相同,则所得新图全等3、通过位似,可以将图形放大或缩小;k>1图形放大,k<1图形缩小例1、如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位EABC D F 似中心,相似比为31,把线段AB 缩小,求出对应点之间坐标例2、在平面直角坐标系中,有两点A (4,1),B (6,4),C (2,3)以 原点O 为位似中心,相似比为2,把△ABC 放大2倍,求出对应点的坐标三、课堂练习1、如图,△OAB 和△OCD 是位似图形,AB // CD 吗?2、以O 为位似中心,将△ABC 放大为原来的2倍3、已知△ABC 与△DEF 是位似三角形, 请确定其位似中心4、如图,四边形ABCD 的坐标分别为A (-6,6),B (-8,2),C (-4,0),D (-2,4),画出它的一个以原点O 为位似中心,相似比为 21的位似图形.并写出其对应顶点的坐标5、如图表示△AOB 和把它缩小后得到的△COD ,求它们的相似比6、如图,写出矩形ABCD 各点的坐标,如果矩形STUV 相似于ABCD ,点S 的坐标为(2,7),按照下列相似比,分别写出T 、U 、V 各点的坐标.①相似比为4;②相似比为21四、补充练习:1、下列图形是否是位似图形?如果是请指出位似中心,如果不是请说明理由。
2:将四边形ABCD 缩小为原来的一半五、课后反思:EABDEABCDF G HO DA。
人教版九年级数学下册第二十七章:相似 27.3 位似 导学案设计(2课时)

人教版九年级数学下册第二十七章相似27.3位似导学案第1课时位似图形的概念及画法教学目标1.正确理解位似图形等有关概念,能够按照要求利用位似将图形进行放大或缩小以及能够正确地作出位似图形的位似中心.2.在实际操作和探究活动中,让学生感受、体会到几何图形之美,提高对数学美的认识层次,陶冶美育情操,激发学习热情.预习反馈阅读教材P47~48,完成下列预习内容.(1)两个多边形不仅相似,而且对应点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心.(2)下列说法正确的是(D)A.两个图形如果是位似图形,那么这两个图形一定全等B.两个图形如果是位似图形,那么这两个图形不一定相似C.两个图形如果是相似图形,那么这两个图形一定位似D.两个图形如果是位似图形,那么这两个图形一定相似(3)用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可能在(D)A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置【点拨】位似的三要素即是判定位似的依据,也是位似图形的性质.例题及讲解例1如图,作出一个新图形,使新图形与原图形对应线段的比为2∶1.【解答】 1.在原图形上取点A,B,C,D,E,F,G,在图形外任取一点P;2.作射线AP,BP,CP,DP,EP,FP,GP;3.在这些射线上依次取A′,B′,C′,D′,E′,F′,G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PE′=2PE,PF′=2PF,PG′=2PG;4.顺次连接点A′,B′,C′,D′,E′,F′,G′,A′.所得到的图形就是符合要求的图形.【点拨】作位似图形的步骤:(1)按要求作出各点的对应点后,(2)连线.注意:不要连错对应点之间的连线.【跟踪训练1】如图,请在8×8的网格中,以点O为位似中心,作出△ABC的一个位似图形△A′B′C′,使△A′B′C′与△ABC的相似比为2∶1.解:如图所示,△A′B′C′为所求的三角形.例2请画出如图所示两个图形的位似中心.图1图2【解答】如图所示的点O1,就是图1的位似中心.如图所示的点O2,就是图2的位似中心.【点拨】正确地作出位似中心,是解位似图形的关键,可以根据位似中心的定义,位似图形的对应点连线的交点就是位似中心.【跟踪训练2】找出下列图形的位似中心.课后巩固训练1.在下列图形中,不是位似图形的是(D)A BC D2.如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF的面积比为1∶9,则AB∶DE的值为(A)A.1∶3B.1∶2C.1∶ 3D.1∶93.如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD和四边形A′B′C′D′的周长的比为1∶2.4.如图,△DEF是△ABC经过位似变换得到的,位似中心是点O,请确定点O的位置,如果OC=3.6 cm,OF=2.4 cm,求它们的相似比.解:连接AD,CF交于点O,则点O即为所求.∵OC=3.6 cm,OF=2.4 cm,∴OC∶OF=3∶2.∴△ABC与△DEF的相似比为3∶2.5.如图,图中的小方格都是边长为1的小正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都是在小正方形的顶点上.(1)找出位似中心点O;(2)△ABC与△A′B′C′的位似比为2∶1;(3)按(2)中的位似比,以点O为位似中心画出△ABC的另一个位似图形△A″B″C″.解:(1)如图所示,点O即为所求.(2)∵ACA′C′=21,∴△ABC与△A′B′C′的位似比为:2∶1.故答案为:2∶1.(3)如图所示,△A″B″C″即为所求.课堂小结1.本节课我们学习了哪些内容?2.位似图形与一般相似图形相比,有哪些特殊性?3.利用位似作图的步骤有哪些?第2课时 平面直角坐标系中的位似教学目标1.让学生理解掌握位似图形在平面直角坐标系上的应用,即会根据相似比,求位似图形顶点,以及根据位似图形对应点坐标,求位似图形的相似比和在平面直角坐标系上作出位似图形.2.让学生在应用有关知识解决问题的过程中,提高应用意识,体验数形结合的思想方法在解题中的运用. 预习反馈阅读教材P48~50,以原点为位似中心的两个位似图形对应顶点的坐标规律,并完成下列预习内容.(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为13,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?答:线段缩小后,点A ,B 的坐标与其对应点的坐标的比为13.(2)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点坐标的比为k.(3)△ABC 和△A 1B 1C 1关于原点位似且点A(-3,4),它的对应点A 1(6,-8),则△ABC 和△A 1B 1C 1的相似比是12.(4)已知△ABC 三个顶点的坐标分别为A(1,2),B(1,0),C(3,3),以原点O 为位似中心,相似比为2,把△ABC 放大得到其位似图形△A 1B 1C 1,则△A 1B 1C 1各顶点的坐标分别为A 1(2,4),B 1(2,0),C 1(6,6).例题及讲解例 如图,△ABO 三个顶点的坐标分别为A(-2,4),B(-2,0),O(0,0).以原点O 为位似中心,画出一个三角形,使它与△ABO 的相似比为32.【解答】 如图,利用位似中对应点的坐标的变化规律,分别取点A′(-3,6),B′(-3,0),O(0,0).顺次连接点A′,B′,O ,所得△A′B′O 就是要画的一个图形.【点拨】 作位似变换时,要先弄清点的坐标的变化情况,求出变换后对应的坐标.然后在坐标中描出对应点,连线即可.【跟踪训练】 在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点M 为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2∶1.解:(1)如图所示,△A 1B 1C 1即为所求. (2)如图所示,△A 2B 2C 2即为所求.课后巩固训练1.某个图形上各点的横、纵坐标都变成原来的12,连接各点所得图形与原图形相比(C)A.完全没有变化B.扩大成原来的2倍C.面积缩小为原来的14D.关于纵轴成轴对称2.如图所示的△ABC ,以A 点为位似中心,放大为原来的2倍,画出一个相应的图形,并写出相应的点的坐标.解:根据题意,图中的△AB1C1就是满足题意的三角形,其中A点的坐标不变,仍是(-3,-1),B1,C1的坐标分别为(3,-3),(1,3).课堂小结1.本节课学习了什么内容?2.想一想位似作图与平移作图、轴对称作图、旋转作图有什么共同点?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:27.3 位似(1)
学习目标:
1、知道位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.
2、握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小. 重点:位似图形的有关概念、性质与作图. 难点:利用位似将一个图形放大或缩小. 一、自主预习
1.(教材P47页思考)观察图27.3-1图中有多边形相似吗?如果有,那么这种相似什么共同的特征?
2.(P47页)把图27.3-2中的四边形ABCD 缩小到原来的2
1.
分析:把原图形缩小到原来的2
1,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 . 作法一:(1)在四边形ABCD 外任取一点O ; (2)过点O 分别作射线OA ,OB ,OC ,OD ;
(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得
2
1
OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图2.
二、合作探究
问:此题目还可以如何画出图形?
作法二:(1)在四边形ABCD 外任取一点O ; (2)过点O 分别作射线OA , OB , OC ,OD ;
(3)分别在射线OA , OB , OC , OD 的反向延长线上取点A ′、B ′、C ′、D ′,使得
2
1
OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图3.
作法三:(1)在四边形ABCD 内任取一点O ; (2)过点O 分别作射线OA ,OB ,OC ,OD ;
(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得
2
1
OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图4.
四、归纳反思
谈谈你这节课学习的收获
五、达标测评
1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.
(1) (2)
(3) (4)
课题:27.3位似(2)
知识回顾
1.观察下列相似图形,归纳其特点
归纳:(1)两个图形是;(2)每组相交于一点;(3)互相平行。
具有上述特点的图形是位似图形,对应点连线的交点是位似中心。
点拨:相似图形不一定是位似图形,但位似图形一定是相似图形。
2.位似图形的性质
(1)位似图形具有图形的一切性质;
(2)位似图形任意一对对应到位似中心的距离之比都位似比;
3.图形变换
我们学习过的图形变换包括:,轴对称,旋转和;
新知探究
1.在平面直角坐标系中有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小
’的坐标是 ,’的坐标是 ,对应点坐标之比是 ;(2)在方法二中,A ’的坐标是 ,B ’的坐标是 ,对应点坐标之比是
2.如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2).以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?
位似变换后A ,B ,C 的对应点为
A '( , ),
B ' ( , ),
C ' ( , ); A" ( , ),B" ( , ),C" ( , ). 归纳:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于 ; 典型例题
引例 如图,四边形ABCD 的坐标分别为A (-6,6),B (-8,2), C (-4,0),D (-2,4),画出它的一个以原点O 为位似中心,相似比为2
1
的位似图形.
课堂练习
1.如图表示△AOB和把它缩小后得到的△COD,求△COD和△AOB的相似比.
2.如图,△ABC三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.。