机械原理 第八章 平面连杆机构及其设计讲解
机械原理课件第8章平面连杆机构及其设计

本章介绍了平面连杆机构的基本概念、分类、运动分析方法和设计原则,以 及通过设计实例来展示平面连杆机构的应用。让我们一起探索这个有趣而重 要的机械原理领域吧!
平面连杆机构简介
平面连杆机构是机械工程中常见的一类机构,由连杆和铰链连接而成。它们的运动以及如何将动力传递 至其他部件都是设计时需要考虑的重要因素。
以汽车发动机中的连杆机构设计为例,通过优化连杆长度和转动角度,提高 功率输出和燃油效率。
平面连杆机构的设计步骤
1
需求分析
明确机构的工作要求,包括运动形式、
构想设计
2
速度要求等。
根据需求,初步构想机构的组成和结
构形式,并进行快速仿真验证。
3
细化设计
对构想设计进行细化,确定材料、尺
制造和调试
4
寸和制造工艺等。
按照设计图纸制造机构,并进行装配 和调试,确保运动性能符合要求。
平面连杆机构设计实例
平面连杆机构的基本组成
连杆
连杆是平面连杆机构中最基本的元件,常见的包括曲柄、摇杆和滑块。
铰链
铰链是连接连杆的关节,它们允许连杆相对运动,并使机构能够完成所需的动作。
驱动力
驱动力(如电机或手动操作)通过连杆传递运动,实现机构的工作。
平面连杆机构的分类
曲柄摇杆机构
曲柄摇杆机构由一个曲柄和一 个摇杆组成,广泛用于活塞式 发动机和机械手臂等应用中。
双摇杆机构
双摇杆机构由两个摇杆组成, 常用于切割机、绞盘等需要定 向力的设备。
滑块曲柄机构
滑块曲柄机构包括一个滑块和 一个曲柄,常见于发动机的曲 轴机构。
平面连杆机构的运动分析方法
1 刚体分析法
机械原理 平面连杆机构及设计

机械原理平面连杆机构及设计平面连杆机构是机械原理中最经典也是最重要的一种机构类型之一。
这种机构由多个刚性杆件组成,每个杆件都能在平面内移动,它们通过连接点(铰链/球头)相互连接。
平面连杆机构在机械工程领域中有着广泛的应用,能够实现很多不同的机械运动和工作原理。
平面连杆机构中最重要的构件是连杆,也就是连接各个零件的关键杆件,如果连杆设计不合适可能导致机构性能的下降。
因此,平面连杆机构的设计要受到重视,需要考虑以下几个因素。
一、长度比例连杆不同长度比例的设置,对整个机构的运动特性和反应速度有着很大的影响。
在设计平面连杆机构时,需要根据机构所要完成的任务,选择恰当的连杆长度比例,保证机构的平衡性和可靠性,以及使机构的工作效率更高。
二、铰链/球头的位置铰链/球头是平面连杆机构中的关键组成部分。
在设计平面连杆机构时,需要合理选择铰链/球头的位置,以达到机构所要完成的特定任务。
如果铰链/球头设置不当,或者位置过分集中,会使机构不平衡或失效。
因此,设计者需要考虑连杆的长度、位置、形状和角度等因素。
三、材质选择平面连杆机构的设计材料非常重要,它将直接影响到机构的质量和强度。
不同材料的连接部分,对于平面连杆机构的工作效率和稳定性有着非凡的意义。
因此,在设计时,应本着安全、可靠、实用的原则,选用优质、耐用的材料,确保机构长期稳定、可靠的工作。
以汽车减震器为例,汽车减震器中使用的是多连杆机构原理,作为一种基于平面连杆机构的机构类型,它通过几个连杆的特定结构和布局,使得整个减震器能够更好地适应路况,缓解车辆的震动和冲击。
汽车减震器的设计考虑了多个因素,包括结构的稳定性和可靠性,杆件的材质和尺寸比例等。
总结来说,平面连杆机构是机械原理中非常重要的一种机构类型,广泛应用于机械和工程领域,需要经过仔细的设计和考虑,才能达到最好的运转效果。
设计者需要从多个维度进行考虑,包括长度比例、铰链/球头的位置、材质选择等等。
这些因素的合理应用,能够使平面连杆机构能够更好地适应不同的任务需求,达到最高的技术性能和质量水平。
机械原理课件8平面连杆机构与设计说明

切向分力:
法向分力:
FFco sFsin FFcos
n
▲切向分力F ′越大,机构的传力
性能越好,法向分力 F″越大,机
构的传力性能越差
B
结论:
A
为保证机构的传力
F″
t
C γα F
F′ t
F ″ T′
D
F′
性能,压力角α不能
过大,传动角γ不能过小。
设计时要求:γmin≥50°
γmin出现的位置:
当 最小或最大时,都有可能出现
§8-2平面四杆机构的类型和应用
一. 平面四杆机构的基本形式 铰链四杆机构
双曲柄机构
曲柄摇杆机构
双摇杆机构
各铰部链名四称杆及机运构动形式 机是构架平的面基固四本定杆形的机式构件 连架杆 直接与机架相连接的杆件
连杆
B
铰曲链柄曲四柄能杆摇整机杆周构机转的构动三的种构基件本形式连为架:杆
A
摇杆 只双能曲做柄非机整构周摆动的连架杆
A
4
B
A1
2 3 C 导杆机构,动画
4
转动导杆机构 摆动导杆机构
曲柄滑块机构演化实例
B 1
A
2 3
4
C
曲柄摇块机构〔连杆作机架
B 1 A
4
2
C 3
DC
B A
自卸卡车举升机构
移动导杆机构
B BBB 11 1
222
A AA A
3333 CCC 444
B 1
A
2 3
4
C
曲柄滑块机构
B 1
A
手摇唧筒
2 3
F’ E’
C’
D’
G’
《机械原理》第八章第2讲平面连杆机构及其设计PPT课件

设计步骤:
1、计算极位夹角θ θ=180°(K-1)/(K+1)
2、任取一点D为摇杆固定 铰链中心 ,作等腰三角形 C1C2D,两腰长度等于CD, ∠C1DC2=φ 。
1. 按给定的连杆位置设计四杆机构(续)
◆已知连杆长度,要求机构在运动过程中占据图示 B1C1、B2C2、B3C3三个位置,试设计该四杆机构。
设计步骤:
b12
B1
B2
C1 b23
C2
c23 C3
B3
D
A
2020年9月28日
8
2. 按两连架杆的预定位置设计四杆机构
(1)设计方法 机架转换法或反转法:指根据机构的倒置理论,通
满足预定运动的规 律要求机构示例:
利用两连架杆的转 角关系实现对数计算。
对数计算机构
车门开闭机构 动画
2020年9月28日
设计时要求两连架杆的 转角应大小相等,转向相反, 以实现车门的起闭。
4
一、平面连杆设计的基本问题(续)
又称为刚体引导问题 (2)满足预定的连杆位置要求
即要求连杆能依次占据一系列的预定位置。
2020年9月28日
13
2. 按两连架杆的预定位置设计四杆机构(续) ◆给定两连架杆的对应位置设计四杆机构。
已知:连架杆AB和机架AD的长度,两连架杆三组对应 位置AB1 、AB2 、AB3 和DE1、DE2、DE3。 要求:设计该铰链四杆机构。
提示:用机架转换法,既改
取连架杆CD作为机架,原先
的机架AD作为连架杆,则B
第8章 平面连杆机构及其设计
◆平面四杆机构的基本知识
▲铰链四杆机构有曲柄的条件 ▲四杆机构传动角及压力角
◆平面四杆机构的设计
机械原理-平面连杆机构及设计

平面连杆机构的运动分析
1
位置分析
通过几何和三角学的方法,确定各个连
速度分析
2
杆和转轴的位置。
计算各个部件的速度,了解机构的运动
特性。
3
加速度分析
研究连杆的加速度,对机械系统的稳定 性和性能影响重大。
平面连杆机构的设计原则
力学平衡Biblioteka 确保各个连杆和转轴保持力学平衡,避免不必 要的应力。
优化尺寸
选择合适的尺寸和比例,以提高系统的性能和 耐久性。
机械原理-平面连杆机构及设计
探索机械原理中的平面连杆机构,深入了解其组成部分、运动分析、设计原 则、类型和应用领域。
什么是平面连杆机构
平面连杆机构是由连杆和旋转副组成的机械装置,用于转换直线运动和旋转运动。它被广泛应用在各种机械设 备和工具中。
平面连杆机构的组成部分
• 连接杆:用于连接各个部件并传递力和运动。 • 转轴:提供连杆的旋转运动。 • 摩擦面或球面:减小连杆关节的摩擦。 • 约束物:限制连杆的自由运动。
减小摩擦
使用适当的润滑和设计摩擦减小装置,提高效 率。
动态平衡
通过合理设计和调整质量分布,减少系统的振 动。
常见的平面连杆机构类型
滑块曲柄机构
由连接杆、连杆、中心轴和滑块 组成,广泛应用在汽车和机床。
钟摆式机构
采用钟摆原理,具有稳定的运动 轨迹,用于摆锤和钟表。
平行连杆机构
通过平行排列的连杆传递运动和 力,在工程和自动化领域有广泛 应用。
平面连杆机构的应用领域
1 工业生产设备
机械加工、装配线和工厂自动化。
3 家庭用具
打印机、洗衣机和电动工具。
2 交通运输工具
汽车、火车和航空器。
机械原理(PDF)孙桓 复习笔记chapter8

第8章 平面连杆机构及其设计平面连杆机构及其设计平面连杆机构及其设计 §8—1 1 连杆机构及其传动特点连杆机构及其传动特点连杆机构及其传动特点 1.定义:连 杆 机 构:构件用低副联接而成的机构。
平面连杆机构:组成机构的构件都在相互平行的平面中运动的连杆机构。
空间连杆机构:组成机构的构件不在相互平行的平面中运动的连杆机构。
2.特点: 优:1)低副联接,面接触,磨损小,承载能力大。
2)杆状件,圆柱形或平面形接触面,易制造,传递运动远。
3)运动多样性(转、摆、移、平面运动等) 4)轨迹多样性。
缺:1)设计较困难。
2)运动副的制造误差会累积,从而降低机构的传动精度。
3)惯性力难平衡,不适用于高速。
3.应用: 很广泛(e.g:自行车,缝纫机,纺机等中都有应用)§8—2 2 平面四杆机构的类型平面四杆机构的类型平面四杆机构的类型和应用和应用和应用 一.四杆机构的基本型式四杆机构的基本型式::四杆机构的基本型式为铰链四杆机构,其他四杆机构都可由其演化得到 1)铰链四杆机构: 四个构件通过转动副联接而成机构。
机机 架架:固定不动的构件——4. 连杆架连杆架连杆架::与机架相连的杆——1、3。
曲曲 柄柄:能整周转动的连架杆。
摇摇 杆杆:不能整周转动的连架杆。
连连 杆杆:不与机架相连的杆——2。
2)周转副和摆转副:周转副:组成转动副的两构件能相对整周转动的转动副 摆转副:组成转动副的两构件不能相对整周转动的转动副1.曲柄摇杆机构: 两个连架杆中,一个为曲柄,另一个为摇杆的铰链四杆机构 2.双曲柄机构: 两个连架杆均为曲柄的铰链四杆机构12343.双摇杆机构: 两个连架杆均为摇杆的铰链四杆机构二. 平面四杆机构的演化型式平面四杆机构的演化型式 1.改变构件的形状和运动尺寸1234AB CD12312344A A对对对对对对对对(ββ通通A )偏偏对对对对对对(ββ不通通A )l →∞CDββββββ2. 改变运动副的尺寸1234AB3.取不同的构件为机架:对-对对对导导对对摆对对对定对对对手手手4.运动副元素的转换:13241234§8—3 3 平面四杆机构的平面四杆机构的平面四杆机构的基本知识基本知识基本知识 一.铰链四杆机构铰链四杆机构有曲柄的条件有曲柄的条件有曲柄的条件::设:铰四机构ABCD 中,AB 能360°转动的曲柄则:AB 必能转至与机架AD 共线的两个位置A′B′和A″B″,在两共线位置有:a bcdAB C DABCDB′B″C′C″l l ll 1234(a)(b)B′C′B″C″1)a ≤d 时 (图a)∆A′B′D a+ d ≤ b+c a+ d ≤ b+ c a≤b ∆A″B″D b+(d -a) ≥ c => a+ c ≤ b+ d ② => a≤c ① c+(d -a) ≥ b a+ b ≤ c+ d a≤d 2) a >d 时(图6-3b)∆A′B′D a + d ≤ b +c a + d ≤ b +c d ≤ a ∆A″B″D b ≤ c +(a -d ) => b + d ≤ a + c ② => d ≤ b ① c ≤ b +(a -d ) c + d ≤ a + b d ≤ c 1.有曲柄的条件:1)连架杆和机架中有一最短杆2)最短杆和最长杆的长度和不大于其余两杆的长度和。
机械原理-平面连杆机构的运动分析和设计

平面连杆机构的设计流程和方法
在这个部分中,我们将深入探讨平面连杆机构的设计,介绍流程和方法,提供实际案例分析,帮助您了解如何设 计成功的机械。
1.
需求分析
将客户的需求转化为机械设计
目标。
2.
构思和设计
基于机械原理构思和设计机械
装备支撑结构,并采用 CAD 软
件实施初始的草图或模型。
3.
材料选择
选择合适的材料和工艺,确保
结构和类型
平面连杆机构通常由零件精细制 造而成,以满足工业和商业目的 的要求。
工程应用
机械工程师们可以使用平面连杆 机构来完成各种复杂的任务,如 发动机和自动化流水线等。
日常应用
平面连杆机构可以进一步应用在 日常用品中,如钟表、洗衣机和 自动售货机等。
平面连杆机构的运动分析方法
在这个部分中,我们将探索平面连杆机构的运动学和动力学,介绍运动方程和速度方程,以及如何用数学 公式计算不同零件的运动和速度。
1 平衡条件
平衡是指物理系统中所有力和运动之间所需达到的状态,这是机械工程师需要考虑的重 要问题。
2 稳定性
稳定性是一个重要的物理学概念,涉及动量、速度和质量,能够帮助工程师在设计平面 连杆机构时考虑不同零件的状态和取向。
3 应用场景
平面连杆机构无处不在,具有开发良好设计的潜力,是自动化流水线的核心,也是钟表、 汽车和机器人的重要部分。
1
运动学
运动学研究物体运动的规律和运动参数,如位移、速度、加速度等。
2
动力学
动力学研究物体的运动状态和运动参数之间的关系,如动量、力和功等。
3
数值模拟
数字计算能够预测机械零件的运动,利用计算机模拟机械过程,提高设计效率。
精品课件!《机械原理》_第八章 平面连杆机构及其设计精选全文

1. 运动特性
曲柄存在条件 杆长条件 最短杆条件
急回特性 极位夹角 行程速比系数
2. 传力特性
压力角和传动角 死点
小结
平面四杆机构的基本知识
要求:
正确理解和掌握平面机构 工作特性的有关概念;
用有关工作特性检验机构 的运动和传力性能;
运用有关概念设计性能优 良的机构。
§8-4 平面四杆机构的设计
即要求连杆能占据一系列预定位置(又称刚体导引问题)。
小型电炉炉门的开闭机构
3. 实现给定的运动轨迹 即要求在机构的运动过程中,连杆上某些点的轨迹能满足预定的 轨迹要求。 鹤式起重机 搅拌机构
连杆机构的设计方法: 图解法、解析法、图谱法和实验法。
平面四杆机构的设计
二. 用图解法设计四杆机构 (一). 按连杆预定的位置设计 ➢图解设计问题—作图求解各铰链中心的位置问题
第八章 平面连杆机构及其设计
§8-1 连杆机构及其传动特点 §8-2 连杆机构的类型和应用 §8-3 平面四杆机构的基本知识 §8-4 平面四杆机构的设计 §8-5 多杆机构
§8-1 连杆机构及其传动特点
1.应用举例 例 铰链四杆机构
C
2
B
B
31
1
4
A
此类机构的共同特点:
DA
机构的原动件1和从动件3运动都需要经过连杆2来传动, 故 此类机构统称为连杆机构。
α e A max
C'
平面四杆机构的基本知识
4.死点
以摇杆CD为主动件,则当连杆与从动件曲柄共线时,机构 的传动角γ=0°,这时主动件CD通过连杆作用于从动件AB上的 力恰好通过其回转中心,出现了不能使构件AB转动的“顶死”现 象,机构的这种位置称为“死点”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
升降机构
升降车
台灯伸展机构
3. 双摇杆机构 (Double-Rocker Mechanism)
——两个连架杆都是摇杆的铰链四杆机构
C
2
B
3
1
A
4
D
特例:等腰梯形机构— —两摇杆长度相等的双 摇杆机构
汽车前轮 转向机构
功能: 往复摆动
往复摆动
应用实例:
图-
22M
飞
重 型
机
轰
起
炸
落
机 前
架
起
机
落
构
架
导杆能作整周转动
★摆动导杆 机构——
导杆只能在 一定的角度 内摆动
应用实例 牛头刨床
曲柄摇块机构
B
2 1
A
4
摇块
C
3
应用实例
自卸车
直动导杆机构
B
2 1
A
4
直动导杆
C
3
定块
应用实例 手动抽水机
炉门送料装置
B
2 1
A
4
C
3
3、改变运动副的尺寸:曲柄偏心轮
2
C 扩大转
动副B
2
C 超过
曲柄
B
3 的半径 B
3长
B
1 A
4
D
1 A
4
D
A1
2C 3
D 4
3、改变运动副的尺寸:曲柄偏心轮
曲柄滑块机构 偏心轮机构
含有两个移动副的四杆机构——演化型式II
对心曲柄滑块机构
变连杆 为滑块
从动件3的位移与原 动件1的转角成正比:
s lAB sin
移动副可认为是回 转中心在无穷远处 的转动副演化而来
正弦机构
双滑块机构
B
1
2
A 4
3C
直动滑杆机构
§8-3 平面四杆机构的基本知识
一、铰链四杆机构曲柄存在的条件
曲柄摇杆机构
双曲柄机构
双摇杆机构
C2 C
b B
C1
a
d
B1
A
B2
c D
在△B1C1D中 a +d b +c (1)
B
在△B2C2D中
d a bc
d
a
c
b
a
B1
A
C2 C
b c
C1
d
B2
D
若: d a,则有: a +c d +b (2)
——两个连架杆都是曲柄的铰链四杆机构
B
1
A
C
特例:若机构中相对两杆平行且相等,
则成为平面四边形机构。
2
3
4
D
平行四边 形机构特 性:
▲两曲柄 同速同向 转动
▲连杆作 平动
应用实例
车门开闭机构
——逆平行(反平行)四边形机构(两相对杆长相等但不平行的双曲柄机构)
应用实例:
惯性筛机构
机车车轮联动机构
应用实例 播种机料斗机构
3长
1 A
4
D
1 A
4
D
B A1
2C 3
D 4
转动 副B 的半 径扩 大超 过曲 柄长
曲柄滑块机构 偏心轮机构
3、选用不同构件为机架——倒置法
机构的倒置:选运动链中不同的构件作机架以获得不同机构的 演化方法称为机构的倒置。
B
1
2
C
A
4
3
曲柄滑块机构
B
1
2
C
A
4
导杆
3
导杆机构
B
2 1
A
4
摇块
C3
曲柄摇块机构
应用实例:
鹤式起重机
C
C
C
2
2
2
B
3
B
3
B
3
1
1
1
A
4
DA
4
DA
4
D
曲柄摇杆机构
双曲柄机构
双摇杆机构
低副运动的可逆性: 在低副机构中,取不同构件作为机架时,任意两个构件间
的相对运动关系不变。
二、四杆机构演化型式
1. 改变构件的形状和运动尺寸
曲柄摇杆机构
变摇杆 为滑块
曲线导轨曲柄滑块机构
摇杆尺寸为无穷大
偏置曲柄滑块机构 e=0
对心曲柄滑块机构
B
对心(radial) 1
2
C
曲柄滑块机构
A
4
3
B
偏置 (offset) 1 曲柄滑块机构 A
2
C
4
3
应 用
发动机
实
例
:
应用实例:
空气压缩机
应用实例:
车 门 开 闭 机 构
B
1
A
2车门
C
3汽缸 4
2. 选用不同的构件作为机架
B
1
A
4
2
C
导杆
3
★回转导杆机构——
连杆尺寸 为无穷大
正弦机构
应用 实例
B2
1 A
3
B2 1
3
A
从动件3的位移与原动件1的转角成正比 s lAB sin
压缩机ห้องสมุดไป่ตู้
双滑块机构
B
2
1 3
B
2
1 3
A
应用实例 椭 圆 仪
A
B 1
A (x,y)
3 ( x y ctg )2 ( y x tg )2 a2
2
a
x
cos
2
y
a sin
a +b d +c (3)
(1) + (2)
a b
(1) +(3)
a c
且有: a d
a =lmin为最短杆。
周转副的条件: 1)最短杆长度加最长杆长度小于或等于其余 两杆长度之和——杆长条件;
2) 组成周转副的两杆中必有一杆是最短杆.
曲柄存在条件:
3)连架杆或机架中必有一杆是最短杆。
讨 ✓ 当铰链四杆机构满足杆长条件时,
缺点: ①由于运动积累误差较大,因而影响传动精度; ②由于惯性力不好平衡而不适于高速传动; ③设计方法比较复杂。
§8-2 平面四杆机构的类型和应用
➢四杆机构各部分的名称:
名词解释: 曲柄—作整周定轴回转的构件;
摇杆—作定轴摆动的构件; 连架杆—与机架相联的构件; 周转副—能作360°相对回转的 运动副;
论 1)最短杆的邻边杆为机架时
C
——曲柄摇杆机构
2 B
3
1
A
4
D
2)最短杆为机架时 ——双曲柄机构(含平行四边形机构)
2
1
双转块机构
B
2
1 3
A
应用实例
B
2
1 3
A
十字滑块联轴器
B
2
1 3
A
小结
平面四杆机构的演化方式 1、改变构件的形状和相对尺寸:转动副移动副
对心曲柄滑块机构
变连杆 为滑块
B
2
1
A
4
C 摇块
3
双滑块机构
2B
1
A
4
导杆
3
C
2、改变运动副的尺寸:曲柄偏心轮
2
C 扩大转
动副B
2
C 超过
曲柄
B
3 的半径 B
—连杆 具有连杆的机构——连杆机构
契贝谢夫四足机器人
它是利用连杆曲线特性,当一对角足运动处在曲线的直线段时则着地 静止不动,而另一对角足则处在曲线段作迈足运动,从而可实现类似动物 的足行运动。
二、连杆机构的特点 优点: ①连杆机构为低副机构,运动副为面接触,压强小, 承载能力大,耐冲击; ② 运动副元素的几何形状多为平面或圆柱面,便于加 工制造; ③在原动件运动规律不变情况下,通过改变各构件的 相对长度可以使从动件得到不同的运动规律; ④可以连杆曲线可以满足不同运动轨迹的设计要求。
第八章 平面连杆机构及其设计
本章主要内容
➢连杆机构及其特点 ➢平面连杆机构的类型及应用 ➢平面连杆机构的基本知识 ➢平面四杆机构的设计
§8-1 连杆机构及其传动特点
一. 连杆机构
连杆机构由若干个构件通过低副连接而组成。 共同特点——原动件通过 不与机架相连的中间构件 传递到从动件上。 不与机架相连的中间构件
摆转副—只能作有限角度摆动的运动副。
一、四杆机构基本型式
1. 曲柄摇杆机构
铰链四杆机构中,若其两个连架杆一为曲柄,一为摇杆, 则此四杆机构称为曲柄摇杆机构。
C
2
B
3
碎石机
1
A
4
D
应用实例:
雷达天线俯仰机构
应用实例:
缝
纫
机
抽
脚
油
踏
机
板
机
机
构
构
应用实例: 搅拌机构
剪板机
2. 双曲柄机构 (Double-Crank Mechanism)