山东省烟台市龙口市龙矿学校(五四制)2020中考数学压轴题分类复习之抛物线与抛物线与相似的综合问题

合集下载

2020山东中考数学考点必杀题 --(选择题-压轴) (解析版)

2020山东中考数学考点必杀题 --(选择题-压轴) (解析版)

参考答案与试题解析1. 如图,平面中两条直线l1和l2相交于点O,对于平面上任意点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p, q)是点M的“距离坐标”.根据上述定义,有以下几个结论:①“距离坐标”是(0, 2)的点有1个;②“距离坐标”是(3, 4)的点有4个;③“距离坐标”(p, q)满足p=q的点有4个.其中正确的有()A.0个B.1个C.2个D.3个【答案】B【解析】根据(p, q)是点M的“距离坐标”,得出①若pq≠0,则“距离坐标”为(p、q)的点有且仅有4个.②若pq=0,且p+q≠0,则“距离坐标”为(p、q)的点有且仅有2个,进而得出解集从而确定答案.【解析】平面中两条直线l1和l2相交于点O,对于平面上任意点M,若p,q分别是M到直线l1和l2的距离,则称有序非负数实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列两个结论:若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个.①p=0,q=2,则“距离坐标”为(0, 2)的点有且仅有2个;故①错误;②得出(3, 4)是与l1的距离是3的与之平行的两条直线,与l2的距离是4的与之平行的两条直线,这四条直线共有4个交点.故②正确;③“距离坐标”(p, q)满足p=q的点有无数个.故正确的有1个.故选B.2. 如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6√3−πB.6√3−2πC.6√3+πD.6√3+2π【答案】A【解析】图中阴影部分面积等于6个小半圆的面积和-(大圆的面积-正六边形的面积)即可得到结果.【解析】∵图中六边形为正六边形,∴正六边形可以看作是由六个相等的等边三角形组成,且边长为2,∴正六边形的面积=6×1×2×√3=6√3.2图中非阴影部分是以半径为2的圆,∴图中非阴影部分的面积为=22π=4π,∵与正六边形组成六个外接圆,∴6个月牙形的面积之和=3π−(4π−6√3)=6√3−π.故选A.3. 如图,正方形的边长为4cm,点P、点Q都以2cm/s的速度同时从点A出发,点P沿A→D,点Q沿A→B→C→D向点D运动,在这个过程中,若△APQ的面积为S(cm2),运动时间为t(s),则下列最能反映S与t之间函数关系的图象是()A.B.C.D.【答案】C【解析】此题暂无解析【解析】正方形的边长为4cm,点P、点Q都以2cm/s的速度同时从点A出发,点P沿A→D,点Q沿A→B→C→D向点D运动,则0~2s:S△QAP=12AP⋅AQ=2t2;2~4s:点P停在D点,Q在BC上运动,S△QAP=12AD⋅AB=8;4~6s:点P停在D点,Q在CD上运动,S△QAP=12AD⋅DQ=12×4(12−2t)=24−4t.故选C.4. 围棋的历史在我国可谓源远流长,如图所示在一个围棋的棋盘上选定9个网格,在3×3的正方形有两个小正方形被涂灰,再将图中其余小正方形任意涂灰一个,使整个图案构成一个轴对称图形的办法有()A.3种B.4种C.5种D.6种【答案】C【解析】此题暂无解析【解析】由轴对称的概念知,通过变换对称轴可以得到如图所示的5种使得整个图案构成一个轴对称图形的办法.故选C.5. 如图,若l1//l2,l3//l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个【答案】D【解析】此题暂无解析【解析】此题暂无解答6. 如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ//BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.5√2B.√2C.4√2D.3√2【答案】A【解析】此题暂无解析【解析】此题暂无解答7. 如图,⊙O的直径AB=4,∠A=30∘,点P在线段AB上,则PC的最小值为( )A.1B.√3C.2D.2√3【答案】B【解析】此题暂无解析【解析】连接OC,过C作CH⊥AB于H,如图所示,∵AB=4,∠A=30∘,∴∠COB=60∘,∠OCH=30∘,OC=2,OH=1,∴CH=√4−1=√3.故选B.8. 如图,若一次函数y1=−x−1与y2=ax−3的图象交于点P(m,−2),则关于x的不等式:−x−1>ax−3的解集是( )A.x>1B.x<1C.x>2D.x<2【答案】B【解析】此题暂无解析【解析】∵P过直线y1,∴m=2−1,P:(1,−2),将点P代入y2=ax−3,得a=1,∴原不等式可化为:−x−1>x−3,解得x<1.故选B.9. 若x=2是关于x的一元一次方程ax−2=b的解,则3b−6a+2的值是( )A.−8B.−4C.8D.4【答案】B【解析】此题暂无解析【解析】∵x=2是关于x的一元一次方程ax−2=b的解,∴2a−2=b,∴2a−b=2,∴3b−6a+2=−3(2a−b)+2=−4.故选B.10. 如图,小明同学的家位于坡度为i=1:√3约小山坡脚下的B点处,星期天,小明与伙伴们到小山坡的东侧A点处玩无人机,他们按动遥控器,无人机以30米/分钟的速度沿仰角为65∘角的方向飞行,经过25分钟,恰好可以在小明家门口沿山坡看到C处的无人机,则小明离家的距离AB的长约为(参考数据:sin35∘≈0.6,cos35∘≈0.8,tan35∘≈0.7,结果保留整数)()A.900米B.910米C.1050米D.1200米【答案】A【解析】此题暂无解析【解析】此题暂无解答11. 如图,是由三个边长分别为6,9,x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是( )A.1或9B.3或5C.4或6D.3或6【答案】D【解析】根据题意列方程,即可得到结论.【解析】如图,∵若直线AB将它分成面积相等的两部分,∴1×(6+9+x)×9−x×(9−x)2=1×(62+92+x2),2解得x=3,或x=6.故选D.12. 如图,在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60∘的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点P在直线上的速度为每秒2个单位长度,在弧线上的速个单位长度,则第2019秒时,点P的坐标是()度为每秒2π3A.(2019,−√3)B.(2019,√3)C.(2018,0)D.(2019,0)【答案】A【解析】设第n秒运动到P n(n为自然数)点,根据点P的运动规律找出部分P n点的坐标,根据坐标的变化找出变化规律P4n+1(4n+1,√3)P(4n+1,√3),P4n+2(4n+2,0),P4n+3(4n+3,−√3),P4n+4(4n+4n+14,0)”.依次规律即可得出结论.【解析】设第n秒运动到p n(n为自然数)点,观察,发现规律:P(1,√3),P2(2,0),P3(3,−√3),P4(4,0),P5(5,√3),⋅⋅⋅,1∴P4n+1(4n+1,√3),P4n+2(4n+2,0),P4n+3(4n+3,−√3),P4n+4(4n+4,0),∵2019=4×504+3,∴P2019为(2019,−√3),故选:A13. 如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP 的最小值是()A.7B.6C.5D.4【答案】D【解析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可.【解析】在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,∴∠BAC=90∘∵EF垂直平分BC,∴B、C关于EF对称,AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,由勾股定理得:AC=√BC2−AB2=4.故选D.14. 如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(−1, 3)、(−4, 1)、(−2, 1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1, 2),则点A1,C1的坐标分别是()A.A1(4, 4),C1(3, 2)B.A1(3, 3),C1(2, 1)C.A1(4, 3),C1(2, 3)D.A1(3, 4),C1(2, 2)【答案】A【解析】根据点B(−4, 1)的对应点B1的坐标是(1, 2)知,需将△ABC向右移5个单位、上移1个单位,据此根据平移的定义和性质解答可得.【解析】由点B(−4, 1)的对应点B1的坐标是(1, 2)知,需将△ABC向右移5个单位、上移1个单位,则点A(−1, 3)的对应点A1的坐标为(4, 4)、点C(−2, 1)的对应点C1的坐标为(3, 2),15. 如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60∘得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60∘得到;②点O与O′的距离为4;③∠AOB=150∘;④四边形AOBO′的面积为6+3√3;⑤S△AOC +S△AOB=6+9√34.其中正确的结论是( )A.①②③B.①②③④C.①②③⑤D.①②③④⑤【答案】C【解析】证明△BO′A≅△BOC,又∠OBO′=60∘,所以△BO′A可以由△BOC绕点B逆时针旋转60∘得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150∘,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=6+4√3,故结论④错误;如图②,将△AOB绕点A逆时针旋转60∘,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确.【解析】如图①,连接OO′,由题意可知,∠1+∠2=∠3+∠2=60∘,∴∠1=∠3,又∵OB=O′B,AB=BC,在△BO ′A 和△BOC 中,{OB =O ′B∠1=∠3AB =BC,∴ △BO ′A ≅△BOC(SAS),又∵ ∠OBO ′=60∘,∴ △BO ′A 可以由△BOC 绕点B 逆时针旋转60∘得到, 故结论①正确;∵ OB =O ′B ,且∠OBO ′=60∘,∴ △OBO ′是等边三角形,∴ OO ′=OB =4.故结论②正确;∵ △BO ′A ≅△BOC ,∴ O ′A =5.在△AOO ′中,三边长为3,4,5,这是一组勾股数, ∴ △AOO ′是直角三角形,∠AOO ′=90∘,∴ ∠AOB =∠AOO ′+∠BOO ′=90∘+60∘=150∘, 故结论③正确;S AOBO ′=S △AOO ′+S △OBO ′=12×3×4+√3×4=6+4√3, 故结论④错误;如图②所示,将△AOB 绕点A 逆时针旋转60∘,使得AB 与AC 重合,点O 旋转至O ″点.易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形, 则S △AOC +S △AOB =S 四边形AOCO ″=S △COO ″+S △AOO ″=12×3×4+√34×32=6+9√34,故结论⑤正确.综上所述,正确的结论为:①②③⑤. 故选C .16. 如图,P 是线段AB 的黄金分割点,PA >PB ,若S 1表示以AP 为边正方形的面积,S 2表示以AB 为长PB 为宽的矩形的面积,则S 1、S 2大小关系为( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不能确定【答案】B【解析】根据黄金分割的定义得到PA 2=PB ⋅AB ,再利用正方形和矩形的面积公式有S 1=PA 2,S 2=PB ⋅AB ,即可得到S 1=S 2.【解析】∵ P 是线段AB 的黄金分割点,且PA >PB , ∴ PA 2=PB ⋅AB ,又∵ S 1表示以PA 为一边的正方形的面积,S 2表示以长为AB ,宽为PB 的矩形的面积, ∴ S 1=PA 2,S 2=PB ⋅AB , ∴ S 1=S 2. 故选:B .17. 如图,在△ABC 中,∠ACB =90∘,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45∘,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =√2;②当点E 与点B 重合时,MH =12;③AF +BE =EF ;④MG ⋅MH =12,其中正确结论为( )A .①②③B .①③④C .①②④D .①②③④【答案】C【解析】此题暂无解析【解析】①由题意知,△ABC是等腰直角三角形,∴AB=√AC2+BC2=√2,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90∘,∵MG⊥AC,∴∠MGC=90∘=∠C=∠MBC,∴MG // BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45∘=∠ABC,∠A=∠ACF=45∘,∴CE=AF=BF,∴FG是△ACB的中位线,∴GC=1AC=MH,故②正确;2③如图2所示,∵AC=BC,∠ACB=90∘,∴∠A=∠5=45∘.将△ACF顺时针旋转90∘至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45∘;BD=AF;∵ ∠2=45∘,∴ ∠1+∠3=∠3+∠4=45∘, ∴ ∠DCE =∠2. 在△ECF 和△ECD 中, {CF =CD∠2=∠DCE CE =CE, ∴ △ECF ≅△ECD(SAS), ∴ EF =DE . ∵ ∠5=45∘, ∴ ∠BDE =90∘,∴ DE 2=BD 2+BE 2,即EF 2=AF 2+BE 2,故③错误; ④∵ ∠7=∠1+∠A =∠1+45∘=∠1+∠2=∠ACE , ∵ ∠A =∠5=45∘, ∴ △ACE ∼△BFC , ∴AFBC=ACBF , ∴ AF ⋅BF =AC ⋅BC =1, 由题意知四边形CHMG 是矩形, ∴ MG // BC ,MH =CG , MG // BC ,MH // AC , ∴ CH BC=AEAB;CG AC=BFAB,即MG 1=2;MH 1=√2,∴ MG =√22AE ;MH =√22BF ,∴ MG ⋅MH =√22AE ×√22BF =12AE ⋅BF =12AC ⋅BC =12,故④正确. 故选C .18. 如图,AB 是半圆O 的直径,且AB =4cm ,动点P 从点O 出发,沿OA →AB ^→BO 的路径以每秒1cm 的速度运动一周.设运动时间为t ,s =OP 2,则下列图象能大致刻画s 与t 的关系的是( )A .B .C .D .【答案】C【解析】在半径AO 上运动时,s =OP 2=t 2;在弧BA 上运动时,s =OP 2=4;在BO 上运动时,s =OP 2=(4π+4−t)2,s 也是t 是二次函数;即可得出答案.【解析】利用图象可得出:当点P 在半径AO 上运动时,s =OP 2=t 2; 在弧AB 上运动时,s =OP 2=4;在OB 上运动时,s =OP 2=(2π+4−t)2.19. 把函数y =3x +2的图象沿着x 轴向右平移一个单位,得到的函数关系式是( ) A .y =3x +1 B .y =3x −1 C .y =3x +3 D .y =3x +5 【答案】B【解析】直接根据“上加下减,左加右减”的原则进行解答即可.【解析】由“左加右减”的原则可知,函数y =3x +2的图象沿着x 轴向右平移一个单位, 所得直线的解析式为y =3(x −1)+2,即y =3x −1. 故选B .20. 如图,一次函数y =kx +b 的图象与y 轴交于点(0, 1),则关于x 的不等式kx +b >1的解集是( )A.x>0B.x<0C.x>1D.x<1【答案】B【解析】直接根据函数的图象与y轴的交点为(0, 1)进行解答即可.【解析】由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0, 1),∴当x<0时,关于x的不等式kx+b>1.故选B.21. 二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如表:给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为−3;<x<2时,y<0;(2)当−12(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0【答案】B【解析】根据给定点的坐标利用待定系数法即可求出二次函数解析式,再画出函数图象.(1)利用配方法将二次函数解析式化成顶点式,结合a=1>0即可得出(1)不正确;<x<2时,y<0.由此即可得出(2)正确;(2)结合函数图象可得出:当−12(3)由点(−1, 0)、(3, 0)在函数图象上,即可得出(3)正确.综合(1)(2)(3)即可得出结论.【解析】将(−1, 0)、(1, −4)、(3, 0)代入y=ax2+bx+c中,得:{0=a−b+c−4=a+b+c0=9a+3b+c,解得:{a=1b=−2c=−3,∴该二次函数解析式为y=x2−2x−3.依照题意画出图形,如图所示.(1)∵y=x2−2x−3=(x−1)2−4,a=1>0,∴二次函数y=ax2+bx+c有最小值,最小值为−4,(1)不正确;(2)结合函数图象可知:当−1<x<3时,y<0,∴当−12<x<2时,y<0,(2)正确;(3)∵点(−1, 0)、(3, 0)在函数图象上,∴二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧,(3)正确.综上可知:正确的结论有2个.故选B.22. 如图5−1,四边形ABCD中,AD//BC,∠ABC=90∘,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,y关于x的函数图象大致如图5−2,则四边形ABCD的面积是()A.6+92√3B.15C.6+92√5D.9【答案】A【解析】此题暂无解析【解析】此题暂无解答23. 下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【解析】此题暂无解析【解析】A选项既不是轴对称图形,也不是中心对称图形,不符合题意;B选项是轴对称图形,不是中心对称图形,不符合题意;C选项既不是轴对称图形,也不是中心对称图形,不符合题意;D选项既是轴对称图形,又是中心对称图形,符合题意.故选D.24. 如图,直线y=kx+b(k,b为常数)分别与x轴、y轴交于点A(−7,0),B(0,7),抛物线y=−x2+4x+1与y轴交于点C,点E在抛物线y=−x2+4x+1的对称轴上运动,点F在直线AB上移动,CE+EF的最小值是( )A.5B.5√2C.4D.4√2【答案】B【解析】此题暂无解析【解析】如图,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F,E,C′三点一线且C′F与AB垂直时CE+EF最小,由题意得{−7k+b=0,b=7,解得{k=1,b=7,∴直线解析式为y=x+7,∵C(0,1),∴C′(4,1),∴直线C′F的解析式为y=−x+5,由{−x+5,y=x+7解得{x=−1,y=6,∴F(−1,6),∴C′F=√(4−(−2))2+(1−6)2=5√2即CE+EF的最小值为5√2.故选B.25. 若关于x的一元二次方程ax2+bx+3=0(a≠0)的一个根是x=1,则2019−2a−2b的值是( ) A.2025B.2010C.2019D.2016【答案】A【解析】将x=1代入原方程即可得出关于(a+b)的一元一次方程,解之可求出(a+b)的值,将(a+b)的值代入2010−a−b中即可得出结论.【解析】将x=1代入原方程得:a+b+3=0,解得:a+b=−3,∴2019−2a−2b=2019−2(a+b)=2019−2×(−3)=2025.故选A.26. 如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是( )A.4B.6C.8D.10【答案】A【解析】根据小正方形、大正方形的面积可以列出方程组,解方程组即可求得a、b,求ab即可.【解析】由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,所以大正方形的面积减去小正方形的面积等于四个直角三角形的面积.即9−1=8=1ab×4,2解得,ab=4.故选A.27. 在平面直角坐标系xOy中,对于点P(x, y),我们把点P′(1−y, x−1)叫做点P的友好点.已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4…,这样依次得到点A1,A2,A3,…,A n,若点A1的坐标为(2, 1),则点A2019的坐标为()A.(2, 1)B.(0, 1)C.(0, −1)D.(2, −1)【答案】C【解析】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.【解析】观察发现:A1(2,1),A2(0,1),A3(0,−1),A4(2,−1),A5(2,1),A6(0,1)…∴依次类推,每5个点为一个循环组依次循环,∵2019÷4=504余3,∴点A2019的坐标与A3的坐标相同,为(0,−1).故选C.28. 如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30∘,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为( )A.1B.2C.√2D.√3【答案】C【解析】此题暂无解析【解析】如图,作点D关于AB的对称点D′,连接OC,OD′,CD′,AD′,由轴对称确定最短路线问题可知,CD′的长度即为PC+PD的最小值,∵∠CAB=30∘,∴∠COB=2∠CAB=2×30∘=60∘.∵D为弧CB的中点,∴∠BAD′=1×30∘=15∘,2∴∠CAD′=45∘,∴∠COD′=90∘,∴△COD′是等腰直角三角形.∵⊙O的半径为1,∴CD′=√12+12=√2,即PC+PD的最小值为为√2.故选C.29. 在△ABC中,∠BAC=90∘,AB=2AC,点A(2, 0)、B(0, 4),点C在第一象限内,双曲线y=k(x>0)经x过点C .3A .2B .2√2 D .3√2【答案】A 【解析】作CH ⊥x 轴于H .由相似三角形的性质求出点C 坐标,求出k 的值即可解决问题;【解析】作CH ⊥x 轴于H .∵ A(2, 0)、B(0, 4),∴ OA =2,OB =4,∵ ∠ABO +∠OAB =90∘,∠OAB +∠CAH =90∘,∴ ∠ABO =∠CAH ,∵ ∠AOB =∠AHC ,∴ △ABO ∽△CAH ,∴ OA CH=OB AH =AB AC =2,∴ CH =1,AH =2,∴ C(4, 1), ∵ C(4, 1)在y =k x 上,∴ k =4,∴ y =4x ,当x =2时,y =2,∵ 将△ABC 沿y 轴向上平移m 个单位长度,使点A 恰好落在双曲线上,∴ m =2,30. 如图1,正方形纸片ABCD 的边长为2,翻折∠B 、∠D ,使两个直角的顶点重合于对角线BD 上一点P 、EF 、GH 分别是折痕(如图2).设AE =x(0<x <2),给出下列判断: ①当x =1时,点P 是正方形ABCD 的中心;②当x =12时,EF +GH >AC ; ③当0<x <2时,六边形AEFCHG 面积的最大值是3;④当0<x <2时,六边形AEFCHG 周长的值不变.其中正确的选项是( )A.①③B.①②④C.①③④D.①②③④【答案】C【解析】(1)由正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,得出△BEF 和△三DGH是等腰直角三角形,所以当AE=1时,重合点P是BD的中点,即点P是正方形ABCD的中心;(2)由△BEF∽△BAC,得出EF=34AC,同理得出GH=14AC,从而得出结论.(3)由六边形AEFCHG面积=正方形ABCD的面积−△EBF的面积−△GDH的面积.得出函数关系式,进而求出最大值.(4)六边形AEFCHG周长=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)求解.【解析】故①结论正确,(2)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF∽△BAC,∵x=12,∴BE=2−12=32,∴BEBA =EFAC,即322=EFAC,∴EF=34AC,同理,GH=14AC,∴EF+GH=AC,故②结论错误,(3)六边形AEFCHG面积=正方形ABCD的面积−△EBF的面积−△GDH的面积.∵AE=x,∴六边形AEFCHG面积=22−12BE⋅BF−12GD⋅HD=4−12×(2−x)⋅(2−x)−12x⋅x=−x2+2x+2=−(x−1)2+3,∴六边形AEFCHG面积的最大值是3,故③结论正确,(4)当0<x<2时,∵EF+GH=AC,六边形AEFCHG周长=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)=2+2+ 2√2=4+2√2故六边形AEFCHG周长的值不变,故④结论正确.故选:C.31. 美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感,如图,某女士身高165cm,下半身长x与身高L的比值为0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.10cm B.7.8cm C.6.5cm D.5cm【答案】B【解析】先求得下半身的实际高度,再根据黄金分割的定义求解即可.【解析】根据已知条件得下半身长是165×0.60=99cm,设需要穿的高跟鞋是ycm,=0.618,根据黄金分割的定义得:99+y165+y解得:y≈7.8.故选:B.32. 如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC,EF交于点N.有下列四个结论:①BF垂直平分EN;②BF平分∠MFC;③△DEF∽△FEB;④tan∠N=√3.其中,将正确结论的序号全部选对的是()A .①②③B .①②④C .②③④D .①②③④【答案】A 【解析】由折叠的性质、矩形的性质与角平分线的性质,可证得CF =FM =DF ;易求得∠BFE =∠BFN ,则可得BF ⊥EN ;易证得△BEN 是等腰三角形,但无法判定是等边三角形;故正确的结论有3个.【解析】∵ 四边形ABCD 是矩形,∴ ∠D =∠BCD =90∘,DF =MF ,由折叠的性质可得:∠EMF =∠D =90∘,即FM ⊥BE ,CF ⊥BC ,∵ BF 平分∠EBC ,∴ CF =MF ,∴ DF =CF ,在△DEF 与△CFN 中,{∠D =∠FCN =90∘DF =CF ∠DFE =∠CFN,∴ △DFE ≅△CFN ,∴ EF =FN ,∵ ∠BFM =90∘−∠EBF ,∠BFC =90∘−∠CBF ,∴ ∠BFM =∠BFC ,∴ BF 平分∠MFC ;故②正确;∵ ∠MFE =∠DFE =∠CFN ,∴ ∠BFE =∠BFN ,∵ ∠BFE +∠BFN =180∘,∴ ∠BFE =90∘,即BF ⊥EN ,∴ BF 垂直平分EN ,故①正确;∵∠BFE=∠D=∠FME=90∘,∴∠EFM+∠FEM=∠FEM+∠FBE=90∘,∴∠EFM=∠EBF,∵∠DFE=∠EFM,∴∠DFE=∠FBE,∴△DEF∽△FEB;故③正确;∵△DFE≅△CFN,∴BE=BN,∴△EBN是等腰三角形,∴∠N不一定等于60∘,故④错误.故选:A.33. 正三角形ABC的边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC2,则y关于x的函数图象大致为()A.B.C.D.【答案】A【解析】∵正△ABC的边长为2,∴∠A=∠B=∠C=60∘,AC=2.①当0≤x≤2时,作PQ⊥AC,∵AP=x,∠A=60∘,∴ ∠APQ =30∘,∴ AQ =x 2,PQ =√AP 2−AQ 2=√3x 2,∴ CQ =2−x 2,∴ PC =√PQ 2+CQ 2=√x 2−2x +4,∴ PC 2=x 2−2x +4=(x −1)2+3,∴ 该函数的图象是在0≤x ≤2上的抛物线,排除B ,D ;②当2<x ≤4时,即点P 在线段BC 上时,PC =(4−x)(2<x ≤4),则y =(4−x)2=(x −4)2(2<x ≤4),∴ 该函数的图象是在2<x ≤4上的抛物线,排除C ;③当4<x ≤6时,即点P 在线段AC 上时,PC =2−(6−x)=x −4,则y =(x −4)2,∴ 该函数的图象是在4<x ≤6上的抛物线.故选A .34. 将直线y =2x 向右平移2个单位所得的直线的解析式是( )A .y =2x +2B .y =2x −2C .y =2(x −2)D .y =2(x +2)【答案】C【解析】根据平移性质可由已知的解析式写出新的解析式.【解析】根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y =2(x −2).故选C .35. 如图,直线y 1=kx +b 与直线y 2=mx 交于点P(1, m),则不等式mx ≥kx +b 的解集是()A.x>0B.x<0C.x>1D.x<1【答案】C【解析】直接根据两函数图象的交点即可得出结论.【解析】∵P(1, m)为两直线的交点,在点P右侧时,直线y2在y1的上方,∴当x≥1时,不等式mx≥kx+B.故选C.36. 在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是( )A.y1B.y2C.y3D.y4【答案】A【解析】此题暂无解析【解析】由图象可知:抛物线y1的顶点为(−2,−2),与y轴的交点为(0,1),根据待定系数法求得y1=3(x+2)2−2;4抛物线y2的顶点为(0,−1),与x轴的交点为(1,0),根据待定系数法求得y2=x2−1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x−1)2+1;抛物线y4的顶点为(1,−3),与y轴的交点为(0,−1),根据待定系数法求得y4=2(x−1)2−3;综上,解析式中的二次项系数一定小于1的是y 1,故选A .37. 若函数y =kx −b 的图象如图所示,则关于x 的不等式kx −b >0的解集为( )A .x <1B .x <2C .x >1D .x >2【答案】B【解析】此题暂无解析 【解析】观察图象知,当kx −b >0即y >0时,x <2.故选B .38. 定义符号min{a, b}的含义为:当a ≥b 时min{a, b}=b ;当a <b 时min{a, b}=a .如:min{1, −3}=−3,min{−4, −2}=−4.则min{−x 2+1, −x}的最大值是( )A .√5−12B .√5+12C .1D .0【答案】A【解析】理解min{a, b}的含义就是取二者中的较小值,画出函数图象草图,利用函数图象的性质可得结论.【解析】在同一坐标系xOy 中,画出函数二次函数y =−x 2+1与正比例函数y =−x 的图象,如图所示.设它们交于点A 、B .令−x 2+1=−x ,即x 2−x −1=0,解得:x =1+√52或1−√52, ∴ A(1−√52, √5−12),B(1+√52, −1−√52). 观察图象可知:①当x ≤1−√52时,min{−x 2+1, −x}=−x 2+1,函数值随x 的增大而增大,其最大值为√5−12;②当1−√52<x <1+√52时,min{−x 2+1, −x}=−x ,函数值随x 的增大而减小,其最大值为√5−12; ③当x ≥1+√52时,min{−x 2+1, −x}=−x 2+1,函数值随x 的增大而减小,最大值为−1−√52. 综上所示,min{−x 2+1, −x}的最大值是√5−12. 故选A .39. 若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( )A .5049B .99!C .9900D .2! 【答案】C【解析】由题目中的规定可知100!=100×99×98×...×1,98!=98×97×...×1,然后计算100!98!的值. 【解析】∵ 100!=100×99×98×...×1,98!=98×97× (1)所以100!98!=100×99=9900.故选C .40. 在平面直角坐标系中,任意两点A(x 1, y 1),B(x 2, y 2),规定运算:①A ⊕B =(x 1+x 2, y 1+y 2);②A ⊗B =x 1x 2+y 1y 2;③当x 1=x 2且y 1=y 2时,A =B ,有下列四个命题:(1)若A(1, 2),B(2, −1),则A ⊕B =(3, 1),A ⊗B =0;(2)若A ⊕B =B ⊕C ,则A =C ;(3)若A ⊗B =B ⊗C ,则A =C ;(4)对任意点A ,B ,C ,均有(A ⊕B)⊕C =A ⊕(B ⊕C)成立,其中正确命题的个数为( )A .1个B .2个C .3个D .4个 【答案】C【解析】(1)根据新定义可计算出A ⊕B =(3, 1),A ⊗B =0;(2)设C(x 3, y 3),根据新定义得A ⊕B =(x 1+x 2, y 1+y 2),B ⊕C =(x 2+x 3, y 2+y 3),则x 1+x 2=x 2+x 3,y 1+y 2=y 2+y 3,于是得到x 1=x 3,y 1=y 3,然后根据新定义即可得到A =C ;(3)由于A ⊗B =x 1x 2+y 1y 2,B ⊗C =x 2x 3+y 2y 3,则x 1x 2+y 1y 2=x 2x 3+y 2y 3,不能得到x 1=x 3,y 1=y 3,所以A ≠C ;(4)根据新定义可得(A⊕B)⊕C=A⊕(B⊕C)=(x1+x2+x3, y1+y2+y3).【解析】(1)A⊕B=(1+2, 2−1)=(3, 1),A⊗B=1×2+2×(−1)=0,所以(1)正确;(2)设C(x3, y3),A⊕B=(x1+x2, y1+y2),B⊕C=(x2+x3, y2+y3),而A⊕B=B⊕C,所以x1+x2=x2+x3,y1+y2=y2+y3,则x1=x3,y1=y3,所以A=C,所以(2)正确;(3)A⊗B=x1x2+y1y2,B⊗C=x2x3+y2y3,而A⊗B=B⊗C,则x1x2+y1y2=x2x3+y2y3,不能得到x1=x3,y1=y3,所以A,C不一定相等,所以(3)不正确;(4)因为(A⊕B)⊕C=(x1+x2+x3, y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3, y1+y2+y3),所以(A⊕B)⊕C=A⊕(B⊕C),所以(4)正确.故选C.41. 如图在坐标系中放置一菱形OABC,已知∠ABC=60∘,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60∘,连续翻转2015次,点A的落点依次为A1,A2,A3,…,则A2015的坐标为.()A.(1343, 0)B.(1347, 0)C.(134312, √32)D.(134712, √32)【答案】A【解析】连接AC,根据条件可以求出AC,由第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2015=335×6+5,因此点A5向右平移1340(即335×4)即可到达点A2015,根据点A5的坐标就可求出点A2015的坐标.【解析】连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60∘,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.根据第5次、第6次、第7次翻转后的图形.由图可知:每翻转6次,图形向右平移4.∵2015=335×6+5,∴点A5向右平移1340(即335×4)到点A2014.∵A5的坐标为(3, 0),∴A2014的坐标为(3+1340, 0),∴A2015的坐标为(1343, 0).42. 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(32, 0),B(0, 2),则点B2016的坐标为()A.(4032, 2)B.(6048, 2)C.(4032, 0)D.(6048, 0)【答案】B【解析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2016的坐标.【解析】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=32+2+52=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:1008×6=6048.∴点B2016的纵坐标为:2.则B2016的坐标是(6048, 2).故选B.43. 如图,已知EF是圆O的直径,把∠A为60∘的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与圆O交于点P,点B与点O重合;将三角形ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x∘,则x的取值范围是()A.60≤x≤120B.30≤x≤60C.30≤x≤90D.30≤x≤120【答案】B【解析】根据直角三角形两锐角互余求出∠ABC=30∘,从而得到点B与点O重合时∠POF=30∘,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半求出点B与点E重合时∠POF=2∠ABC,然后写出x的取值范围即可.【解析】∵∠A=60∘,∴∠ABC=30∘,①点B与点O重合时,∠POF=∠ABC=30∘,②点B与点E重合时,∠POF=2∠ABC=2×30∘=60∘,所以,x的取值范围是30≤x≤60.故选B.44. 如图,已知EF是⊙O的直径,把∠A为60∘的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合,且AC大于OE,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x∘,则x的取值范围是()A.30≤x≤60B.30≤x≤90C.30≤x≤120D.60≤x≤120【答案】A【解析】分析可得:开始移动时x=30,移动开始后,∠POF逐渐增大,最后当B与E重合时,∠POF取得最大值,即2×30∘=60∘,故x的取值范围是30≤x≤60.【解析】开始移动时,x=30,移动开始后,∠POF逐渐增大,最后当B与E重合时,∠POF取得最大值,则根据同弧所对的圆心角等于它所对圆周角的2倍得:∠POF=2∠ABC=2×30∘=60∘,故x的取值范围是30≤x≤60.故选A.45. 如图,直线l1 // l2,⊙O与l1和l2分别相切于点A和点B.直线MN与l1相交于M;与l2相交于N,⊙O的半径为1,∠1=60∘,直线MN从如图位置向右平移,下列结论①l1和l2的距离为2②MN=4√33③当直线MN与⊙O相切时,∠MON=90∘④当AM+BN=4√33时,直线MN与⊙O相切.正确的个数是()A.1B.2C.3D.4【答案】D【解析】如图1,利用切线的性质得到OA⊥l1,OB⊥l2,再证明点A、B、O共线即可得到l1和l2的距离为2,则可对①进行判断;作NH⊥AM,如图1,易得四边形ABNH为矩形,则NH=AB=2,然后在Rt△MNH中利用含30度的直角三角形三边的关系可计算出MN,从而可对②进行判断;当直线MN与⊙O相切时,如图2,利用切线长定理得到∠1=∠2,∠3=∠4,然后根据平行线的性质和三角形内角和可计算出∠MON的度数,则可对③进行判断;过点O作OC⊥MN于C,如图2,根据梯形的面积和三角形面积公式,利用S四边形ABNM=S△OAM+S△OMN+S△OBN得到12⋅1⋅AM+12⋅1⋅BN+12MN⋅OC=12(BN+AM)⋅2,则根据AM+BN=4√33,MN=4√33可计算出OC=1,然后根据切线的判定定理可判断直线MN与⊙O相切,则可对④进行判断.【解析】如图1,∵⊙O与l1和l2分别相切于点A和点B,∴OA⊥l1,OB⊥l2,∵l1 // l2,∴点A、B、O共线,∴l1和l2的距离=AB=2,所以①正确;作NH⊥AM,如图1,则四边形ABNH为矩形,∴NH=AB=2,在Rt△MNH中,∵∠1=60∘,∴MH=√33NH=2√33,∴MN=2MH=4√33,所以②正确;当直线MN与⊙O相切时,如图2,∠1=∠2,∠3=∠4,∵l1 // l2,∴∠1+∠2+∠3+∠4=180∘,∴∠1+∠3=90∘,∴∠MON=90∘,所以③正确;过点O作OC⊥MN于C,如图2,∵S四边形ABNM=S△OAM+S△OMN+S△OBN,∴12⋅1⋅AM+12⋅1⋅BN+12MN⋅OC=12(BN+AM)⋅2,即12(AM+BN)+MN⋅OC=AM+BN,∵AM+BN=4√33,MN=4√33,∴OC=1,而OC⊥MN,∴直线MN与⊙O相切,所以④正确.故选D.46. 如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60∘,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A.√2+√6B.√3+1C.√3+√2D.√3+√6【答案】A【解析】本题考查旋转变换、正方形的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识.【解析】作G′M⊥AD于M.易证△DAG′≅△DCE′,∴AG′=CE′,∴CG′+CE′=AC,在Rt△DMG′中,∵DG′=2,∠MDG′=30∘,∴MG′=1,DM=√3,∵∠MAG′=45∘,∠AMG′=90∘,∴∠MAG′=∠MG′A=45∘,∴AM=MG′=1,∴AD=1+√3,∵AC=√2AD,∴AC=√2+√6.故选A.47. 如图,已知△ABC中,AC=BC,∠ACB=90∘,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE②S△ABC,上述结论中始终正确的四边形CDFE不可能是正方形③△DFE是等腰直角三角形④S四边形CDFE=12有()A.①②③B.②③④C.①③④D.①②④【答案】C【解析】首先连接CF,由等腰直角三角形的性质可得:∴∠A=∠B=45∘,CF⊥AB,∠ACF=1∠ACB=2AB,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≅△EBF,由全等45∘,CF=AF=BF=12S△ABC,问题得解.三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=12【解析】连接CF,∵AC=BC,∠ACB=90∘,点F是AB中点,∴∠A=∠B=45∘,CF⊥AB,。

分式精练(无答案)-山东省烟台市龙口市龙矿学校(五四制)2020届九年级数学专项练习

分式精练(无答案)-山东省烟台市龙口市龙矿学校(五四制)2020届九年级数学专项练习


x
+1
x2
− 4x + x +1
4

(2)

2c3 3ab2
2
5a 2b3

3c 2a
3

3/3
秋•莱西市期中)化简
a

1 b
b

ቤተ መጻሕፍቲ ባይዱ
1 a
的结果是(

A.1
B. b a
C. a b
D. − a b
二、填空题(本题包括 5 个小题,每小题 6 分,共 30 分) 2/3
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
11.(2019
秋•蓝山县期中)分式
a
1 +
b

2a
b −
2b

a2
秋•青浦区校级期中)计算:
6 a2 −
9

a
1 −
3
=
__________.
15.(2019 秋•蓝山县期中)计算( x )2•( y2 )3÷( y )4 的结果是__________.
−y
x
x
三、解答题(本题包括 1 个小题,共 20 分) 16.(2019 秋•龙口市期中)计算:
(1)
x
3 +1
C.3
2.(2019 秋•博山区期中)分式 2 y 有意义的条件是( ) x−3
A.x≠0
B.y≠0
C.x≠3
D.4 D.x≠–3
3.(2019 秋•滦南县期中)下列有理式中的分式是( )
A. x 3
B.12(x+y)
C. 2 x −1

2020山东烟台龙口市龙矿学校中考数学压轴题之抛物线综合问题(图片版)

2020山东烟台龙口市龙矿学校中考数学压轴题之抛物线综合问题(图片版)

2020中考数学压轴题分类复习--抛物线综合问题1.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2.正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.3.如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.(1)直接写出点A,C,D的坐标;(2)当四边形ABCD是矩形时,求a的值及抛物线y2的解析式;(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.4.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)5.如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.6.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.(1)求这条抛物线的解析式;(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.7.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC ,点B 在第一象限,A 、C 分别在x 轴和y 轴上,抛物线经过B 、C 两点,顶点D 在正方形内部.(1)直接写出点D (m ,n )所有的特征线;(2)若点D 有一条特征线是y=x+1,求此抛物线的解析式;(3)点P 是AB 边上除点A 外的任意一点,连接OP ,将△OAP 沿着OP 折叠,点A 落在点A ′的位置,当点A ′在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?8.已知抛物线c bx x y ++-=221与y 轴交于点C ,与x 轴的两个交点分别为A (﹣4,0),B (1,0).(1)求抛物线的解析式;(2)已知点P 在抛物线上,连接PC ,PB ,若△PBC 是以BC 为直角边的直角三角形,求点P 的坐标;(4)已知点E 在x 轴上,点F 在抛物线上,是否存在以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.。

2020中考动点与抛物线专题复习和压轴题与答案详解

2020中考动点与抛物线专题复习和压轴题与答案详解

2020中考数学压轴题分类复习--抛物线与四边形的综合问题例题:如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B 在x轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分.(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.分析:(1)根据题意首先求出抛物线顶点E的坐标,再利用顶点式求出函数解析式;(2)利用等边三角形的性质结合圆的有关性质得出∠AMD=∠CMD=∠AMC=60°,进而得出DC=CM=MA=AD,即可得出答案;(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系式求出P点坐标.(1)解:由题意可知,△MBC为等边三角形,点A,B,C,E均在⊙M上,则MA=MB=MC=ME=2,又∵CO⊥MB,∴MO=BO=1,∴A(﹣3,0),B(1,0),E(﹣1,﹣2),抛物线顶点E的坐标为(﹣1,﹣2),设函数解析式为y=a(x+1)2﹣2(a≠0)把点B(1,0)代入y=a(x+1)2﹣2,解得:a=,故二次函数解析式为:y=(x+1)2﹣2;(2)证明:连接DM,∵△MBC为等边三角形,∴∠CMB=60°,∴∠AMC=120°,∵点D平分弧AC,∴∠AMD=∠CMD=∠AMC=60°,∵MD=MC=MA,∴△MCD,△MDA是等边三角形,∴DC=CM=MA=AD,∴四边形AMCD为菱形(四条边都相等的四边形是菱形);(3)解:存在.理由如下:设点P的坐标为(m,n)∵S△ABP=AB|n|,AB=4∴×4×|n|=5,即2|n|=5,解得:n=±,当时,(m+1)2﹣2=,解此方程得:m1=2,m2=﹣4即点P的坐标为(2,),(﹣4,),当n=﹣时,(m+1)2﹣2=﹣,此方程无解,故所求点P坐标为(2,),(﹣4,).同步练习1.已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.2020中考数学压轴题分类复习--抛物线与相似的综合问题例题:如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.分析:(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD≌△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m1=m2=1,∴OC=CF=1,当x=0时,y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD≌△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,当x=﹣2时y=﹣x+=﹣×(﹣2)+=,∴点E的坐标为(﹣2,),∵tan∠EDG===,∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°,∴∠OAC=∠EDG,∴ED∥AC.同步练习:1.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B 同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.2020动点与抛物线专题复习。

2019-2020学年山东省烟台市龙口市九年级(上)期末数学试卷(五四学制)(附答案详解)

2019-2020学年山东省烟台市龙口市九年级(上)期末数学试卷(五四学制)(附答案详解)

2019-2020学年山东省烟台市龙口市九年级(上)期末数学试卷(五四学制)1.若反比例函数y=a+1x的图象在第一、三象限,则a的值不可能是()A. 2B. 1C. 0D. −32.抛物线y=−2(x+3)2的顶点坐标是()A. (−3,0)B. (3,0)C. (0,−3)D. (0,3)3.若α,β为锐角,且sinα=cosβ,则α+β的值()A. 小于90°B. 等于90°C. 大于90°D. 无法确定4.如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.5.已知tan(α−15°)=√33,则锐角α的度数为()A. 75°B. 60°C. 45°D. 30°6.若点(1,−3)、(−2,m)都是反比例函数y=kx(k≠0)的图象上的点,则m的值是()A. −32B. 32C. 6D. −67.如图,PA、PB是⊙O的切线,A、B为切点,点C在⊙O上,且∠ACB=50°,则∠APB的度数为()A. 50°B. 70°C. 80°D. 85°8.如图,点A,B,C都在格点上,△ABC的外接圆的圆心坐标为()A. (5,2)B. (2,4)C. (3,3)D. (4,3)9.在平面直角坐标系中,抛物线y=(x+5)(x−1)经变换后得到抛物线y=(x+1)(x−5),则这个变换可以是()A. 向左平移6个单位B. 向右平移6个单位C. 向左平移4个单位D. 向右平移4个单位10.如图,一个人从山脚下的A点出发,沿山坡小路AB走到山顶B点.已知山高BC=2千米,小路AB=6千米.用科学计算器计算坡角∠BAC的度数,下列按键顺序正确的是()A.B.C.D.11.二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b,N=a−b.则M、N的大小关系为()A. M<NB. M=NC. M>ND. 无法确定12.如图,在同一直角坐标系中,抛物线y1=ax2+bx+c与双曲线y2=k交于A(x a,y a),x B(x b,y b),C(x c,y c)三点,则满足y1<y2的自变量x的取值范围是()A. x<x a或0<x<x b或x>x cB. x>x a或x b<x<x cC. x<x a或x<x b或x>x cD. x a<x<0或x b<x<x c13.如图,在平面直角坐标系中,点A的坐标为(4,3),反(x>0)的图象经过线段OA的中点B,比例函数y=kx则k=______.14.在⊙O中,弦AB=6,CD=8,且AB//CD,若⊙O的半径为5,则AB与CD之间的距离为______.15.如图,分别以正三角形的三个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为8cm,则该莱洛三角形的周长为______cm.16.如图,无人机于空中C处测得某建筑顶部A处的仰角为31°,测得该建筑底部B处的俯角为45°.若无人机的飞行高度CD为32m,则该建筑的高度AB约为______m.(结果保留整数.参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)17.已知关于x的二次函数y=x2+2x+2a+3,当0≤x≤1时,y的最大值为10,则a的值为______.18.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是______.(结果保留π)19.计算:14tan45°+cos245°−2sin60°⋅cos30°.20.如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点A的坐标为(0,4),一次函数y=−12x−1的图象与反比例函数y=mx的图象交于点B,与x轴交于点C.求反比例函数的表达式.21.如图,有长为30m的篱笆,现一面利用墙(墙的最大可用长度a为9m)围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB为x m,面积为Sm2.(1)求S与x的函数关系式,并写出x的取值范围;(2)如果围成花圃的面积为63m2,那么AB应确定多长?22. 如图,某数学实践活动小组要测量人工湖东西CD 的宽度,小明站在A 处,测得点D在北偏西45°方向上,他沿着与CD 平行的直线向西走30米到达B 处,测得点C 在北偏西53°方向上.已知AE ⊥CD ,垂足为E ,AE =60米,求人工湖东西宽度CD 长.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)23. 如图,AB 表示路灯,CD 、C′D′表示小明站在两个不同位置(B 、D 、D′在一条直线上).(1)分别画出小明在这两个不同位置时的影子;(2)小明站在这两个不同的位置上,他的影子长分别是1.5米和3米,已知小明身高1.5米,DD′长为3米,请计算出路灯的高度.24.在△ABC中,AB=AC,以AC为直径的⊙O分别交AB于点D,BC于点E,连接DE.(1)求证:DE=BE;(2)若BD=3,DE=4,求⊙O的直径.25.如图,已知点O为Rt△ABC的斜边AB的中点,点D为边BC上任意一点,连接AD.若AB=4,∠CAB=60°,⊙O的半径为1.设BD=x,若线段AD与⊙O有公共点,则x的取值范围为______.26.如图1,抛物线y=ax2+bx+3与x轴交于A(−2,0),B两点,与y轴交于点C,矩形OCDE的顶点D,E分别在抛物线及x轴上.若OE=OA,点P为y轴上一动点,连接BP,DP,DE与BP交于点F.(1)求抛物线的表达式;(2)当△BDP为直角三角形时,请直接写出满足条件的所有点P的坐标;(3)如图2,抛物线的对称轴分别与DP,BP交于点M,N.点P在线段OC上运动,当OP为何值时,△PMN为等腰三角形?答案和解析1.【答案】D的图象在第一、三象限,【解析】解:∵反比例函数y=a+1x∴a+1>0,∴a>−1,故选:D.根据反比例函数的性质列出不等式求出a的范围即可判断.本题考查反比例函数的性质、一元一次不等式等知识,解题的关键是熟练掌握反比例函数的性质,属于中考常考题型.2.【答案】A【解析】解:抛物线y=−2(x+3)2的顶点坐标是(−3,0),故选:A.根据二次函数y=a(x+ℎ)2的性质解答.本题考查的是二次函数的性质,掌握二次函数y=a(x+ℎ)2的性质是解题的关键.3.【答案】B【解析】解:若α,β为锐角,且sinα=cosβ,则α+β的值为90°,故选:B.根据互余两角三角函数关系判断即可.本题考查了互余两角三角函数关系,熟练掌握互余两角三角函数关系是解题的关键.4.【答案】C【解析】【分析】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.从正面看几何体,确定出主视图即可.【解答】解:几何体的主视图为:故选:C.5.【答案】C【解析】解:∵tan(α−15°)=√33,∴α−15°=30°,∴α=45°,故选:C.根据特殊角的三角函数值判断即可.本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.6.【答案】B【解析】【分析】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.用待定系数法确定反比例函数的比例系数k,求出函数解析式,再把点(−2,m)代入可求m的值.【解答】解:∵点(1,−3)是反比例函数y=kx(k≠0)的图象上的点,∴k=−3×1=−3,∴反比例函数解析式:y=−3x,∵点(−2,m)都是反比例函数y=−3x的图象上的点,∴m=3 2故选B.7.【答案】C【解析】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠APB=360°−90°−90°−100°=80°,故选:C.根据圆周角定理求出∠AOB,根据切线的性质得到OA⊥PA,OB⊥PB,根据四边形内角和为360°计算,得到答案.本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.8.【答案】A【解析】解:作AB和BC的垂直平分线相交于点P,从而得到P点坐标.∴P(5,2).故选:A.作AB和BC的垂直平分线相交于点P,则可得出答案.本题考查了三角形的外接圆,三角形的垂直平分线,正确作图是解题的关键.9.【答案】D【解析】解:y=(x+5)(x−1)=(x+2)2−9,顶点坐标是(−2,−9).y=(x+1)(x−5)=(x−2)2−9,顶点坐标是(2,−9).所以将抛物线y=(x+5)(x−1)向右平移4个单位长度得到抛物线y=(x+1)(x−5),故选:D.根据变换前后的两抛物线的顶点坐标找变换规律.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.10.【答案】B,【解析】解:∵sinA=26∴∠A度数的按键顺序为:故选:B.根据正弦函数的定义得出sinA=2,从而知∠A度数的按键顺序,即可得出答案.6本题主要考查解直角三角形的应用−坡度坡角问题,熟练掌握正弦函数的定义和三角函数的计算器使用是解题的关键.11.【答案】A【解析】解:由图象可得x=−1时y>0,∴a−b+c>0,由图象可得x=2时y<0,∴4a+2b+c<0,∴N−M=a−b+c−(4a+2b+c)=a−b−(4a+2b)>0,∴N>M,故选:A.由图象可得x=−1时y>0,x=2时y<0,进而求解.本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系.12.【答案】D【解析】解:观察函数图象,当x a<x<0或x b<x<x c时,y1<y2.故选:D.利用函数图象,写出抛物线在反比例函数图象下方所对应的自变量的范围即可.本题考查了反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了反比例函数的性质.13.【答案】3【解析】解:∵点B为OA的中点,而点A的坐标为(4,3),∴B(2,3),2(x>0)的图象经过点B,∵反比例函数y=kx=3.∴k=2×32故答案为:3.),然后利用反比例函数图象上点的坐标特征得到先利用线段的中点坐标公式得到B(2,32k=2×3=3.2(k为常数,k≠0)的图本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.【答案】1或7【解析】解:①当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB//CD,∴OE⊥CD,∵AB=6,CD=8,∴CE=4,AF=3,∵OA=OC=5,∴由勾股定理得:EO=√52−42=3,OF=√52−32=4,∴EF=OF−OE=1;②当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,EF=OF+OE=7,所以AB与CD之间的距离是1或7.由于弦AB、CD的具体位置不能确定,故应分两种情况进行讨论:①弦A和CD在圆心同侧;②弦A和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.15.【答案】8π【解析】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,AB=AC=BC=8cm,=8π(cm)∴该莱洛三角形的周长为3×60π×8180故答案为:8π.根据等边三角形的性质得出∠ABC=∠ACB=∠BAC=60°,AB=AC=BC=8cm,再根据弧长公式求出即可.本题考查了等边三角形的性质和弧长的计算,能熟记圆心角为n°,半径为r的弧的长度=nπr是解此题的关键.18016.【答案】51【解析】解:如图,过点C作CE⊥AB,∵AB⊥BD,CD⊥BD,∴四边形BDCE是矩形,∴BE=CD=32m,∵∠BCE=45°,∠BEC=90°,∴∠BCE=∠CBE=45°,∴CE=BE=32m,∵∠ECA=31°,∠AEC=90°,∴AE=CE⋅tan31°≈32×0.60=19.2m,∴BC=BE+EC=32+19.2≈51(m),故答案为:51.根据题目中的数据和锐角三角函数,可以得到BE和EC的值,从而可以得到AB的值.本题考查解直角三角形的应用−仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】2【解析】解:∵y=x2+2x+2a+3=x2+2x+1+2a+2=(x+1)2+2a+2,∴抛物线的对称轴为:直线x=−1,∵a=1>0,∴抛物线的开口方向向上,∴当x>−1时,y随x的增大而增大,∵当0≤x≤1时,y的最大值为10,∴当x=1时,y=10,把x=1时,y=10代入y=x2+2x+2a+3中可得:1+2+2a+3=10,∴a=2,故答案为:2.根据抛物线的关系式可知,抛物线的开口方向向上,对称轴为直线x=−1,所以可得0≤x≤1在对称轴的右侧,然后进行计算即可解答.本题考查了二次函数的最值,根据已知求出抛物线的对称轴,并判断0≤x≤1在对称轴的右侧是解题的关键.18.【答案】π−1【解析】【分析】本题考查了圆的面积的计算,正方形的面积,正确的识别图形是解题的关键.延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=14×(S圆−S正方形ABCD)=14×(4π−4)=π−1.故答案为:π−1.19.【答案】解:14tan45°+cos245°−2sin60°⋅cos30°=14×1+(√22)2−2×√32×√32=14+12−32=−34.【解析】把特殊角的三角函数值代入进行计算即可.本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.x−1的图象与x20.【答案】解:∵一次函数y=−12轴交于点C,∴点C坐标为(−2,0),OC=2,∵点A的坐标为(0,4),∴OA=4,过点B作BD⊥x轴,垂足为D,∵△ABC为等腰直角三角形,∴∠ACB=90°,AC=BC,∴∠BCD+∠ACO=90°,∵∠CAO+∠ACO=90°,∴∠BCD=∠CAO,∵∠BDC=∠AOC=90°,∴△BCD≌△CAO(AAS),∴BD=OC=2,CD=OA=4,∴点B的坐标为(−6,2),∴m=−6×2=−12,∴反比例函数的表达式为y=−12.x【解析】过点B作BD⊥x轴,垂足为D.根据AAS证明△BCD≌△CAO,从而求得点B的坐标,利用待定系数法可求出反比例函数的关系式.本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,待定系数法求函数的解析式,利用了数形结合思想.求得点B的坐标是解题的关键.21.【答案】解:(1)由题意可得,S=x(30−3x)=−3x2+30x,∵0<30−3x≤9,∴7≤x<10,即S与x的函数关系式为S=−3x2+30x(7≤x<10);(2)当S=63m2时,−3x2+30x=63,解得x1=7,x2=3(不合题意,舍去).∴当AB=7m时,围成花圃的面积为63m2.【解析】(1)根据题意和图形,可以写出S与x的函数关系式,再根据题意可得0<30−3x≤9,从而可以得到x的取值范围;(2)将S=63代入(1)中的函数解析式,求出相应的x的值即可.本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,写出相应的函数解析式.22.【答案】解:在Rt△ADE中,DE=AE=60,作CF⊥AB于点F,∵AB//CD,∴CF=AE=60,在Rt△BCF中,tan53°=BFCF =BF60=43,∴BF=80,∴AF=BF+AB=80+30=110.∴CE=AF=110,∴CD=CE−DE=110−60=50(米),答:人工湖东西宽度CD长为50米.【解析】根据题意得到DE=AE=60,作CF⊥AB于点F,解直角三角形即可得到结论.本题考查的是解直角三角形的应用−方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.23.【答案】解:(1)DE,D′E′即为所作;(2)∵CD//AB、C′D′//AB,∴CDAB =EDEB,C′D′AB=D′E′E′B.∴EDEB =E′D′E′B,∵DE=CD=1.5,D′E′=3,∴ 1.5BD+1.5=3BD+6,解得BD=3,∴1.5AB = 1.51.5+3,∴AB=4.5米,答:路灯的高度为4.5米.【解析】(1)利用中心投影的性质画出图形即可;(2)利用平行线分线段成比例定理,构建关系式解决问题即可.本题考查作图−应用与设计作图,解题的关键是掌握中心投影的性质,平行线分线段成比例定理.24.【答案】解:(1)∵四边形ACED是⊙O的内接四边形,∴∠BDE=∠C,∵AB=AC,∴∠B=∠C,∴∠BDE=∠B,∴DE=BE;(2)连接AE,∵AC是直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=EC,∵DE=4,∴BE=EC=DE=4.∴BC=8,∵∠BDE=∠C,∠B=∠B,∴△ABC∽△EBD,∴BDBC =DEAC,即38=4AC,∴AC=323,即⊙O的直径为323.【解析】(1)根据圆内接四边形的性质得出∠BDE=∠C,根据等腰三角形的性质得出∠B=∠C,求出∠BDE=∠B即可;(2)连接AE,根据圆周角定理得出∠AEC=90°,根据等腰三角形的性质得出BE=EC,求出BE=EC=DE=4,根据相似三角形的判定得出△ABC∽△EBD,根据相似三角形的性质得出比例式,再求出AC即可.本题考查了等腰三角形的性质和判定,圆周角定理,相似三角形的性质和判定,圆内接四边形的性质等知识点,能求出DE=BE是解此题的关键.25.【答案】0≤x≤4√33【解析】解:过点O作OE⊥BC于E,∵AB=4,∠CAB=60°,∠C=90°,∴AC=12AB=2,BC=√32AB=2√3,∠B=30°,又∵OA=OB,OE//AC,∴OE=12AC=1,∴BC与⊙O相切于E,当CD与⊙O相切时,BD最长,如图,当CD′与⊙O相切于E′,连接OE′,则OE=OE′=1,OA=OB,∴Rt△BOE≌Rt△AOE′(HL),∴∠OBE=∠OAE′=30°,∴D′A=D′B,在Rt△ACD′中,AC=2,∠CAD′=60°−30°=30°,∴AD′=ACcos∠CAD′=2cos30∘=4√33=BD,此时BD最长,当点D与点B重合时,BD最小,BD的长为0,即x=0,∴0≤x≤4√33,故答案为:0≤x≤4√33.根据Rt△ABC的斜边AB=4,∠CAB=60°,可得出∠B=30°,由三角形中位线定理和切线的判断方法可得出⊙O与BC相切,当CD′与⊙O相切时,BD最长,再得出当点D与点B重合时,BD最小为0,进而得出答案.本题考查切线的判断和性质,直角三角形的边角关系以及三角形中位线定理,掌握切线的判断方法,直角三角形的边角关系以及全等三角形、等腰三角形的性质是正确解答的前提.26.【答案】解:(1)由题意,得点C(0,3),∴OC=3.∵点A(−2,0),∴OA=2.∴OE=OA=2.∵四边形OCDE矩形,∴CD//OE,CD=OE=2.∴D(2,3).将点A(−2,0),D(2,3)分别代入抛物线y =ax 2+bx +3,得:{4a −2b +3=04a +2b +3=3, 解得:{a =−38b =34. ∴抛物线的表达式为y =−38x 2+34x +3.(2)由(1)得B(4,0),∴OB =4.∴BE =OB −OE =2.①当∠BDP =90°时,点P 在y 轴的正半轴上,设P 1(0,m),OP 1=m ,如图,则P 1D 2=P 1C 2+CD 2=(3−m)2+22=m 2−6m +13, BD 2=DE 2+BE 2=32+22=13,BP 12=OP 12+OB 2=m 2+42=m 2+16.∵BP 12=P 1D 2+BD 2,∴m 2+16=m 2−6m +13+13.解得:m =53.∴P 1(0,53).②当∠DBP =90°时,点P 在y 轴的负半轴上,设P(0,m),OP 2=−m ,如图,则P2D2=P2C2+CD2=(3−m)2+22=m2−6m+13,BD2=DE2+BE2=32+22=13,BP22=OP22+OB2=m2+42=m2+16.∵P2D2=BP22+BD2,∴m2−6m+13=m2+16+13.解得m=−83.∴P2(0,−83).(3)∵直线MN⊥x轴,DE⊥x轴,∴MN//DE.当△PDF是等腰三角形时,△PMN是等腰三角形.设P(0,n),直线BP的解析式为y=kx+n,将B(4,0)代入上式,得k=−14n,∴直线BP为y=−14nx+n.∵D(2,3),DE//y轴,∴F(2,12n),DE=3.∴EF=12n.∴DF=DE−EF=3−12n.∴DF2=(3−12n)2=9−3n+14n2,PD2=PC2+CD2=(3−n)2+22=n2−6n+13.过点F作FH⊥OC于点H,如图,则FH=CD=2,OH=EF=12n,∴PH=OP−OH=12n.∴PF2=PH2+HF2=14n2+4.当PD=PF时,即:PD2=PF2,∴n2−6n+13=14n2+4,解得n1=2,n2=6(舍去).即OP=2.当PD=DF时,即:PD2=DF2,∴n2−6n+13=9−3n+14n2,方程无解.当PF=DF时,即:PF2=DF2,∴9−3n+14n2=14n2+4,解得:n=53,即OP=53.综上所述,OP的值为2或53.【解析】(1)利用矩形的性质求得点D的坐标,利用待定系数法即可求得抛物线的解析式;(2)分①当∠BDP=90°时和②当∠DBP=90°时两种情况讨论解答:①当∠BDP=90°时,点P在y轴的正半轴上,设P1(0,m),OP1=m,利用勾股定理列出关于m的方程,解方程即可求解;②当∠DBP=90°时,点P在y轴的负半轴上,设P(0,m),OP2=−m,利用勾股定理列出关于m的方程,解方程即可求解;(3)利用已知条件得到MN//DE,可知当△PDF是等腰三角形时,△PMN是等腰三角形;设P(0,n),利用待定系数法求得直线PB的解析式,则点F坐标可得,根据勾股定理利用n的代数式分别表示出PD2,PF2,DF2,分三种情况:PD=PF,PD=DF,PF=DF,列出关于n的方程,解方程即可求得结论.本题是二次函数的综合题,主要考查了待定系数法确定函数的解析式,二次函数图象的性质,一次函数图象的性质,抛物线上点的坐标的特征,一次函数图象上点的坐标的特征,分类讨论的思想方法,勾股定理,等腰三角形的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键.。

山东省烟台市,2020~2021年中考数学压轴题精选解析

山东省烟台市,2020~2021年中考数学压轴题精选解析

山东省烟台市,2020~2021年中考数学压轴题精选解析山东省烟台市中考数学压轴题精选~~第1题~~(2020烟台.中考真卷) 如图,抛物线y =ax +bx+2与x 轴交于A ,B 两点,且OA =2OB ,与y 轴交于点C ,连接BC,抛物线对称轴为直线x = ,D 为第一象限内抛物线上一动点,过点D 作DE ⊥OA 于点E ,与AC 交于点F ,设点D 的横坐标为m .(1) 求抛物线的表达式;(2) 当线段DF 的长度最大时,求D 点的坐标;(3) 抛物线上是否存在点D ,使得以点O,D ,E 为顶点的三角形与相似?若存在,求出m 的值;若不存在,请说明理由.~~第2题~~(2019烟台.中考真卷) 如图,顶点为的抛物线与轴交于,两点,与 轴交于点,过点 作 轴交抛物线于另一点,作轴,垂足为点 .双曲线经过点,连接,.(1)求抛物线的表达式;(2)点 , 分别是 轴, 轴上的两点,当以, , , 为顶点的四边形周长最小时,求出点 ,的坐标;~~第3题~~(2018烟台.中考真卷) 如图1,抛物线y=ax +2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+ 分别与y 轴及抛物线交于点C ,D .22(1) 求直线和抛物线的表达式;(2) 动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3) 如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.~~第4题~~(2017烟台.中考真卷) 如图1,抛物线y=ax +bx+2与x 轴交于A ,B 两点,与y 轴交于点C ,AB=4,矩形OBDC 的边CD=1,延长DC 交抛物线于点E.(1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H .设P H 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.山东省烟台市中考数学压轴题答案解析~~第1题~~答案:2解析:~~第2题~~答案:解析:答案:解析:答案:解析:。

山东省烟台市龙口市龙矿学校(五四制)2020中考数学二次函数综合题分类训练一(与线段、周长有关问题)

山东省烟台市龙口市龙矿学校(五四制)2020中考数学二次函数综合题分类训练一(与线段、周长有关问题)

2020中考数学二次函数综合题分类训练---- 与线段、周长有关的问题(一)类型一 与线段、周长有关的问题1. 如图,抛物线y =x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与点A 重合),过点P 作PD ∥y 轴交直线AC 于点D .(1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)在抛物线对称轴上是否存在点M ,使|MA-MC |的值最大?若存在,请求出点M 的坐标;若不存在,请说明理由.第1题图 备用图2.如图,折叠矩形OABC 的一边BC ,使点C 落在OA 边的点D 处,已知折痕BE =55,且OE OD =34.以O 为原点,OA 所在的直线为x 轴建立如图所示的平面直角坐标系,抛物线l :y = -161x 2+21x +c 经过点E ,且与AB 边相交于点F .(1)求证:△ABD ∽△ODE ;(2)若M 是BE 的中点,连接MF ,求证:MF ⊥BD ;(3)P 是线段BC 上一动点,点Q 在抛物线l 上,且始终满足PD ⊥DQ ,在点P 运动过程中,能否使得PD =DQ ?若能,求出所有符合条件的Q 点坐标;若不能,请说明理由.第2题图3. 在平面直角坐标系中,抛物线y = -21x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,直线y =x +4经过A ,C 两点.(1)求抛物线的解析式;(2)在AC 上方的抛物线上有一动点P .①如图①,过点P 作y 轴的平行线交AC 于点D ,当线段PD 取得最大值时,求出点P 的坐标; ②如图②,过点O ,P 的直线y =kx 交AC 于点E ,若PE ∶OE =3∶8,求k 的值.图① 图②第3题图4.在平面直角坐标系中,已知抛物线y =-21x 2+bx +c (b 、c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,-1),点C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若抛物线经过A 、B 两点,求抛物线的解析式;(2)平移(1)中的抛物线,使顶点P 在AC 上并沿AC 方向滑动距离为2时,试证明:平移后的抛物线与直线AC 交于x 轴上的同一点;(3)在(2)的情况下,若沿AC 方向任意滑动时,设抛物线与直线AC 的另一交点为Q ,取BC 的中点N ,试探究NP +BQ 是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.第4题图5. 如图,抛物线y = -21x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3. (1)求抛物线的解析式;(2)作Rt△OBC 的高OD ,延长OD 与抛物线在第一象限内交于点E ,求点E 的坐标;(3)在抛物线的对称轴上,是否存在一点Q ,使得△BEQ 的周长最小?若存在,求出点Q 的坐标;若不存在,请说明理由.第5题图。

山东省烟台市龙口市龙矿学校(五四制)2020届九年级中考数学第三次模拟试题(无答案)

山东省烟台市龙口市龙矿学校(五四制)2020届九年级中考数学第三次模拟试题(无答案)

初四第三次模拟考试数学试卷时间:120分钟满分120分一、选择题(每小题3分,共36分)1.某种鲸鱼的体重约为1.36×105千克,关于这个近似数,下列说法正确的是()A.精确到百分位B.精确到十分位C.精确到个位D.精确到千位2.下列语句写成数学式子正确的是()A.9是81的算术平方根:±=9B.5是(﹣5)2的算术平方根:±=5C.±6是36的平方根:=±6D.﹣2是4的负的平方根:﹣=﹣23.下列定理中,逆命题是假命题的是()A.在一个三角形中,等角对等边B.全等三角形对应角相等C.有一个角是60度的等腰三角形是等边三角形D.等腰三角形两个底角相等4.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是()A.x<y B.x>y C.x≤y D.x≥y5.(4分)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数6.在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣27.在同一直角坐标系中,函数y=kx+1与y=(k≠0)的图象大致是()A.B.C.D.8.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=12,则下列关于S1、S2、S3的说法正确的是()A.S1=2 B.S2=3 C.S3=6 D.S1+S3=89.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确10.已知:如图,△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A .①②③B .①③④C .①②④D .①②③④11.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .26512.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(每小题3分,共18分)13.分解因式:m 4﹣81m 2= .14.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是 .15.设直线y =﹣x +2k +7与直线y =x +4k ﹣3的交点为M ,若点M 在第一象限或第二象限,则k 的取值范围是 .16.如图,在锐角△ABC 中,AB =5,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD ,AB 上的动点,则BM +MN 的最小值是 .17.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).18.如图,在△ABC中,∠C=90°,点D、E、F分别在边BC、AB、AC上,且四边形CDEF为正方形,若AE=3,BE=5,则S△AEF+S△EDB=.三、解答题19.(5分)先化简,再求值:,其中.20.(6分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.21.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.BADCEO22.(7分)央视举办的《主持人大赛》受到广泛的关注.某中学学生会就《主持人大赛》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:(1)本次被调查对象共有人;扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为;(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两个女生和两个男生,从选“不太喜欢”的人中挑选两个学生了解不太喜欢的原因,请用列举法(画树状图或列表)求所选取的这两名学生恰好是一男一女的概率.23.(9分)如图,双曲线y1=与直线y2=的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.24.(9分)“龙口粉丝”名扬天下,某网店专门销售某种品牌龙口粉丝,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天粉丝的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该品牌粉丝销售单价的范围.25.(10分)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.26.(12分) 如图,抛物线y = -21x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3. (1)求抛物线的解析式;(2)作Rt △OBC 的高OD ,延长OD 与抛物线在第一象限内交于点E ,求点E 的坐标;(3)在抛物线的对称轴上,是否存在一点Q ,使得△BEQ 的周长最小?若存在,求出点Q 的坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考数学压轴题分类复习----抛物线与相似的综合问题
例题:如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.
(1)求抛物线的表达式;
(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;
(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.
分析:(1)把点B的坐标代入抛物线的表达式即可求得.
(2)通过△AOC∽△CFB求得OC的值,通过△OCD≌△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.
(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.
解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,
解得a=,
∴抛物线的表达式为y=x2﹣x﹣.
(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°
∵∠ACB=90°,
∴∠ACO+∠BCF=90°,
∴∠ACO=∠CBF,
∵∠AOC=∠CFB=90°,
∴△AOC∽△CFB,
∴=,
设OC=m,则CF=2﹣m,则有=,
解得m1=m2=1,
∴OC=CF=1,
当x=0时,y=﹣,
∴OD=,
∴BF=OD,
∵∠DOC=∠BFC=90°,
∴△OCD≌△FCB,
∴DC=CB,∠OCD=∠FCB,
∴点B、C、D在同一直线上,
∴点B与点D关于直线AC对称,
∴点B关于直线AC的对称点在抛物线上.
(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,
∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.
解得x=2或x=﹣2,
当x=﹣2时y=﹣x+=﹣×(﹣2)+=,
∴点E的坐标为(﹣2,),
∵tan∠EDG===,
∴∠EDG=30°
∵tan∠OAC===,
∴∠OAC=30°,
∴∠OAC=∠EDG,
∴ED∥AC.
同步练习:
1.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B 同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.
(1)求点A,点B的坐标;
(2)用含t的代数式分别表示EF和AF的长;
(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.
(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.。

相关文档
最新文档