概率论与数理统计 重要公式
概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。
2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。
3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。
4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。
二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。
4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。
3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。
4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。
概率论与数理统计超全公式总结

Cov(aX , bY ) = abCo若v(UX~,Yχ)2(n1),
F 分布 正态总体条件下 样本均值的分布:
V ~ χ 2 (n2 ),
则 U / n1 V / n2
~
F (n1, n2 )
σ2 X ~ N(µ, )
n
X − µ ~ N (0,1) σ/ n
样本方差的分布:
(n −1)S 2 σ2
k =1
第二章
二项分布(Bernoulli 分布)——X~B(n,p)
F (x, y) = P{X ≤ x,Y ≤ y} 联合密度与边缘密度
+∞
∫ fX (x) = −∞ f (x, y)dy
+∞
∫ fY (y) = −∞ f (x, y)dx
P(X =k)=Cnkpk(1−p)n−k,(k=0,1,...n, )
泊松分布——X~P(λ)
P( X = k) = λk e−λ, (k = 0,1,...) k!
概率密度函数
+∞
∫ f (x)dx = 1 −∞
怎样计算概率 P(a ≤ X ≤ b)
b
P(a ≤ X ≤ b) = ∫a f (x)dx
均匀分布 X~U(a,b)
1
f (x) =
(a ≤ x ≤ b)
b−a
n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
⎜⎛ x ± zα / 2 ⎝
σ ⎟⎞ n⎠
(3) H0 : µ ≤ µ0 H1 : µ > µ0 右边检验
单正态总体均值的 Z 检验
小样本、正态总体、标 准差σ已知
(大样本情形σ未知时用SZ代=替X)− µ 0 σ/ n
概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。
其中概率论是研究随机事件发生的可能性或概率的科学。
而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。
本文将整理概率论与数理统计中常用的公式。
一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。
2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。
3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。
2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。
3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。
概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结一、概率论公式:1.基本概率公式:对于随机试验E,事件A的概率可以表示为P(A)=事件A的样本点数/所有样本点数。
2.条件概率公式:对于事件A和事件B,若P(B)>,则事件A在事件B发生的条件下的概率可以表示为P(A,B)=P(A∩B)/P(B)。
3.全概率公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B有P(B)=Σ(P(Ai)×P(B,Ai))。
4.贝叶斯公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B,有P(Ai,B)=(P(B,Ai)×P(Ai))/Σ(P(B,Ai)×P(Ai))。
二、数理统计公式:1.期望:随机变量X的期望E(X)=Σ(Xi×P(Xi)),其中Xi为随机变量X的取值,P(Xi)为随机变量X取值为Xi的概率。
2. 方差:随机变量X的方差Var(X) = Σ((Xi - E(X))^2 ×P(Xi)),其中Xi为随机变量X的取值,E(X)为随机变量X的期望,P(Xi)为随机变量X取值为Xi的概率。
3. 协方差:随机变量X和Y的协方差Cov(X,Y) = E((X - E(X))(Y - E(Y))),其中E(X)和E(Y)分别为随机变量X和Y的期望。
4. 相关系数:随机变量X和Y的相关系数ρ(X,Y) = Cov(X,Y) / √(Var(X) × Var(Y)),其中Cov(X,Y)为随机变量X和Y的协方差,Var(X)和Var(Y)分别为随机变量X和Y的方差。
三、概率论与数理统计定理:1.大数定律:对于独立同分布的随机变量X1,X2,...,Xn,它们的均值X̄=(X1+X2+...+Xn)/n,当n趋向于无穷大时,X̄趋向于X的期望E(X)。
概率论与数理统计公式

概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
概率论与数理统计公式大全

概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。
无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。
本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。
一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。
- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。
2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。
- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。
3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。
4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。
- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。
- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。
概率论与数理统计 公式

概率论与数理统计公式概率论与数理统计是现代科学与工程领域中应用最广泛的数学分支之一。
概率论与数理统计涉及众多的公式和理论,是数据分析、预测和决策的重要工具。
在此,我们将介绍概率论与数理统计中常用的公式。
1. 概率计算公式概率计算是概率论中的基础。
以下是概率的定义和概率计算公式。
定义:事件A在随机试验中出现的可能性称为概率P(A)。
公式1:若事件A和事件B相互独立,则P(A∩B)=P(A)×P(B)。
公式2:若事件A和事件B不相互独立,则P(A∩B)=P(A)×P(B|A)。
公式3:若事件A和事件B互为对立事件,则P(A)+P(B)=1 。
公式4:全概率公式:P(B)=∑P(Ai)×P(B|Ai) 。
2. 随机变量和概率分布随机变量是概率论中的重要概念。
以下是随机变量和概率分布函数的定义和公式。
定义1:在随机试验中,对每个样本点都有一个对应的实数值,则这个实数值称为随机变量X。
定义2:X的概率分布函数F(x)定义为:F(x)=P(X≤x)。
公式5:二项分布的概率分布函数为:P(X=k)=C(n,k)p^k*q^(n-k) (其中n表示试验次数,k表示事件A 发生的次数,p表示单次事件A发生的概率,q=1-p )。
公式6:泊松分布的概率分布函数为:P(X=k)=(λ^k/k!)×e^-λ (其中λ是一个正实数)。
公式7:正态分布的概率分布函数为:f(x)=(1/√(2π)σ)×e^-(x-μ)²/(2σ²) (其中μ是分布的均值,σ²是分布的方差)。
3. 样本描述和参数估计样本描述和参数估计是数理统计中的基础。
以下是样本描述和参数估计的公式。
公式8:样本的均值:X=(x1+x2+…+xn)/n 。
公式9:样本的方差:S²=[(x1-X)²+(x2-X)²+…+(xn-X)²]/(n-1) 。
概率论与数理统计笔记(重要公式)

r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0
设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、随机事件与概率二、随机变量及其分布1、分布函数()()(),()()()()k k x xx P X x F x P X x P a X b F b F a f t dt≤-∞⎧=⎪=≤=<≤=-⎨⎪⎩∑⎰ 概率密度函数计算概率:2、离散型随机变量及其分布3、续型型随机变量及其分布1)(=⎰+∞∞-dx x f ⎰=≤≤badxx f b X a P )()(一般正态分布的概率计算公式分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:4、随机变量函数Y=g(X)的分布离散型:()(),1,2,j ii j g x y P Y y p i ====∑,连续型: ①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y '=⋅=单调 h(y)是g(x)的反函数三、多维随机变量及其分布1、离散型二维随机变量及其分布分布律:(,),,1,2,i j ij P X x Y y p i j ==== 联合分布函数(,)i i ijx x y yF X Y p≤≤=∑∑边缘分布律:()i i ij jp P X x p ⋅===∑ ()j j ij ip P Y y p ⋅===∑条件分布律:(),1,2,ij i j jp P X x Y y i p ⋅====,(),1,2,ij j i i p P Y y X x j p ⋅====联合密度函数2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数:⎰⎰∞-∞-=x ydudv v u f y x F ),(),(性质:2(,)(,)1,(,),F x y F f x y x y∂+∞+∞==∂∂((,))(,)GP x y G f x y dxdy ∈=⎰⎰②边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()(⎰∞-=≤=x dt t f x X P x F )()()(∑≤==≤=xk k X P x X P x F )()()()()('x f x F =⎰∞-=≤=xdtt f x X P x F )()()(1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=),(y x f 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(③条件概率密度+∞<<-∞=y x f y x f x y f X X Y ,)(),()(,+∞<<-∞=x y f y x f y x f Y Y X ,)(),()( 3、随机变量的独立性随机变量X 、Y 相互独立(,)()()X Y F x y F x F y ⇔=,连续型:(,)()()X Y f x y f x f y = 离散型:..ij i j p p p = ,4、二维随机变量和函数的分布(卷积公式) 离散型:()(,)i j kk i j x y z P Z z P X x Y y +=====∑注意部分可加性连续型:()(,)(,)Z f z f x z x dx f z y y dy +∞+∞-∞-∞=-=-⎰⎰四、随机变量的数字特征1、数学期望①定义:离散型∑+∞==1)(k k k p x X E ,连续型⎰+∞∞-=dxx xf X E )()(②性质:(),E C C = )()]([X E X E E =,)()(X CE CX E =,)()()(Y E X E Y X E ±=±b X aE b aX E ±=±)()( ,当X 、Y 相互独立时:)()()(Y E X E XY E =(正对逆错)随机变量g(X)的数学期望2、方差 ①定义:②性质:0)(=C D ,)()(2X D a b aX D =±,),(2)()()(Y X Cov Y D X D Y X D ±+=± 当X 、Y 相互独立时:)()()(Y D X D Y X D +=±3、协方差与相关系数①协方差:(,)()()()Cov X Y E XY E X E Y =-,当X 、Y 相互独立时:0),(=Y X Cov②相关系数: ()()XY D X D Y ρ=,当X 、Y 相互独立时:0=XY ρ(X,Y 不相关)③协方差和相关系数的性质:)(),(X D X X Cov =,),(),(X Y Cov Y X Cov =),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+,),(),(Y X abCov d bY c aX Cov =++Cov(x,a)=0(a 为常数),),(2)()()(22Y X abCov Y D b X D a bY aX D ±+=±4分布数学期望E (X )方差D (X )0-1分布 ),1(p b p p(1-p) 二项分布 ),(p n bnp np(1-p)}{}{},{j Y P i X P j Y i X P =====∑=kkk p x g X g E )())((五、大数定律与中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D XE 对于任意0>ε有2)(})({εεX D X E X P ≤≥-2、大数定律:①切比雪夫大数定律:若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且C i ≤2σ,则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11②伯努利大数定律:设n A 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则0ε∀>,有:lim 1A n n P p n ε→∞⎛⎫-<=⎪⎝⎭③辛钦大数定律:若1,,n X X 独立同分布,且μ=)(i X E ,则μ∞→=−→−∑n Pni i X n113、★中心极限定理①列维—林德伯格中心极限定理:独立同分布的随机变量(1,2,)i X i =,均值为μ,方差为02>σ,当n 充分大时有:1((0,1)~nn k k Y X n N μ==-−−→∑ ②棣莫弗—拉普拉斯中心极限定理:随机变量),(~p n B X ,则对任意x 有:22lim }()t xn P x dt x -→∞≤==Φ⎰③近似计算:1()nk k P a X b =≤≤≈Φ-Φ∑ 六、数理统计的基本概念1、总体和样本的分布函数设总体X ~F(x),则样本的联合分布函数)(),(121k nk n x F x x x F =∏=2、统计量样本均值:∑==ni i X nX 11,样本方差:∑∑==--=--=ni ini i X n X n X X n S 122122)(11)(11 样本标准差:∑=--=ni i X X n S 12)(11 ,样本k 阶原点距: 2,1,11==∑=k X n A ni k i k样本k 阶中心距:11(),1,2,3nk k i i B X X k n ==-=∑3、三大抽样分布(1)2χ分布(卡方分布):设随机变量X ~B(0,1)(1,2,,)i n =且相互独立,则称统计量222212n X X X ++=χ服从自由度为n 的2χ分布,记为)(~22n χχ 性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ(2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则称统计量:nY X T =服从自由度为n 的t 分布,记为)(~n t T。
性质:①()0(1),()(2)2n E T n D T n n =>=>-②22lim ()()x n n f x x ϕ-→∞== (3)F分布:设随机变量22~(),~()X m Y n χχ,且X 与Y 独立,则称统计量(,)X mF m n Y n=服从第一自由度为m ,第二自由度为n 的F 分布,记为~(,)F F m n ,性质:设~(,)F F m n ,则1~(,)F n m F 。
七、参数估计1.参数估计①定义:用12(,,,)n X X X θ∧估计总体参数θ,称12(,,,)n X X X θ∧为θ的估计量,相应的12(,,,)n x x x θ∧为总体θ的估计值。
2.点估计中的极大似然估计 设12,,n X X X 取自X 的样本,设~(,)X f x θ或~(,)X P x θ, 求法步骤:①似然函数:11()(,)()()(,)()nni i i i i L f x L P x θθθθ====∏∏连续型或离散型②取对数:1ln ()ln (,)ni i L f x θθ==∑ 或1ln ()ln (,)ni i i L p x θθ==∑③解方程:1ln ln 0,,0kLL θθ∂∂==∂∂,解得:111212(,,,)(,,,)n k k n x x x x x x θθθθ∧∧∧∧⎧=⎪⎪⎨⎪=⎪⎩2,,)n x x 和∧的一串估计量,有lim (|n P θ→∞正态总体中,样本均值X 是μ的无偏估计量 修正样本方差2S 是2σ的无偏估计量八、假设检验第一类错误:当H 0为真时,而样本值却落入了拒绝域,应当否定H 0。
“弃真错误”P{拒绝H0|H0为真}=α第二类错误:当H1为真时,而样本值却落入了接受域,应接受H0。
“取伪错误”P{接受H0|H1为真}=β2.单正态总体均值和方差的假设检验。